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Introduction

* A few key ideas from previous class

- Overlay networks are the key abstraction

- Function is always implemented as a distributed
algorithm that communicates over this network

- Overlay networks can emerge or can be created
* Main points in this class

- (Gossip protocols over networks

 Dissemination, computation, overlay construction
- Applications for distributed data mining

 EM algorithm, clustering, collaborative filtering



Introduction

* (Gossip-like phenomena are commonplace

- human gossip
- epidemics (virus spreading, etc)
- computer epidemics (malicious agents: worms, viruses)

- phenomena such as forest fires, branching processes
and diffusion are all similar mathematically

» extremely simple locally, powerful and robust globally
* In computer science, epidemics are relevant

- for security (against worms and viruses)
- for designing useful protocols (we look at this here)



Epidemic Database Updates

* Problem
- Xerox corporate Internet, replicated databases

- Each database has a set of keys that have values (along with a
time stamp)

- Goal: all databases are the same, in the face of key updates,
removals and additions

- Updates are made locally and have to be replicated at all sites
(300 sites)

» Solution in 1986: emailing updates
- problems with detecting and correcting errors (done by hand!)
- bottleneck with the originating (updated) site
- not scalable (slow if very large number of nodes)
- (message complexity quite good though!)



Gossip to the rescue

 Main components are replaced by gossip

- update spreading: rumor mongering (no bottleneck)
- error correction: anti-entropy gossip (reliable)
* anti-entropy

- uses “simple epidemics” with two states: infective and
susceptible (a.k.a. S| model)

- guarantees perfect dissemination
* rumor mongering

- uses ‘complex epidemics” with an additional state:
removed (a.k.a. SIR model)

- certain (quite small) probability of error



S| gossip
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What overlay network is assumed here?



Some Properties of the S| model

e the push model

- N nodes communicate in rounds (cycles)

- in each cycle, a node that has the update (infected)
sends it to a random other node, that becomes infected
too

* |n anti-entropy

- nodes send the (hash of) the entire database (not only
a single update)

 as a side effect, all new updates are spread
according to the Sl model

- receiving nodes update their own database via merging
the unseen updates



Mean-field model of push SI

 Let p, be the proportion of not infected nodes
in cycle |
» 1-p.=1/N

 Pittel (1987) shows that the model below is
quite accurate for predicting p.

( 1 \N(1_pi)

E(p )=p|1-— ~D
(P:1) p,\1 N p;e




Speed and cost of push Sl

. Let S be the first cycle where p=0
» Pittel (1987) shows that in probability

Sy=1og(N)+In(N)+0O(1)

* This is quite fast...
* But the number of overall messages sent is

O(NlogN)



Pull and push-pull Sl

* With pull, we have
2
E<pi+1>:pi

» This is very fast when p_is small (end phase)...

» Karp et al (2000) show that the number of
overall messages sent with push-pull is

O(NloglogN)

 But termination is trickier when no updates are
available (for anti-entropy does not matter)
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SIR for spreading single updates

For anti-entropy, use a pull or push-pull SI modell

For the spreading of updates, the termination problem
needs to be addressed: rumor mongering with SIR
model

Push approach

- when a rumor (update) becomes “cold”, stop
pushing

Pull approach

- same as push, only stop offering update when
pulled when it becomes cold
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SIR gossip

fl;; lmiqit(ﬂ) 15: procedure ONUPDATE(m)
3. {_ i — 16: if in state [ or R then
A 2 _ ;P L2 send feedback to m.sender
4 if push and in state I then I3 e
Y send update to : ’ .
H.E T 19: store m.update > now in state |
6: end if :
7: if pull then ]
' . 21: end procedure
8: send update-request to p 7.
0: d if :
10: Endell:ml 23: procedure ONUPDATEREQUEST(m)
1 1: 2 24 if in state I then
17: rocedure ONFEEDBACK (1) 20 send update to m.sender
o e 26:  endif

Ko switch to state R with prob. 1/k

14: end procedure 27: end procedure
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Rumor mongering with push

» Stop spreading info with
probability 1/k if

d_S —_gf unsuccessful infection
at attempt (become removed)
di 1 e s: susceptible, i: infective, r:

—=8i——(1—S8)i removed
dt ;If e « Egif k=1, 20% miss the
—>3=e_< +1)(1-s) gossip, if k=2, 6% miss it

- In general, with push, the prob
to miss the update is approx e™
(m is the overall messages)
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Some other rumor mongering
algorithms

« Removal algorithms

- Counter: removed after exactly k
unsuccessful attempts

- Random: removed with pr. 1/k after each
unsuccessful attempt

* Blind: removal algorithm is run in each cycle
Irrespective of contacted node

* Feedback: removal algorithm runs if contacted
node was not susceptible
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Random networks

* Note that gossiping nodes pick another node in
each cycle: they do not need to know all the
nodes

