
Gossip Protocols

Márk Jelasity

Hungarian Academy of Sciences and
University of Szeged, Hungary

2

Introduction

● A few key ideas from previous class
– Overlay networks are the key abstraction

– Function is always implemented as a distributed
algorithm that communicates over this network

– Overlay networks can emerge or can be created

● Main points in this class
– Gossip protocols over networks

● Dissemination, computation, overlay construction

– Applications for distributed data mining
● EM algorithm, clustering, collaborative filtering

3

Introduction
● Gossip-like phenomena are commonplace

– human gossip

– epidemics (virus spreading, etc)

– computer epidemics (malicious agents: worms, viruses)

– phenomena such as forest fires, branching processes
and diffusion are all similar mathematically

● extremely simple locally, powerful and robust globally

● In computer science, epidemics are relevant

– for security (against worms and viruses)

– for designing useful protocols (we look at this here)

4

● Problem
– Xerox corporate Internet, replicated databases
– Each database has a set of keys that have values (along with a

time stamp)
– Goal: all databases are the same, in the face of key updates,

removals and additions
– Updates are made locally and have to be replicated at all sites

(300 sites)
● Solution in 1986: emailing updates

– problems with detecting and correcting errors (done by hand!)
– bottleneck with the originating (updated) site
– not scalable (slow if very large number of nodes)
– (message complexity quite good though!)

Epidemic Database Updates

5

Gossip to the rescue
● Main components are replaced by gossip

– update spreading: rumor mongering (no bottleneck)

– error correction: anti-entropy gossip (reliable)
● anti-entropy

– uses “simple epidemics” with two states: infective and
susceptible (a.k.a. SI model)

– guarantees perfect dissemination
● rumor mongering

– uses “complex epidemics” with an additional state:
removed (a.k.a. SIR model)

– certain (quite small) probability of error

6

SI gossip

What overlay network is assumed here?

7

Some Properties of the SI model
● the push model

– N nodes communicate in rounds (cycles)

– in each cycle, a node that has the update (infected)
sends it to a random other node, that becomes infected
too

● In anti-entropy
– nodes send the (hash of) the entire database (not only

a single update)
● as a side effect, all new updates are spread

according to the SI model
– receiving nodes update their own database via merging

the unseen updates

8

Mean-field model of push SI

● Let pi be the proportion of not infected nodes
in cycle i

● 1-p
0
=1/N

● Pittel (1987) shows that the model below is
quite accurate for predicting p

i

E p i1=pi 1−
1
N

N 1−p i

≈p i e
−1−p i

9

Speed and cost of push SI

● Let S
N
 be the first cycle where p

i
=0

● Pittel (1987) shows that in probability

SN=log N ln N O 1

● This is quite fast...
● But the number of overall messages sent is

O N logN

10

Pull and push-pull SI

● With pull, we have

● This is very fast when p
i
 is small (end phase)...

● Karp et al (2000) show that the number of
overall messages sent with push-pull is

O N loglogN

E p i1=pi
2

● But termination is trickier when no updates are
available (for anti-entropy does not matter)

11

SIR for spreading single updates
● For anti-entropy, use a pull or push-pull SI modell

● For the spreading of updates, the termination problem
needs to be addressed: rumor mongering with SIR
model

● Push approach

– when a rumor (update) becomes “cold”, stop
pushing

● Pull approach

– same as push, only stop offering update when
pulled when it becomes cold

12

SIR gossip

13

● Stop spreading info with
probability 1/k if
unsuccessful infection
attempt (become removed)

● s: susceptible, i: infective, r:
removed

● Eg if k=1, 20% miss the
gossip, if k=2, 6% miss it
– In general, with push, the prob

to miss the update is approx em

(m is the overall messages)

ds
dt

=−si

di
dt

=si−
1
k

1−s i

 s=e−k11−s

Rumor mongering with push

14

Some other rumor mongering
algorithms

● Removal algorithms
– Counter: removed after exactly k

unsuccessful attempts
– Random: removed with pr. 1/k after each

unsuccessful attempt
● Blind: removal algorithm is run in each cycle

irrespective of contacted node
● Feedback: removal algorithm runs if contacted

node was not susceptible

15

Random networks

● Note that gossiping nodes pick another node in
each cycle: they do not need to know all the
nodes

