Gossip Protocols

Mark Jelasity

Hungarian Academy of Sciences and
University of Szeged, Hungary

Introduction

* A few key ideas from previous class

- Overlay networks are the key abstraction

- Function is always implemented as a distributed
algorithm that communicates over this network

- Overlay networks can emerge or can be created
* Main points in this class

- (Gossip protocols over networks

 Dissemination, computation, overlay construction
- Applications for distributed data mining

 EM algorithm, clustering, collaborative filtering

Introduction

* (Gossip-like phenomena are commonplace

- human gossip
- epidemics (virus spreading, etc)
- computer epidemics (malicious agents: worms, viruses)

- phenomena such as forest fires, branching processes
and diffusion are all similar mathematically

» extremely simple locally, powerful and robust globally
* In computer science, epidemics are relevant

- for security (against worms and viruses)
- for designing useful protocols (we look at this here)

Epidemic Database Updates

* Problem
- Xerox corporate Internet, replicated databases

- Each database has a set of keys that have values (along with a
time stamp)

- Goal: all databases are the same, in the face of key updates,
removals and additions

- Updates are made locally and have to be replicated at all sites
(300 sites)

» Solution in 1986: emailing updates
- problems with detecting and correcting errors (done by hand!)
- bottleneck with the originating (updated) site
- not scalable (slow if very large number of nodes)
- (message complexity quite good though!)

Gossip to the rescue

 Main components are replaced by gossip

- update spreading: rumor mongering (no bottleneck)
- error correction: anti-entropy gossip (reliable)
* anti-entropy

- uses “simple epidemics” with two states: infective and
susceptible (a.k.a. S| model)

- guarantees perfect dissemination
* rumor mongering

- uses ‘complex epidemics” with an additional state:
removed (a.k.a. SIR model)

- certain (quite small) probability of error

S| gossip

Iz .
- ml;qit (A) I11: procedure ONUPDATE(m)
y ‘ 12: store m.update > means switching to state |
5 p <— random peer (B e asssred ceres
4: if push and 1in state [then 14 proce
3 send update to . ' .
& endﬁif P = 15: procedure ONUPDATEREQUEST(m)
‘ . 16: if in state I then
) if pull then 1 :
¥ send update to m.sender
8: send update-request to p ;
; 18: end if
4 excLik 19: end procedure
10: end loop ' P

What overlay network is assumed here?

Some Properties of the S| model

e the push model

- N nodes communicate in rounds (cycles)

- in each cycle, a node that has the update (infected)
sends it to a random other node, that becomes infected
too

* |n anti-entropy

- nodes send the (hash of) the entire database (not only
a single update)

 as a side effect, all new updates are spread
according to the Sl model

- receiving nodes update their own database via merging
the unseen updates

Mean-field model of push SI

 Let p, be the proportion of not infected nodes
in cycle |
» 1-p.=1/N

 Pittel (1987) shows that the model below is
quite accurate for predicting p.

(1 \N(1_pi)

E(p)=p|1-— ~D
(P:1) p,\1 N p;e

Speed and cost of push Sl

. Let S be the first cycle where p=0
» Pittel (1987) shows that in probability

Sy=1og(N)+In(N)+0O(1)

* This is quite fast...
* But the number of overall messages sent is

O(NlogN)

Pull and push-pull Sl

* With pull, we have
2
E<pi+1>:pi

» This is very fast when p_is small (end phase)...

» Karp et al (2000) show that the number of
overall messages sent with push-pull is

O(NloglogN)

 But termination is trickier when no updates are
available (for anti-entropy does not matter)

10

SIR for spreading single updates

For anti-entropy, use a pull or push-pull SI modell

For the spreading of updates, the termination problem
needs to be addressed: rumor mongering with SIR
model

Push approach

- when a rumor (update) becomes “cold”, stop
pushing

Pull approach

- same as push, only stop offering update when
pulled when it becomes cold

11

SIR gossip

fl;; lmiqit(ﬂ) 15: procedure ONUPDATE(m)
3. {_ i — 16: if in state [or R then
A 2 _ ;P L2 send feedback to m.sender
4 if push and in state I then I3 e
Y send update to : ’ .
H.E T 19: store m.update > now in state |
6: end if :
7: if pull then]
' . 21: end procedure
8: send update-request to p 7.
0: d if :
10: Endell:ml 23: procedure ONUPDATEREQUEST(m)
1 1: 2 24 if in state I then
17: rocedure ONFEEDBACK (1) 20 send update to m.sender
o e 26: endif

