
Gossip-based Learning under Drifting Concepts in Fully Distributed Networks

István Hegedűs, Róbert Ormándi
University of Szeged

Szeged, Hungary
{ihegedus,ormandi}@inf.u-szeged.hu

Márk Jelasity
University of Szeged and Hungarian Academy of Sciences

Szeged, Hungary
jelasity@inf.u-szeged.hu

Abstract—In fully distributed networks data mining is an
important tool for monitoring, control, and for offering person-
alized services to users. The underlying data model can change
as a function of time according to periodic (daily, weakly)
patterns, sudden changes, or long term transformations of the
environment or the system itself. For a large space of the
possible models for this dynamism—when the network is very
large but only a few training samples can be obtained at all
nodes locally—no efficient fully distributed solution is known.
Here we present an approach, that is able to follow concept
drift in very large scale and fully distributed networks. The
algorithm does not collect data to a central location, instead
it is based on online learners taking random walks in the
network. To achieve adaptivity the diversity of the learners
is controlled by managing the lifespans of the models. We
demonstrate through a thorough experimental analysis, that
in a well specified range of feasible models of concept drift,
where there is little data available locally in a large network,
our algorithm outperforms known methods from related work.

Keywords-adaptive classification; concept drift; gossip learn-
ing; P2P

I. INTRODUCTION

Fully distributed P2P systems and applications have seen
a steadily increasing popularity in the past decade. We
are currently experiencing a trend, in which these systems
are transforming from pure technical platforms into social
and feature-rich applications. This includes the recent emer-
gence of smart phone platforms [1]–[3] as well as more
traditional P2P applications that are being extended with
features such as recommendation, spam filtering, and social
networking [4]–[6]. The most important building blocks of
these emerging systems are P2P data mining algorithms, that
need to function in a large-scale, unreliable network, and that
need to take the privacy of users into account as well.

In the systems mentioned above, it is essential that all
algorithms work in an adaptive manner. These applications
are running for a long time, without the possibility of
tight central control. At the same time, the network and
the environment changes continuously. The user base ex-
periences continuous churn, and the user behavior and the
world changes as well at all time scales, in other words, the

In: Proc. IEEE SASO 2012, pp 79–88, doi:10.1109/SASO.2012.13. c©
2012 IEEE. Personal use of this material is permitted. Permission from
IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promo-
tional purposes, creating new collective works, for resale or redistribution
to servers or lists, or reuse of any copyrighted component of this work in
other works

system experiences concept drift at many levels [7]. The data
mining algorithms have to follow these changes adaptively
and provide up-to-date models at all times.

We are interested in scenarios, where data owned by a
node cannot be moved outside the node due to privacy (or
efficiency) concerns. In addition, we assume that data is
distributed horizontally, but only a very small amount of
data is available locally, perhaps only a single record. In
addition, only a limited amount of new data can be sampled
in order to follow concept drift. This scenario is typical in
the systems mentioned above. For example, in a smart phone
platform, if people are required to manually enter training
data samples, then we cannot expect a huge amount of input
at all nodes, especially if these samples correspond to rare
events. Similarly, if the training data consists of user profiles,
purchasing events, etc, then we cannot expect overwhelming
data streams locally.

At the same time, even if local data is scarce, when
considering the entire network, we are still provided with
immense amounts of data considering that these networks
can easily reach hundreds of millions of nodes. This calls for
algorithms that can process fully distributed data efficiently
and effectively, without collecting it to a central location.

In our previous work we have proposed the gossip learn-
ing framework (GoLF) to solve a part of this problem [8],
[9]. The basic idea is that models take random walks, while
being updated along the way using online algorithms, and
while being combined as well. However, GoLF was pre-
sented as a one-shot algorithm, without taking adaptivity into
account. Here we introduce adaptivity, hence we make GoLF
a practical solution for realistic changing environments. The
main idea is that we manage the distribution of the lifetime
of the models in the network, making sure that we have a
diverse set of models at all times.

Our contribution is twofold. First, we extend GoLF with
components that allow it to deal with concept drift. With
these changes, the algorithm can run indefinitely in a
changing environment without any central control. Second,
we perform a thorough experimental analysis. We compare
the proposed algorithm with several baseline algorithms
that idealize the main techniques for achieving adaptivity
from related work. We show that in the domain where the
sampling rate of the concept to be learned is low relative to
the speed of drift, our solution is superior to all the baselines
and its performance approximates the theoretical maximum.
We also demonstrate the fault tolerance of the method.

II. SYSTEM MODEL AND DATA DISTRIBUTION

Our system model is a network of computers (peers).
Each node in the network has a unique network address
and can communicate to other nodes through messages
if the address of the target node is locally available. We
also assume that a peer sampling service is available, that
provides addresses of random available peers at any time.
Here we use NEWSCAST [10], [11] as our peer sampling
service. Messages can be delayed or dropped, moreover, new
nodes can join and leave the network without any warning.
We assume that when a node rejoins the network it has the
same state as at the time of going offline.

Regarding data distribution, we assume that the data
records are distributed horizontally, that is, all the nodes
store full records. Most importantly, in this paper we also
assume that all the nodes store exactly one record (although
the algorithms can be trivially adapted to a more general
case). Having access to a single local record excludes the
possibility of any local statistical processing of the data.
Another important assumption is that the data never leaves
the nodes, that is, the collection of the data at a central
location is not possible due to privacy or infrastructural
constraints.