● The actual communication pattern defines a
random graph
– by looking at these graphs, we can understand the

properties of the communication better

– we can design better gossip protocols if we
understand the implications of our design decisions

16

● The ER model is often used to reason about gossip
protocol design. This is problematic for a number of
reasons
– In the ER model nodes can get stuck without

neighbors. This is the main reason for disconnectivity.
In push or push-pull this is impossible

– If we guarantee that all nodes communicate to at least
4 other nodes after receiving the update, we have a
radically different model

● Message and node failure pushes the underlying network
toward the ER model, but not completely

Comments on theoretical models

17

Aggregation

● Calculate a global function over distributed data
– eg average, but more complex examples include

variance, network size, model fitting, etc

● usual structured/unstructured approaches exist
– structured: create an overlay (eg a tree) and use

that to calculate the function hierarchically

– unstructured: design a stochastic iteration algorithm
that converges to what you want (gossip)

18

push-pull averaging

19

Illustration of averaging

12

8

7

2

6

3

20

Illustration of averaging

12

8

7

2

6

3

(12+6)/2=9

21

Illustration of averaging

9

8

7

2

9

3

22

Initial state Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5

Illustration of averaging

23

Main intuition

● Mass conservation: the sum of approximations
in the network is constant

● Variance reduction: in all steps, the variance of
the approximations decreases (if the
participating two values are different)

24

Some theoretical properties

● If y
i
 is the original value, and x

i
 is the current

estimate at node i, and y is the correct average
then let us define

● Then it can be shown that

25

Some applications

● We can calculate max (and min) if we replace
(m.x+x)/2 with max(m.x, x) (or min(m.x, x))

● Apart from the average, in general we can
calculate the f-mean

● f(x)=ln x gives geometric mean, f(x)=1/x gives
harmonic mean, f(x)=xm gives the power mean

26

Some applications

● Using the averages of powers we can
approximate the variance and higher moments,
eg

● Network size can be approximated if one node
sets its value to 1 and the other nodes set it to
0: then the average is 1/N

● Sum can be calculated, since it is the average
multiplied by the network size

27

Improvements

● Tolerates asymmetric message loss (only push
or pull) badly

● Tolerates overlaps in pairwise exchanges badly
● [Kempe et al 2003] propose a slightly different

version: push averaging
– all nodes maintain s (sum estimate) and w (weight)

– estimate is s/w

– only push: send (s/2,w/2), and keep s=s/2, w=w/2

● several other variations exist

28

Push averaging

29

Main intuition

● Mass conservation: the sum of x values in the
network is constant, as well as the sum of w
values (which is N).

● Variance reduction: the is no similarly simple
clear intuition; however, a variance-like
potential function Φ

t
 can be shown to decrease

in expectation

30

Some applications

● Min and max can be calculated without w
● The f-mean and moments can be calculated
● Sum can be calculated by setting w=1 at

exactly one node, and w=0 at all the other
nodes

● Network size can also be calculated (set x=1 at
all nodes and calculate sum)

31

EM Gaussian mixture

● k-component
Gaussian mixture

● We want to estimate
the parameters θ to
maximize log
likelihood

32

EM Gaussian mixture

● Each data point x
i
 has a distribution q

i
(s) that

describes the “level of responsibility” of each
Gaussian for generating x

i

● The EM algorithm iterates between estimating
qi (E-step) and θ (M-step)

● Similar to k-means clustering

33

EM Gaussian mixture

● E-step: q
i
(s)=p(s|x

i
,θ)

● M-step

34

Gossip-based implementation

● Assume that each node i stores a vector x
i
, and

a global k is known. Let's run a distributed EM!
– Initialize the qi values arbitrarily

– Perform M-step by calculating the three averages

and the use these values to calculate θ

– Perform E-step (completely local operation)

35

A Gossip Skeleton
● Originally for information dissemination in a

very simple but efficient and reliable way
● Later the gossip approach has been

generalized resulting in many local probabilistic
and periodic protocols

● we will introduce a simple common skeleton
and look at
– information dissemination