Ko switch to state R with prob. 1/k

14: end procedure 27: end procedure

12

Rumor mongering with push

» Stop spreading info with
probability 1/k if

d_S —_gf unsuccessful infection
at attempt (become removed)
di 1 e s: susceptible, i: infective, r:

—=8i——(1—S8)i removed
dt ;If e « Egif k=1, 20% miss the
—>3=e_< +1)(1-s) gossip, if k=2, 6% miss it

- In general, with push, the prob
to miss the update is approx e™
(m is the overall messages)

13

Some other rumor mongering
algorithms

« Removal algorithms

- Counter: removed after exactly k
unsuccessful attempts

- Random: removed with pr. 1/k after each
unsuccessful attempt

* Blind: removal algorithm is run in each cycle
Irrespective of contacted node

* Feedback: removal algorithm runs if contacted
node was not susceptible

14

Random networks

* Note that gossiping nodes pick another node in
each cycle: they do not need to know all the
nodes

* The actual communication pattern defines a
random graph

- by looking at these graphs, we can understand the
properties of the communication better

- we can design better gossip protocols if we
understand the implications of our design decisions

15

Comments on theoretical models

 The ER model is often used to reason about gossip
protocol design. This is problematic for a number of
reasons

- In the ER model nodes can get stuck without
neighbors. This is the main reason for disconnectivity.
In push or push-pull this is impossible

- If we guarantee that all nodes communicate to at least
4 other nodes after receiving the update, we have a
radically different model

 Message and node failure pushes the underlying network
toward the ER model, but not completely

16

Aggregation

» Calculate a global function over distributed data

- eg average, but more complex examples include
variance, network size, model fitting, etc

e usual structured/unstructured approaches exist

- structured: create an overlay (eg a tree) and use
that to calculate the function hierarchically

- unstructured: design a stochastic iteration algorithm
that converges to what you want (gossip)

17

push-pull averaging

. loop
wait(A)
p < random peer
send push(z) to p
end loop

Ln = L D —

6: procedure ONPUSHUPDATE(m)
¥ send pull(x) to m.sender

8 z+ (mx+zx)/2

9: end procedure

10:

[1: procedure ONPULLUPDATE(m)
122 z+ (mzx+zx)/2

|3: end procedure

18

lllustration of averaging

@,
@\
oflo

lllustration of averaging

(12+6)/2= 9

lllustration of averaging

oN
@\
oflo

lllustration of averaging

Initial state Cycle 1 Cycle 2

X oy g T s B T e - =
. | L . . - 1
n [- L s » - - - - .
T E i = Pl " 5 1 o §
- u i - - L]
- P - - - -
o . .
= ok b T . Y e R e Ty K e ol
T e e - el ey]
i = ol 4
-. -, F | | .I .--- _ g -- ! -
F s T s) i - - ok -
i = " L ok e T H | g . = .
- n " '] - ol g e - L} - ") -
- iy L - - £ e ' e . i
-y .

Pl o 1Lk 1 = | B e v = My - ey e -
fom e T LT e - P e Rl | -t [
= 2. = ¥ & -
= I, i - ol 5 - . = s |
X 2 " — e] A g o Ho e e o ey : oy

i ogis g o 1= 1 I e i R I 1
i - e TR
'.._ -am r - e 2t ._-_.'- T e T T e o
d ' o 7, - k- w o .