III. BACKGROUND

A. Machine Learning

The problem we tackle in this paper is supervised clas-

sification that can be defined as follows. We are given a
training data set in the form of a set of training examples.
Each training instance consists of a feature vector and a
corresponding class label coming from an unknown under-
lying probability distribution D. Let us denote this training
database with S = {(x1, y1), . . . , (xn, yn)} ⊂ R

d×C where
d is the dimension of the problem and C is the set of class
labels. The main goal when solving a classification problem
is to find a function f : Rd → C using the observations
from S that can classify any samples including those that are
not in the training set but also generated by the probability
distribution D. The above mentioned property is known as
generalization. Function f is called the model of the data.
When the training samples are available as a stream then the
training process is known as online learning.

B. Concept Drift

The distribution D mentioned above may change over
time. For this reason we parameterize the distribution of
the samples by the time t, that is, at time t a sample
(x, y) ∈ R

d×C comes from Dt. This means that any learned
prediction function f might become outdated if new samples
are not used to update or replace it. The challenge is to
design an adaptive algorithm that provides a good model ft
at any given time t.

C. Gossip Learning

The adaptive algorithm we propose here is based on our
Gossip Learning Framework (GoLF) [8], [9]. In Algorithm 1
a variant of GoLF is shown, extended with two lines (marked
with comments) that represent the modifications related to

concept drift handling. Here we focus on the original parts;
concept drift handling is explained in Section V.

The basic idea is that multiple models perform random
walks over the network in parallel, while applying an on-
line learning algorithm to improve themselves, and getting
combined via ensemble learning methods.

At each node in the network the same algorithm is run.
The algorithm consists of an active loop of periodic activity,
and the message handler method ONRECEIVEMODEL to
process incoming models. This method updates the incoming
model using the local training example and stores it in its
cache called receivedModels. In the active loop the stored
models are sent to random neighbors and are removed from
the cache. At anytime the freshest model (that is, CURRENT-
MODEL, the model added to the cache most recently) is used
for prediction.

Incoming models can be combined as well, both locally
(e.g., merging the received models, or implementing a local
voting mechanism) or globally (e.g., finding the best model
in the network) [8], [9]. In this paper we do not discuss the
possibilities of local model combination, but in Section VI
we study the identification and the performance of the best
model in the network.

We make no assumptions about either the synchrony of
the loops at the different nodes or the reliability of the
messages. It is assumed only that the length of the period
of the loop ∆ is the same at all nodes. There is no explicit
failure detection, however, if a node does not receive any
models for a certain number of periods (in our case 10), then
it will assume that the number of models circulating in the
network has decreased, and will send its CURRENTMODEL

to a random neighbor. This prevents the network from
running out of models due to message drop failures.

The algorithm contains abstract methods that can be
implemented in different ways to obtain a concrete learn-
ing algorithm. The main placeholders are INITMODEL and
UPDATEMODEL. The method SELECTPEER is the interface
for the peer sampling service, as described in Section II.
Here we use the NEWSCAST algorithm [10], [11], which
is a gossip-based implementation of peer sampling. We do
not discuss NEWSCAST here in detail, all we assume is that
SELECTPEER() provides a uniform random sample of the
peers without creating any extra messages in the network,
given that NEWSCAST gossip messages (that contain only a
few dozen network addresses) can piggyback gossip learning
messages.

IV. RELATED WORK

We discuss the state-of-the-art of the techniques for deal-
ing with concept drift in general, as well as the known P2P
approaches.

A good overview of concept drift can be found
in [7]. Many algorithms apply chunk based learning tech-
niques [12]–[14], that is, they teach a new classifier when
a new set of samples (a chunk) becomes available via
the stream of samples. This approach could be suitable
when the stream of samples produces a large number of
samples relative to the speed of concept drift, that is, when

the method can collect enough samples quickly enough to
build an up-to-date classifier. Moreover, determining the
chunk size is not easy, yet this parameter is crucial for the
prediction performance.

One improvement of chunk based techniques is to detect
the drift, that is, to use some performance related measures
to decide when to trigger the drift handling method [13],
[15], [16]. The early approaches use a single model which is
discarded when drift is detected and a new one is constructed
immediately. Recently, ensemble learning has also been
proposed [17]. In this case, when the drift is detected, they
teach a new model but this new model is added to an
ensemble pool that is used to perform prediction, possibly
involving a weighting mechanism as well.

Learning in P2P systems is a growing area, some exam-
ples include [8], [18]–[24]. Very few works address issues
related to concept drift in a P2P network. A fully distributed
decision tree induction method was proposed by Ghaduri et
al. [25]. The proposal involves drift detection, that triggers
a tree update.

Another solution was proposed by Ang et al. [20].
This method implements the so-called RePCoDE framework
which detects the drift (reactive behavior) and simultane-
ously predicts it as well (proactive behavior). The basic
learning mechanism is performed by chunk-based learning,
but the models taught on previous data chunks are also
kept and used during prediction (ensemble based aspect).
As the extensive evaluations show the proposed approach
works well in various scenarios, although its communication
cost is rather high, since it involves network wide model
propagation. A number of heuristics are proposed to reduce
this cost.