– topology construction

– aggregation

36

A Push-Pull Gossip Skeleton

37

Rumor mongering as an instance

● state: set of active updates
● selectPeer: a random peer from the network

– very important component, we get back to this soon

● update: add the received updates to the local
set of updates

● propagation of one given update can be limited
(max k times or with some probability, as we
have seen, etc)

38

Peer Sampling

● A key method is selectPeer in all gossip
protocols (influences performance and
reliability)

● In earliest works all nodes had a global view to
select a random peer from
– scalability and dynamism problems

● Scalable solutions are available to deal with this
– random walks on fixed overlay networks

– dynamic random networks

39

Random walks on networks

● if we are given any fixed network, we can
sample the nodes with any arbitrary distribution
with the Metropolis algorithm:

● This Markov chain has stationary distribution
where d

i
 is the degree of node i (undirected

graph)

40

Gossip based peer sampling

● basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

● The peer sampling service uses itself as peer
sampling service (bootstrapping)

– no need for fixed (external) network
● state: a set of random overlay links to peers

● selectPeer: select a peer from the known set of
random peers

● update: for example, keep a random subset of the
union of the received and the old link set

41

Gossip protocols for topology
management

A
D
E

S
X

W

A E

42

Gossip protocols for topology
management

A
D
E

S
X

W

A E

SelectPeer

43

Gossip protocols for topology
management

A E

Exchange
of views

44

Gossip protocols for topology
management

A E
Both sides
apply update

thereby
redefining
topology

45

Gossip based peer sampling

● in reality a huge number of variations exist
– timestamps on the overlay links can be taken into

account: we can select peers with newer links, or in
update we can prefer links that are newer

● these variations represent important differences
w.r.t. fault tolerance and the quality of samples
– the links at all nodes define a random-like overlay

that can have different properties (degree
distribution, clustering, diameter, etc)

– turns out actually not really random, but still good
for gossip

46

Gossip based topology
management

● We saw we can build random networks. Can
we build any network with gossip?

● Yes, many examples

– proximity networks
– DHT-s (Bamboo DHT: maintains Pastry

structure with gossip inspired protocols)
– semantic proximity networks
– etc

47

T-Man

● T-MAN is a protocol that captures many of
these in a common framework, with the help of
the ranking method:
– ranking is able to order any set of nodes according

to their desirability to be a neighbor of some given
node

– for example, based on hop count in a target
structure (ring, tree, etc)

– or based on more complicated criteria not
expressible by any distance measure

48

Gossip based topology
management

● basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

● state: a set of overlay links to peers

● selectPeer: select the peer from the known set of
peers that ranks highest according to the ranking
method

● update: keep those links that point to nodes that rank
highest

49

Initial state Cycle 3 Cycle 5

Cycle 15Cycle 12Cycle 8

50

51

Some other examples

● firefly-inspired synchronization
● partitioning (slicing) and sorting in P2P

networks
● asynchronous implementation of matrix

iterations
– ranking (PageRank)

– reputation systems

● emergent cooperation

52

Modular design

● We have seen that all gossip protocols use the
peer sampling service that is itself a gossip
protocol

● Can be generalized: gossip protocols can be
stacked or arbitrarily combined
– actual local communication is the same (all

protocols can often piggyback the same message)

– conceptual structure is modular

53

Example modular architecture

54

Outlook

● Gossip is similar to many other fields of
research that also have some of the following
features:
– periodic, local, probabilistic, symmetric

● examples include
– swarm systems, cellular automata, parallel

asynchronous numeric iterations, self-stabilizing
protocols, etc

55

A slide on viruses and worms

● We focused on “good” epidemics but malicious
applications are known
– viruses and worms replicate themselves via similar

algorithms using some underlying network such as
email contacts or the Internet itself

● The dynamics is described by SIS model
● Underlying networks are typically scale free

(power law degree distribution)
– can be proven: no threshold: it is nearly impossible

to completely eliminate a “disease”

56

Some open problems

● gossip in mobile contact networks and its
potential applications (also malware...)

● security
– gossip is robust to benign failure but very sensitive

to malicious attacks

– current “secure” gossip protocols sacrifice simplicity
and light-weight

● interdisciplinary connections: toward a deeper
understanding of self-organization and gossip
protocols as a special case