Cycle 5

22

Main intuition

* Mass conservation: the sum of approximations
In the network Is constant

e Variance reduction: in all steps, the variance of
the approximations decreases (if the
participating two values are different)

23

Some theoretical properties

. If'y is the original value, and x is the current

estimate at node i, and y is the correct average
then let us define
(Thr — == Z il ifj

e Then it can be shown that

E(ox(t+1)) <

Iul —
';,‘:-'M
—_—
o~
f —

24

Some applications

* \We can calculate max (and min) if we replace
(m.x+x)/2 with max(m.x, x) (or min(m.x, X))

* Apart from the average, in general we can
calculate the f-mean N ire..
m——— (zzl fm)

_g(,i;l..‘..,: \

* f(x)=In x gives geometric mean, f(x)=1/x gives
harmonic mean, f(x)=x" gives the power mean

25

Some applications

* Using the averages of powers we can
approximate the variance and higher moments,

* Network size can be approximated if one node
sets its value to 1 and the other nodes set it to

0: then the average is 1/N

 Sum can be calculated, since it is the average
multiplied by the network size

26

Improvements

* Tolerates asymmetric message loss (only push
or pull) badly

* Tolerates overlaps in pairwise exchanges badly

» [Kempe et al 2003] propose a slightly different
version: push averaging

- all nodes maintain s (sum estimate) and w (weight)
- estimate is s/w
- only push: send (s/2,w/2), and keep s=s/2, w=w/2

e several other variations exist

27

Push averaging

[: loop
- wait(/
& ait(A) 8: procedure ONUPDATE(m)
3: p < random peer
0: AR 1 S
4 send (z/2,w/2) top
10: w4 maw + w
3: T T/2
._ [1: end procedure
6: w ¢ w/2

7: end loop

28

Main intuition

 Mass conservation: the sum of x values in the
network is constant, as well as the sum of w
values (which is N).

» VVariance reduction: the is no similarly simple
clear intuition; however, a variance-like
potential function @ can be shown to decrease

In expectation

Or =), (Ut =)”

29

Some applications

* Min and max can be calculated without w
e The f-mean and moments can be calculated

 Sum can be calculated by setting w=1 at
exactly one node, and w=0 at all the other
nodes

* Network size can also be calculated (set x=1 at
all nodes and calculate sum)

30

EM Gaussian mixture

k

* k-component 3
: : plx) = mep(x|s)
Gaussian mixture () Z ‘

plils) =

. . |

(27)~42|C| "2 expl—(x — mg) T CTH(x — my) /2]

* We want to estimate e CvE
the parameters 8 to 0 = {ms. ms. Cs}
maximize log

likelihood L =37 logp(r:6)

31

EM Gaussian mixture

- Each data point x_has a distribution q (s) that

describes the “level of responsibility” of each
Gaussian for generating x

 The EM algorithm iterates between estimating
qi (E-step) and 6 (M-step)

» Similar to k-means clustering

32

EM Gaussian mixture

. E-step: q(s)=p(s|x,0)

« M-step Y aqils)
g —
’ n
T
.l !
Mg — le:l fi(ﬁ) :
NTg

- : . el G el & —l_
OF— Mg g

33

Gossip-based implementation

« Assume that each node | stores a vector X, and
a global k is known. Let's run a distributed EM!

- Initialize the qi values arbitrarily
- Perform M-step by calculating the three averages

Z?:l qi(s) Z?:l qi(s)a; Z?:l (}1'(.5,');{-';;15;

T 1 n

WS:

and the use these values to calculate 6
- Perform E-step (completely local operation)

34

A Gossip Skeleton

* Originally for information dissemination in a
very simple but efficient and reliable way

» |ater the gossip approach has been
generalized resulting in many local probabilistic
and periodic protocols

 we Will introduce a simple common skeleton
and look at

- information dissemination
- topology construction
- aggregation

35

A Push-Pull Gossip Skeleton

6. procedure ONPUSHUPDATE(m)

is g 75 send pull(state) to m.sender
S 8: state <— update(state,m.state)
2: wait(A)
_ 9: end procedure
3 p + selectPeer() 10:
4. send push(state) to * |
Prsipieeiioy | 1: procedure ONPULLUPDATE(m)
J: end loop |
12 state < update(state,m.state)

|3: end procedure

36

Rumor mongering as an instance

state: set of active updates
selectPeer: a random peer from the network

- very important component, we get back to this soon

update: add the received updates to the local
set of updates

propagation of one given update can be limited
(max k times or with some probability, as we
have seen, etc)

37

Peer Sampling

* A key method is selectPeer in all gossip

protocols (influences performance and
reliability)

* |n earliest works all nodes had a global view to
select a random peer from

- scalability and dynamism problems
 Scalable solutions are available to deal with this

- random walks on fixed overlay networks
- dynamic random networks

38

Random walks on networks

* if we are given any fixed network, we can
sample the nodes with any arbitrary distribution
with the Metropolis algorithm:

1.1 if () ~ 7).