As we show later, our approach is rather different from
these, as we do not attempt to detect concept drift at all.
Instead, we take advantage of the large size of the network
and maintain a diverse pool of models via managing the
age distribution in the pool. In addition, these models take
random walks, so they are all able to take advantage of the
new samples. This is especially important, if new samples
arrive only very rarely at any given node, but in the overall
network there are enough samples to process.

V. ALGORITHM

A. Handling Concept Drift

In GoLF many models perform random walks converging
to a good classifier. Without drift handling capabilities these
models will not be able to adapt when concept drift occurs,
that is, when the underlying probability distribution of the
data changes. We will demonstrate this phenomena through
empirical evaluations in Section VI. There, it is shown that
when a model becomes too old, it is not able to adapt
anymore to the changing environment. This is a well-know
property of most online learning algorithms.

It would therefore be useful to build new models when the
underlying distribution changes. Indeed, this is what concept
drift techniques attempt to do, as we discussed previously.
However, instead of detecting drift, in our approach we
achieve adaptivity by controlling the lifetime distribution

Algorithm 1 Gossip Learning Framework
1: c← 0
2: m ← initModel()
3: currentModel ← initDriftHandler(m) ⊲ DHC init.
4: receivedModels.add(currentModel)
5: loop
6: if receivedModels = ∅ then
7: c← c+ 1
8: if c = 10 then
9: receivedModels.add(currentModel)

10: for all m ∈ receivedModels do
11: p← selectPeer()
12: send m to p
13: receivedModels.remove(m)
14: c← 0
15: wait(∆)

16: procedure ONRECEIVEMODEL(m)
17: m← driftHandler(m) ⊲ DHC impl.
18: currentModel ← updateModel(m)
19: receivedModels.add(currentModel)

Algorithm 2 Drift Handling Component
1: procedure INITDRIFTHANDLER(m)
2: m.TTL← generateTTL()
3: return m

4: procedure DRIFTHANDLER(m)
5: if m.age = m.TTL then
6: m← initModel()
7: m← initDriftHandler(m)
8: return m

of the models available in the network, which introduces
network-wise model diversity in terms of model age.

In Algorithm 1 we show the skeleton of the GoLF
algorithm extended with a drift handling component (DHC).
Drift handling is implemented through two abstract functions
called in line 3 and line 17. These function calls add the
capability of drift handling to GoLF independently of the
model and learning algorithm applied in GoLF. From now
on, we will call the GoLF framework extended with drift
handling ADAGOLF.

The implementations of the drift handling components are
shown in Algorithm 2. We add a new time-to-live (TTL) field
to each model. When a new model is created this field is
initialized (at line 2 of Algorithm 2) to a value generated
from a predefined probability distribution that we call the
Model Lifetime Distribution (MLD). The selection of this
probability distribution is crucial as we explain later in this
section. The age of the model increases with each hop. When
the model age reaches the TTL value the model “dies” and
a new one is created (at line 6 of Algorithm 2) with a newly
generated, independent TTL value (at line 7 of Algorithm 2).

We would like to characterize the distribution of the age
of the models in the network at some time point t. Consider

Algorithm 3 Learner Component
1: procedure INITMODEL

2: m.age← 0
3: m.w← 0̄
4: return m

5: procedure UPDATEMODEL(m) ⊲ λ = 0.0001
6: m.age← m.age+ 1
7: m.η ← 1/m.age
8: ŷ ← m.predict(x) ⊲ (x, y) is the local example
9: m.w← (1 −m.η · λ)m.w +m.η · (y − ŷ)x

10: return m

11: procedure PREDICT(x)
12: p0 ← 1/(1 + exp(currentModel.wTx))
13: p1 ← 1− p0
14: return p0 > p1 ? 0 : 1

a sequence of models m1,m2, . . . according to a random
walk where mi is removed and mi+1 is started by method
DRIFTHANDLER. The lifetime sequence of these models
m1.TTL, m2.TTL, . . . forms a renewal process. Let the
age of the model that is “alive” at time t be the random
variable At; we are interested in the distribution of At. More
formally, let St be the birth time of the model alive at time
t:

St = max
k

{Vk : Vk =

k
∑

i=1

mi.TTL and Vk < t}, (1)

in which case At = t − St. Applying results from renewal
theory [26] (the renewal equation and the expectation equa-
tion) we get the expected model age and its variance as the
time tends to infinity:

E(At)
t→∞

−−−→
E(X2)

2E(X)

D
2(At)

t→∞

−−−→
E(X3)

3E(X)
−

(

E(X2)

2E(X)

)2 (2)

We selected the lognormal distribution as our MLD with
parameters µ = 8 and σ2 = 0.5, that gives us an expected
age of E(At) ≈ 3155, and D(At) ≈ 3454. The method is
very insensitive to the distribution, as long as it provides
a diverse-enough set of values with young as well as old
models present at the same time.

B. The Learner Component

In our evaluations we applied the logistic regression [27]
learner which is a widely used online classification algo-
rithm. Logistic regression looks for a set of parameters
(w) that maximizes the logarithm of the conditional data
likelihood

l(w) =

n
∑

i=1

lnP (yi|xi, w)−
λ

2
‖w‖2. (3)

Here (xi, yi) represents the ith sample from the train-
ing database and λ is the regularization parameter. The
implementation of the online learning rule for the above
mentioned objective function can be seen in Algorithm 3
(in line 9, where η is the learning rate). The prediction of a
model on a sample x is performed locally by selecting the
most likely class (the implementation for the two-class case
can be found in Algorithm 3 starting from line 11).