* The actual communication pattern defines a
random graph

- by looking at these graphs, we can understand the
properties of the communication better

- we can design better gossip protocols if we
understand the implications of our design decisions
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Comments on theoretical models

 The ER model is often used to reason about gossip
protocol design. This is problematic for a number of
reasons

- In the ER model nodes can get stuck without
neighbors. This is the main reason for disconnectivity.
In push or push-pull this is impossible

- If we guarantee that all nodes communicate to at least
4 other nodes after receiving the update, we have a
radically different model

 Message and node failure pushes the underlying network
toward the ER model, but not completely
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Aggregation

» Calculate a global function over distributed data

- eg average, but more complex examples include
variance, network size, model fitting, etc

e usual structured/unstructured approaches exist

- structured: create an overlay (eg a tree) and use
that to calculate the function hierarchically

- unstructured: design a stochastic iteration algorithm
that converges to what you want (gossip)
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push-pull averaging

. loop
wait(A)
p < random peer
send push(z) to p
end loop

Ln = L D —

6: procedure ONPUSHUPDATE(m)
¥ send pull(x) to m.sender

8 z+ (mx+zx)/2

9: end procedure

10:

[1: procedure ONPULLUPDATE(m)
122 z+ (mzx+zx)/2

|3: end procedure
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lllustration of averaging
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lllustration of averaging
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Main intuition

* Mass conservation: the sum of approximations
In the network Is constant

e Variance reduction: in all steps, the variance of
the approximations decreases (if the
participating two values are different)
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Some theoretical properties

. If'y is the original value, and x is the current

estimate at node i, and y is the correct average
then let us define
(Thr — == Z il ifj

e Then it can be shown that

E(ox(t+1)) <

Iul —
';,‘:-'M
—_—
o~
f —
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Some applications

* \We can calculate max (and min) if we replace
(m.x+x)/2 with max(m.x, x) (or min(m.x, X))

* Apart from the average, in general we can
calculate the f-mean N ire..
m——— (zzl fm)

_g(,i;l..‘..,: \

* f(x)=In x gives geometric mean, f(x)=1/x gives
harmonic mean, f(x)=x" gives the power mean
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Some applications

* Using the averages of powers we can
approximate the variance and higher moments,

* Network size can be approximated if one node
sets its value to 1 and the other nodes set it to

0: then the average is 1/N

 Sum can be calculated, since it is the average
multiplied by the network size
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Improvements

* Tolerates asymmetric message loss (only push
or pull) badly

* Tolerates overlaps in pairwise exchanges badly

» [Kempe et al 2003] propose a slightly different
version: push averaging

- all nodes maintain s (sum estimate) and w (weight)
- estimate is s/w
- only push: send (s/2,w/2), and keep s=s/2, w=w/2

e several other variations exist
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Push averaging

[: loop
- wait( /
& ait(A) 8: procedure ONUPDATE(m)
3: p < random peer
0: AR 1 S
4 send (z/2,w/2) top
10: w4 maw + w
3: T T/2
._ [1: end procedure
6: w ¢ w/2

7: end loop
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Main intuition

 Mass conservation: the sum of x values in the
network is constant, as well as the sum of w
values (which is N).

» VVariance reduction: the is no similarly simple
clear intuition; however, a variance-like
potential function @ can be shown to decrease

In expectation

Or =), (Ut = )”
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Some applications

* Min and max can be calculated without w
e The f-mean and moments can be calculated

 Sum can be calculated by setting w=1 at
exactly one node, and w=0 at all the other
nodes

* Network size can also be calculated (set x=1 at
all nodes and calculate sum)
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EM Gaussian mixture

k

* k-component 3
: : plx) = mep(x|s)
Gaussian mixture () Z ‘

plils) =

. . |

(27)~42|C| "2 expl—(x — mg) T CTH(x — my) /2]

* We want to estimate e CvE
the parameters 8 to 0 = {ms. ms. Cs}
maximize log

likelihood L =37 logp(r:6)
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EM Gaussian mixture

- Each data point x_has a distribution q (s) that

describes the “level of responsibility” of each
Gaussian for generating x

 The EM algorithm iterates between estimating
qi (E-step) and 6 (M-step)

» Similar to k-means clustering
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EM Gaussian mixture

. E-step: q(s)=p(s|x,0)

« M-step Y aqils)
g —
’ n
T
.l !
Mg — le:l fi(ﬁ) :
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- : . el G el & —l_
OF— Mg g
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Gossip-based implementation

« Assume that each node | stores a vector X, and
a global k is known. Let's run a distributed EM!