P . — 2 d; di — dj 7
S 1.1 70) 470 o 70)
2 d; m(z) d; dj -

* This Markov chain has stationary distribution 7«
where d. is the degree of node i (undirected

graph)

39

Gossip based peer sampling

basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

The peer sampling service uses itself as peer
sampling service (bootstrapping)

- no need for fixed (external) network
state: a set of random overlay links to peers

selectPeer: select a peer from the known set of
random peers

update: for example, keep a random subset of the
union of the received and the old link set

40

Gossip protocols for topology

management

Y /- I
A // :
D |~ —
E —
LI
S
W \\

\\

/\ N Y,

Gossip protocols for topology
management

Y (N
A // :
D |~ —
)E(- SelectPeer
N
S
W is
/\ \ %

Gossip protocols for topology
management

/

5 N (¢

- N

Exchange
of views

-« >

Gossip protocols for topology
management

£\ N (N
A _ E
Both sides
apply update

thereby
redefining
topology

Gossip based peer sampling

* in reality a huge number of variations exist

- timestamps on the overlay links can be taken into
account: we can select peers with newer links, or In
update we can prefer links that are newer

» these variations represent important differences
w.r.t. fault tolerance and the quality of samples

- the links at all nodes define a random-like overlay
that can have different properties (degree
distribution, clustering, diameter, etc)

- turns out actually not really random, but still good
for gossip

45

Gossip based topology
management

* \We saw we can build random networks. Can
we build any network with gossip?

* Yes, many examples

- proximity networks

- DHT-s (Bamboo DHT: maintains Pastry
structure with gossip inspired protocols)

- semantic proximity networks
- elc

46

T-Man

 T-MAN is a protocol that captures many of
these in a common framework, with the help of
the ranking method:

- ranking is able to order any set of nodes according
to their desirability to be a neighbor of some given
node

- for example, based on hop count in a target
structure (ring, tree, etc)

- or based on more complicated criteria not
expressible by any distance measure

47

Gossip based topology
management

basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

state: a set of overlay links to peers

selectPeer: select the peer from the known set of
peers that ranks highest according to the ranking
method

update: keep those links that point to nodes that rank
highest

48

50

Some other examples

firefly-inspired synchronization

partitioning (slicing) and sorting in P2P
networks

asynchronous implementation of matrix
iterations

- ranking (PageRank)
- reputation systems

emergent cooperation

51

Modular design

* \We have seen that all gossip protocols use the
peer sampling service that is itself a gossip
protocol

 Can be generalized: gossip protocols can be
stacked or arbitrarily combined

- actual local communication is the same (all
protocols can often piggyback the same message)

- conceptual structure is modular

52

Example modular architecture

applications (storage, search, monitoring, etc)

DHT semantic

etc.

proximity
Id space routing | overlay

bootstrapping service

peer sampling service

aggregation

pr. broadcast

etc.

53

Outlook

» Gossip is similar to many other fields of
research that also have some of the following
features:

- periodic, local, probabilistic, symmetric
 examples include

- swarm systems, cellular automata, parallel
asynchronous numeric iterations, self-stabilizing
protocols, etc

54

A slide on viruses and worms

* We focused on “good” epidemics but malicious
applications are known

- viruses and worms replicate themselves via similar
algorithms using some underlying network such as
email contacts or the Internet itself

* The dynamics is described by SIS model

* Underlying networks are typically scale free
(power law degree distribution)

- can be proven: no threshold: it is nearly impossible
to completely eliminate a “disease”

55

Some open problems

* gossip in mobile contact networks and its
potential applications (also malware...)

e security

- gossip is robust to benign failure but very sensitive
to malicious attacks

- current “secure” gossip protocols sacrifice simplicity
and light-weight

* interdisciplinary connections: toward a deeper
understanding of self-organization and gossip
protocols as a special case

56