C. Spreading the Approximated Best Model

Since we have numerous diverse models available in the
network, it is a natural idea to try to continuously search
for the current best model and share this model among all
the nodes. It is non-trivial to find the model with the best
prediction performance since we have no independent test
data available. One solution is to define an approximate error
score that is computable in the learning phase. A possible
approach involves using each training example as a test
sample before using it for updating the model. We can then
compute a moving average of these elementary validation
scores to get an aggregated error score of the model. The
model with the minimum score can be spread in the network
via gossip-based minimum search [28]. We refer to this
slightly modified version ADAGOLF as MINADAGOLF.

D. Communication Complexity

The expected communication cost for a single node in
a period of ∆ time (one cycle) is at most two. To see this,
consider, that there are M models in the entire network, and
there are N > M nodes (with N = M if there is no message
drop and no churn), and that every model performs a random
walk with exactly one hop in each cycle. Since we assume a
good quality peer sampling service, the number of incoming
messages will follow a Poisson distribution with λ = 1 if
M = N , and less if M < N . Since each incoming message
also generates an outgoing message, the overall number of
messages will be twice the number of the incoming ones.

MINADAGOLF involves a minimum search that takes
O(logN) messages per node itself. If we assume that the
gossip-based minimum spreading messages piggyback the
ADAGOLF gossip messages, then no extra messages are
involved, however, the message size will double (it will con-
tain two models instead of one) and we learn the minimum
only with a logarithmic delay. The space complexity of a
model strongly depends on the selected learning algorithm,
as well as the dimensionality of the data.

VI. EXPERIMENTAL SETUP

A. Drift Dynamics and Drift Types

Our algorithm is not the optimal choice in all possible
concept drift scenarios, however, in certain important cases
we will show it to be the most favorable option. To be able to
characterize the different drift scenarios. Let us first identify
a few key features of drift.

As of dynamics, there are two important properties that
characterize an environment involving concept drift: the
speed of drift, and the sampling rate. The speed of drift
defines how much the underlying concept changes within a

Table I
THE MAIN PROPERTIES OF THE BASELINE AND THE ADAPTIVE ALGORITHMS.

Name Computational complexity models used for Communication complexity
of learning / cycle prediction / cycle

LOCALLEARNER O(chunkSize) 1 0
CACHEBASEDLEARNER O(sampleCacheSize) 1 0

VOTELEARNER O(chunkSize) N O(N)
CACHEDVOTELEARNER O(sampleCacheSize) N O(N)

VOTELEARNERWITHDELAY O(chunkSize) modelCacheSize O(1)
CACHEDVOTELEARNERWITHDELAY O(sampleCacheSize) modelCacheSize O(1)

GLOBAL O(chunkSize*N) 1 O(N)

ADAGOLF O(1) 1 O(1)
MINADAGOLF O(1) 1 O(logN)

unit time interval. The sampling rate defines how many new
samples become available within a unit time interval.

A third speed-related parameter is the cycle length ∆
of ADAGOLF. However, these three parameters can be
considered redundant, since in the range of reasonable cycle
lengths ∆ (where ∆ is significantly greater than message
transmission time) we can always chose a ∆ that keeps
drift speed (or sampling rate) constant. For this reason, we
will chose ∆ as the unit of time, and we will define drift
speed and sampling rate in terms of ∆, leaving us with two
remaining free parameters.

However, in this paper we do not investigate the speed
of drift independently, since the interesting scenarios are
differentiated more by the ratio of drift speed and sampling
rate. If drift is too fast relative to the sampling rate, then
there is no chance to learn a reasonable model with any
method. If drift is too slow relative to the sampling rate, then
the problem is not very challenging, since even the simplest
baselines can achieve a very good performance [7].

The type of the drift is another important property. In our
scenarios drift can be incremental or sudden [7]. The actual
drift types are described later in this section.

B. Baseline Algorithms

We selected our baseline algorithms so as to represent the
most typical approaches from related work with a simpler,
but optimistic version, that is guaranteed to perform better
by construction than the corresponding published algorithm.

Our simplest baseline is LOCALLEARNER where each
node simply collects its local samples during a cycle and
builds a model based on this sample set at the end of each
cycle. If a node does not observe any training samples during
a cycle then the previous model is used for prediction. This
solution involves no communication, but with low sample
rates it performs poorly.

CACHEBASEDLEARNER is a more sophisticated baseline
which uses a limited size memory, a FIFO queue (called
cache) in which it collects samples. For maximal fairness,
the memory size was optimized during preliminary exper-
iments, and was set to 100. Note that our test datasets
are learnable from 100 samples very well. Due to the
optimized cache size, this baseline represents the the chunk
based as well as trigger based approaches mentioned in
Section IV. The cache size can be considered an optimized

chunk size which is the optimal solution of the trigger based
approaches as well assuming continuous drift. Thus the
result of this baseline can be considered as an upper bound
of the performance of the local chunk and trigger based
approaches. This baseline still uses no communication, but
it performs better than LOCALLEARNER.