- Initialize the qi values arbitrarily
- Perform M-step by calculating the three averages

Z?:l qi(s) Z?:l qi(s)a; Z?:l (}1'(.5,');{-';;15;

T 1 n

WS:

and the use these values to calculate 6
- Perform E-step (completely local operation)
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A Gossip Skeleton

* Originally for information dissemination in a
very simple but efficient and reliable way

» |ater the gossip approach has been
generalized resulting in many local probabilistic
and periodic protocols

 we Will introduce a simple common skeleton
and look at

- information dissemination
- topology construction
- aggregation
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A Push-Pull Gossip Skeleton

6. procedure ONPUSHUPDATE(m)

is g 75 send pull(state) to m.sender
S 8: state <— update(state,m.state)
2:  wait(A)
_ 9: end procedure
3 p + selectPeer() 10:
4. send push(state) to * |
Prsipieeiioy | 1: procedure ONPULLUPDATE(m)
J: end loop |
12 state < update(state,m.state)

|3: end procedure
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Rumor mongering as an instance

state: set of active updates
selectPeer: a random peer from the network

- very important component, we get back to this soon

update: add the received updates to the local
set of updates

propagation of one given update can be limited
(max k times or with some probability, as we
have seen, etc)
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Peer Sampling

* A key method is selectPeer in all gossip

protocols (influences performance and
reliability)

* |n earliest works all nodes had a global view to
select a random peer from

- scalability and dynamism problems
 Scalable solutions are available to deal with this

- random walks on fixed overlay networks
- dynamic random networks
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Random walks on networks

* if we are given any fixed network, we can
sample the nodes with any arbitrary distribution
with the Metropolis algorithm:

1.1 if () ~ 7).

P . — 2 d; di — dj 7
S 1.1 70) 470 o 70)
2 d;  m(z) d; dj -

* This Markov chain has stationary distribution 7«
where d. is the degree of node i (undirected

graph)
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Gossip based peer sampling

basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

The peer sampling service uses itself as peer
sampling service (bootstrapping)

- no need for fixed (external) network
state: a set of random overlay links to peers

selectPeer: select a peer from the known set of
random peers

update: for example, keep a random subset of the
union of the received and the old link set
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Gossip protocols for topology

management
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Gossip protocols for topology
management
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Gossip protocols for topology
management
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Gossip protocols for topology
management
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Gossip based peer sampling

* in reality a huge number of variations exist

- timestamps on the overlay links can be taken into
account: we can select peers with newer links, or In
update we can prefer links that are newer

» these variations represent important differences
w.r.t. fault tolerance and the quality of samples

- the links at all nodes define a random-like overlay
that can have different properties (degree
distribution, clustering, diameter, etc)

- turns out actually not really random, but still good
for gossip
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Gossip based topology
management

* \We saw we can build random networks. Can
we build any network with gossip?

* Yes, many examples

- proximity networks

- DHT-s (Bamboo DHT: maintains Pastry
structure with gossip inspired protocols)

- semantic proximity networks
- elc
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T-Man

 T-MAN is a protocol that captures many of
these in a common framework, with the help of
the ranking method:

- ranking is able to order any set of nodes according
to their desirability to be a neighbor of some given
node

- for example, based on hop count in a target
structure (ring, tree, etc)

- or based on more complicated criteria not
expressible by any distance measure
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Gossip based topology
management

basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

state: a set of overlay links to peers

selectPeer: select the peer from the known set of
peers that ranks highest according to the ranking
method

update: keep those links that point to nodes that rank
highest
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Some other examples

firefly-inspired synchronization

partitioning (slicing) and sorting in P2P
networks

asynchronous implementation of matrix
iterations

- ranking (PageRank)
- reputation systems

emergent cooperation

51



Modular design

* \We have seen that all gossip protocols use the
peer sampling service that is itself a gossip
protocol

 Can be generalized: gossip protocols can be
stacked or arbitrarily combined

- actual local communication is the same (all
protocols can often piggyback the same message)

- conceptual structure is modular
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Example modular architecture

applications (storage, search, monitoring, etc)

DHT semantic

etc.

proximity
Id space routing | overlay

bootstrapping service

peer sampling service

aggregation

pr. broadcast

etc.
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Outlook

» Gossip is similar to many other fields of
research that also have some of the following
features:

- periodic, local, probabilistic, symmetric
 examples include

- swarm systems, cellular automata, parallel
asynchronous numeric iterations, self-stabilizing
protocols, etc
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A slide on viruses and worms

* We focused on “good” epidemics but malicious
applications are known

- viruses and worms replicate themselves via similar
algorithms using some underlying network such as
email contacts or the Internet itself

* The dynamics is described by SIS model

* Underlying networks are typically scale free
(power law degree distribution)

- can be proven: no threshold: it is nearly impossible
to completely eliminate a “disease”
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Some open problems

* gossip in mobile contact networks and its
potential applications (also malware...)

e security

- gossip is robust to benign failure but very sensitive
to malicious attacks

- current “secure” gossip protocols sacrifice simplicity
and light-weight

* interdisciplinary connections: toward a deeper
understanding of self-organization and gossip
protocols as a special case
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