The baselines VOTELEARNER and CACHEDVOTE-
LEARNER are natural extensions of the previous baselines:
they use collaboration within the network. All the nodes
send their models they create at the end of the cycle to every
other node, and the prediction is performed by voting. These
are powerful baselines in terms of prediction performance,
although their communication costs are extremely large due
to a full broadcast of all the models in each cycle. It
is easy to see that these voting-based baselines represent
the ensemble based approaches mentioned in Section IV,
hence the performance of these idealized variants can be
considered an upper bound of the result of the ensemble
based approaches.

VOTELEARNERWITHDELAY and CACHEDVOTELEARN-
ERWITHDELAY are the communication-effective versions
of VOTELEARNER and CACHEDVOTELEARNER, respec-
tively. They work exactly the same way like their ancestors
but the model spreading process is slowed down: in each
cycle each node sends its model to exactly one neighbor.
These models are collected in a FIFO queue of a fixed size
(the model cache) and prediction is based on the voting of
the models in the model cache. We set the model cache size
to be 100, similarly to the sample cache described above.

The last baseline called GLOBAL is an algorithm that can
observe all the samples observed in the network in a cycle
and can build a model based on them. The implementation
of this algorithm is infeasible and its result can be considered
as a theoretical upper bound on the performance of the
distributed baselines and ADAGOLF.

The complexity of these algorithms is summarized in
Table I. The network size is denoted by N , CHUNKSIZE

is the number of samples observed by a node in a cycle,
which depends on the sampling rate. The last two lines
show the same properties for our algorithms. In the case of
MINADAGOLF we assumed that the minimum is searched
for in each cycle. Note that if we allow for O(logN)
cycles of delay for learning the minimum, which is a very
reasonable choice, then a constant number of messages

would suffice.

C. Data Sets

In our evaluations we used synthetically generated as well
as real world data sets. In both cases we modeled drift by
changing the labeling of the data set. That is, drift itself
was synthetic even in the case of the real world database.
The nodes can get random samples according to the given
sampling rate from a training pool.

The synthetic database was generated by drawing uniform
random points from the d dimensional uniform cube. The
labeling of these points is defined by a hyperplane that
naturally divides the examples into a positive and negative
subset. Drift is modeled by moves the hyperplane periodi-
cally over time [29]. A hyperplane at time t is defined by
its normal

wt = (1 − αt)ws + αtwd, (4)

where wt, ws, wd ∈ R
d, 0 ≤ αt ≤ 1, and ws and wd are the

source and the destination hyperplanes, respectively, which
are orthogonal to each other. The normal ws is generated
at random with all coordinates drawn from [0, 1] uniformly,
and wd = (1, . . . , 1)T − ws.

In the case of incremental drift the hyperplane is moved
smoothly back and forth between ws and wd. This can
formally be defined as

αt =

{

1− (tv − ⌊tv⌋) if ⌊tv⌋ mod 2 = 1

tv − ⌊tv⌋ otherwise
(5)

where v is the speed of drift. When sudden drift was
modeled, we used the same dynamics for αt but rounded it
to implement discontinuity: α′

t = round(αt). This results in
switching back and forth between ws and wd with a period
of 2/v time units.

We used one real world data set, namely the Image
Segmentation [30] data set from the UCI Machine Learning
Repository. The database has 19 real valued features and
7 class labels. The class label ratio is balanced. Originally
this data set does not support the evaluation of concept drift.
We implemented a mechanism proposed by [31], [32] to
add synthetic drift to this data set. This simple mechanism
consists of rotating the class labels periodically. This results
in a variant of sudden drift.

D. Evaluation Metrics

For performing evaluations we split all the databases into a
training and an evaluation set. The proportion of this splitting
was 80/20% (training/evaluation) except in the case of the
real data set where the training/evaluation split was provided
by the owners of the database. In all cases the splitting was
performed before the simulations since all the evaluation sets
are obviously independent from the training sets.

Our main evaluation metric is prediction error. In the case
of ADAGOLF, we track the misclassification ratio over the
test set of 100 randomly selected peers. The misclassification
ratio of a model is simply the number of the misclassified
test examples divided by the number of all test examples,
which is also called the 0-1 error.

Sudden drift on synthetic data set

4k 4.5k 5k

0-
1

Er
ro

r

Early

99k 99.5k 100k

Number of cycles (∆)

Middle

999k 999.5k 1m
 0

 0.1

 0.2

 0.3

 0.4

 0.5

Late

Incremental drift on synthetic data set

4k 4.5k 5k

0-
1

Er
ro

r

Early

99k 99.5k 100k

Number of cycles (∆)

Middle

999k 999.5k 1m
 0

 0.1

 0.2

 0.3

 0.4

 0.5

Late

MinAdaG.
AdaGoLF

GoLF

Sudden drift on real data set

4k 4.5k 5k

0-
1

Er
ro

r
Early

99k 99.5k 100k

Number of cycles (∆)

Middle

999k 999.5k 1m
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9
 1

Late

Figure 1. The burn in effect as a motivation for adaptivity.

E. Simulation scenarios

The experiments were performed using the event-based
engine of PeerSim [33]. Apart from experiments involving
no failure, we model the effect of message drop, message
delay, and churn. In all the failure scenarios we modeled
realistic churn, that is, the nodes were allowed to join and
leave the network. The length of the online sessions was
estimated by applying maximum likelihood estimation con-
sidering lognormal distribution based on a private BitTorrent
trace called the FileList.org collected by Delft University of
Technology [34]. We set the offline session lengths so that at
any moment in time 90% of the peers are online. In addition,
we assume that when a peer comes back online, it retains
its state that it had at the time of leaving the network.

In the scenario we call AF mild (all failures mild), mes-
sage drop probability was set to be 0.2, and message delay
is modeled as a uniform random delay from the interval
[∆, 2∆] where ∆ is the cycle length. Moreover we applied
a very heavy failure scenario as well where the message drop
probability was 0.5 and message delay was uniform random
from [∆, 10∆]. We refer to this scenario as AF hard.

The default value for the sampling rate parameter was
1/∆, and the default for network size is N = 100. Both of

these values are explored in our experimental study.

VII. EXPERIMENTAL RESULTS

A. Adaptivity

Here we briefly illustrate the problem that is caused by the
lack of adaptivity. Online learners exhibit a burn in effect
when run for a long time, as demonstrated by Figure 1,
where we present the prediction error, averaged over the
network, of the original GoLF (baseline), ADAGOLF, and
MINADAGOLF as a function of time. We can see that
ADAGOLF shows no burn in effect. The plots suggest that
MINADAGOLF might have a slightly better performance
than ADAGOLF, but with a higher variance.

B. The Effect of Sampling Rate

We performed evaluations using all our database and drift-
type configurations (synthetic-sudden, synthetic-incremental
and real world-sudden). For each of these configurations we
study the effect of different sampling rates. The results are
shown in Figures 2, 3 and 4. In each result set we selected
four distinct sampling rates: 0.01, 0.1, 1, 10 samples per
cycle.

When the sampling rate is 0.01, all the nodes receive only
a single new sample on average in every 100 iterations.
While the baseline methods build models only based on
local samples, ADAGOLF can take advantage of many more
samples due to the models performing a random walk.
This allows ADAGOLF to approximate the performance of
GLOBAL that has the best possible performance by con-
struction. Increasing the sampling rate results in a gradually
decreasing difference between the baseline algorithms and
ADAGOLF. In fact, with high sampling rates, ADAGOLF
is outperformed by most of the baselines in the case of the
sudden change scenarios.

We need to note here, that in the present version of the
algorithm all models use exactly one sample for the update
in each hop, even if more samples are available. This means
that there are lots of possibilities to enhance ADAGOLF to
deal with high sample rates better. Nevertheless, ADAGOLF
is clearly the best option if the sampling rate is low.

In the incremental drift scenario, we should mention the
remarkable stability of ADAGOLF under each sampling rate.
Here, ADAGOLF remains competitive even in the highest
sampling rate scenario. This is rather interesting, given that
ADAGOLF ignores most of the samples in that case, as
mentioned before.

C. Fault Tolerance

We performed simulations with the failure scenarios de-
scribed previously. Figure 5 contains the results. From this
we can observe that the effect of the failures is a slower
convergence speed. This effect can mostly be accounted for
by the message delay, since all the random walks will be
proportionally slower. This has the same effect as if the
cycle length ∆ was proportionally larger in a failure-free
scenario.

D. Scalability

In Figure 6 we present the results of ADAGOLF in
different network sizes. We cannot identify any significant
effect of the network size in most of the scenarios. In the
case of the real dataset (that is harder to learn) we can realize
that larger networks result in a slightly better performance,
which is most likely due to the fact that more independent
samples are available in larger networks.

VIII. CONCLUSION

In this paper we proposed an adaptive version of the GoLF
framework, called ADAGOLF. Adaptivity is implemented in
a very simple manner through the management of the age
distribution of the models in the network, making sure that
there is a sufficient diversity of different ages in the pool.
This is not a usual approach, as most of the related work
focuses on building and combining local models, and on
detecting and predicting drift explicitly.

We performed a thorough experimental study in which
we compared ADAGOLF with a set of baseline algorithms
that represented idealized versions of the main techniques
that are applied in related work. Our main conclusion is
that in those scenarios, where the sampling rate from the
underlying distribution is low relative to the speed of drift,
ADAGOLF clearly outperforms all the baseline solutions,
approximating the “God’s Eye view” model, that represents
the best possible performance. ADAGOLF was designed
to deal with exactly this scenario. We also indicated, that
ADAGOLF can be enhanced to deal with (or rather, be robust
to) higher sample rates as well, although in that case purely
local model building can also be sufficient.

ACKNOWLEDGMENT

M. Jelasity was supported by the Bolyai Scholarship of
the Hungarian Academy of Sciences. This work was par-
tially supported by the Future and Emerging Technologies
programme FP7-COSI-ICT of the European Commission
through project QLectives (grant no.: 231200). The authors
would like to thank Gábor Szűcs for the consultations about
renewal processes.

REFERENCES

[1] A. S. Pentland, “Society’s nervous system: Building effective
government, energy, and public health systems,” Computer,
vol. 45, no. 1, pp. 31–38, January 2012.

[2] T. Abdelzaher, Y. Anokwa, P. Boda, J. Burke, D. Estrin,
L. Guibas, A. Kansal, S. Madden, and J. Reich, “Mobiscopes
for human spaces,” Pervasive Computing, IEEE, vol. 6, no. 2,
pp. 20–29, april-june 2007.

[3] N. Lane, E. Miluzzo, H. Lu, D. Peebles, T. Choudhury,
and A. Campbell, “A survey of mobile phone sensing,”
Communications Magazine, IEEE, vol. 48, no. 9, pp. 140–
150, September 2010.

[4] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang,
A. Iosup, D. H. J. Epema, M. Reinders, M. R. van Steen, and
H. J. Sips, “TRIBLER: a social-based peer-to-peer system,”
Concurrency and Computation: Practice and Experience,
vol. 20, no. 2, pp. 127–138, 2008.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 0.01 samples/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 0.1 samples/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 1 sample/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 10 samples/∆

AdaGoLF
Local

DelayedVote
Vote

Global

Figure 2. The effect of sampling rate under sudden drift (the lines marked with △ belong to cache based baselines).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 0.01 samples/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 0.1 samples/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 1 sample/∆

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 10 samples/∆

AdaGoLF
Local

DelayedVote
Vote

Global

Figure 3. The effect of sampling rate under incremental drift (the lines marked with △ belong to cache based baselines).

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 0.01 samples/∆

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 0.1 samples/∆

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 1 sample/∆

 0

 0.2

 0.4

 0.6

 0.8

 1

 4000 4250 4500 4750 5000

0-
1

Er
ro

r

Number of cycles (∆)

Sampling rate: 10 samples/∆

AdaGoLF
Local

DelayedVote
Vote

Global

Figure 4. The effect of sampling rate over the real database (the lines marked with △ belong to cache based baselines).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4200 4400 4600 4800 5000

0-
1

E
rr

or

Number of cycles (∆)

Sudden drift on synthetic database

NF
AF mild
AF hard

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 4000 4200 4400 4600 4800 5000

0-
1

E
rr

or

Number of cycles (∆)

Incremental drift on synthetic database

NF
AF mild
AF hard

 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 4000 4200 4400 4600 4800 5000

0-
1

E
rr

or

Number of cycles (∆)

Sudden drift on real database

NF
AF mild
AF hard

Figure 5. Prediction performance under failure.

[5] X. Bai, M. Bertier, R. Guerraoui, A.-M. Kermarrec, and
V. Leroy, “Gossiping personalized queries,” in Proceedings
of the 13th International Conference on Extending Database
Technology (EBDT’10), 2010.

[6] S. Buchegger, D. Schiöberg, L.-H. Vu, and A. Datta, “Peer-
SoN: P2P social networking: early experiences and insights,”
in Proceedings of the Second ACM EuroSys Workshop on
Social Network Systems (SNS’09). New York, NY, USA:
ACM, 2009, pp. 46–52.

[7] I. Zliobaite, “Learning under concept drift: an overview,”
arxiv.org, Tech. Rep. 1010.4784, 2010. [Online]. Available:
http://arxiv.org/abs/1010.4784

[8] R. Ormándi, I. Hegedűs, and M. Jelasity, “Asynchronous
peer-to-peer data mining with stochastic gradient descent,”
in 17th International European Conference on Parallel and

Distributed Computing (Euro-Par 2011), ser. Lecture Notes in
Computer Science, vol. 6852. Springer, 2011, pp. 528–540.

[9] R. Ormándi, I. Hegedűs, and M. Jelasity, “Gossip learning
with linear models on fully distributed data,” Concurrency
and Computation: Practice and Experience, 2012, to appear.

[10] M. Jelasity, S. Voulgaris, R. Guerraoui, A.-M. Kermarrec, and
M. van Steen, “Gossip-based peer sampling,” ACM Transac-
tions on Computer Systems, vol. 25, no. 3, p. 8, August 2007.

[11] N. Tölgyesi and M. Jelasity, “Adaptive peer sampling with
newscast,” in Euro-Par 2009, ser. LNCS, vol. 5704. Springer,
2009, pp. 523–534.

[12] H. Wang, W. Fan, P. S. Yu, and J. Han, “Mining concept-
drifting data streams using ensemble classifiers,” in Proceed-
ings of the ninth ACM SIGKDD international conference on

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 3000 3500 4000 4500 5000

0-
1

E
rr

or

Number of cycles (∆)

Sudden drift on synthetic database

10 peers
100 peers

1000 peers
10000 peers

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7

 3000 3500 4000 4500 5000

0-
1

E
rr

or

Number of cycles (∆)

Incremental drift on synthetic database

10 peers
100 peers

1000 peers
10000 peers

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 3000 3500 4000 4500 5000

0-
1

E
rr

or

Number of cycles (∆)

Sudden drift on real database

10 peers
100 peers

1000 peers
10000 peers

Figure 6. The effect of network size (with sampling rate 1/∆).

Knowledge discovery and data mining, ser. KDD ’03. New
York, NY, USA: ACM, 2003, pp. 226–235.

[13] J. Z. Kolter and M. A. Maloof, “Dynamic weighted majority:
An ensemble method for drifting concepts,” J. Mach. Learn.
Res., vol. 8, pp. 2755–2790, December 2007.

[14] W. N. Street and Y. Kim, “A streaming ensemble algorithm
(sea) for large-scale classification,” in Proceedings of the sev-
enth ACM SIGKDD international conference on Knowledge
discovery and data mining, ser. KDD ’01. New York, NY,
USA: ACM, 2001, pp. 377–382.

[15] M. Baena-García, J. del Campo-Ávila, R. Fidalgo, A. Bifet,
R. Gavaldá, and R. Morales-Bueno, “Early drift detection
method,” Fourth International Workshop on Knowledge Dis-
covery from Data Streams, vol. 6, pp. 77–86, 2006.

[16] J. Gama, P. Medas, G. Castillo, and P. Rodrigues, “Learning
with drift detection,” in Advances in Artificial Intelligence,
Proceedings of SBIA 2004, ser. LNCS, vol. 3171. Springer,
2004, pp. 286–295.

[17] L. Minku, A. White, and X. Yao, “The impact of diversity on
online ensemble learning in the presence of concept drift,”
Knowledge and Data Engineering, IEEE Transactions on,
vol. 22, no. 5, pp. 730 –742, may 2010.

[18] P. Luo, H. Xiong, K. Lü, and Z. Shi, “Distributed clas-
sification in peer-to-peer networks,” in Proceedings of the
13th ACM SIGKDD international conference on Knowledge
discovery and data mining (KDD’07). New York, NY, USA:
ACM, 2007, pp. 968–976.

[19] H. Ang, V. Gopalkrishnan, W. Ng, and S. Hoi,
“Communication-efficient classification in P2P networks,” in
Machine Learning and Knowledge Discovery in Databases
(ECML PKDD), ser. Lecture Notes in Computer Science,
W. Buntine, M. Grobelnik, D. Mladenic, and J. Shawe-
Ta ylor, Eds., vol. 5781. Springer, 2009, pp. 83–98.

[20] H. H. Ang, V. Gopalkrishnan, W. K. Ng, and S. Hoi, “On
classifying drifting concepts in p2p networks,” in Proceed-
ings of the 2010 European conference on Machine learning
and knowledge discovery in databases: Part I, ser. ECML
PKDD’10. Berlin, Heidelberg: Springer, 2010, pp. 24–39.

[21] H. Ang, V. Gopalkrishnan, S. Hoi, and W. Ng, “Cascade
RSVM in peer-to-peer networks,” in Machine Learning and
Knowledge Discovery in Databases (ECML PKDD), ser. Lec-
ture Notes in Computer Science, W. Daelemans, B. Goethals,
and K. Morik, Eds., vol. 5211. Springer, 2008, pp. 55–70.

[22] S. Datta, K. Bhaduri, C. Giannella, R. Wolff, and H. Kargupta,
“Distributed data mining in peer-to-peer networks,” IEEE
Internet Computing, vol. 10, no. 4, pp. 18–26, July 2006.

[23] S. Siersdorfer and S. Sizov, “Automatic document organi-
zation in a P2P environment,” in Advances in Information
Retrieval, ser. Lecture Notes in Computer Science, M. Lal-
mas, A. MacFarlane, S. Rüger, A. Tombros, T. Tsikrika, and
A. Yavlinsky, Eds. Springer, 2006, vol. 3936, pp. 265–276.

[24] C. Hensel and H. Dutta, “GADGET SVM: a gossip-based
sub-gradient svm solver,” in International Conference on Ma-
chine Learning (ICML), Numerical Mathematics in Machine
Learning Workshop, 2009.

[25] K. Bhaduri, R. Wolff, C. Giannella, and H. Kargupta, “Dis-
tributed decision-tree induction in peer-to-peer systems,” Stat.
Anal. Data Min., vol. 1, pp. 85–103, June 2008.

[26] G. Grimmett and D. Stirzaker, Probability and Random
Processes, ser. Texts from Oxford University Press. Oxford
University Press, 2001.

[27] T. M. Mitchell, Machine Learning, 2nd ed., E. M. Munson,
Ed. New York: McGraw-Hill, 1997. [Online]. Available:
http://www.cs.cmu.edu/~tom/mlbook.html

[28] M. Jelasity, A. Montresor, and O. Babaoglu, “Gossip-based
aggregation in large dynamic networks,” ACM Transactions
on Computer Systems, vol. 23, no. 3, pp. 219–252, August
2005.

[29] G. Hulten, L. Spencer, and P. Domingos, “Mining time-
changing data streams,” in Proceedings of the seventh ACM
SIGKDD international conference on Knowledge discovery
and data mining, ser. KDD ’01. New York, NY, USA: ACM,
2001, pp. 97–106.

[30] A. Frank and A. Asuncion, “UCI machine learning reposi-
tory,” 2010.

[31] A. Dries and U. Rückert, “Adaptive concept drift detection,”
Stat. Anal. Data Min., vol. 2, no. 56, pp. 311–327, December
2009.

[32] J. Vreeken, M. van Leeuwen, and A. Siebes, “Characterising
the difference,” in Proceedings of the 13th ACM SIGKDD
international conference on Knowledge discovery and data
mining, ser. KDD ’07. New York, NY, USA: ACM, 2007,
pp. 765–774.

[33] A. Montresor and M. Jelasity, “Peersim: A scalable P2P
simulator,” in Proceedings of the 9th IEEE International
Conference on Peer-to-Peer Computing (P2P 2009). Seat-
tle, Washington, USA: IEEE, September 2009, pp. 99–100,
extended abstract.

[34] “Filelist,” http://www.filelist.org, 2005.

