
Recommendation and ranking

Mark Jelasity

2

Recommendation
● We have a set of users and a set of items

(movies, books, etc)
● Given a set of ratings by some users on some

items,
– approximate the unknown ratings (ie the unknown

elements of user-item matrix),
– or maybe just find a set of unrated items for a user

that are predicted to be rated high by that user
● Machine learning problem

– Training data: known ratings

3

Collaborative filtering
● A recommender system that makes use of data

from many users (collaboration) to predict the
taste of each user

● Memory based
– Similarity measures between, for example, users

(correlation or cosine similarity, etc)
– For example, find the k nearest neighbors (k-nn), and

use the ratings by those users to calculate any missing
rating (weighted average, majority, etc)

– One can use item similarity too, etc

4

Collaborative filtering
● Memory based methods, pros

– Simple, good enough, can build social links too,
incremental

● Memory based methods, cons
– Sparse data is a problem (how to calculate

similarity?)
– Users are in reality interested in a mixture of topics,

and very few users are interested in exactly the
same mixture, so basing everything on similarity is
simplistic

5

Collaborative filtering
● Model based methods

– Singular value decomposition (SVD), latent Dirichlet
allocation (LDA), etc, on the user-item matrix

– machine learning methods, such as support vector
machines (SVM), neural nets, etc

● Model based methods can handle sparsity but
are more complex and expensive

● In this lecture we stick to memory based
methods
– The key is to find K-nn neighbors!

6

P2P collaborative filtering
● User-based collaborative filtering in a P2P environment

– Find “similar” users
– Use a weighted average of these users'

recommendation as a prediction
● Not the best method, but it's very simple and naturally P2P
● Practical P2P aspects

– Efficiency
– Convergence
– Load balancing
– Parallel versions of existing and novel algorithms

7

Properties of data sets
● Sparsity and

#items are
very
different

● Minimal
number of
item
evaluations
is very
different

8

In-degree distribution of kNN graphs

9

Algorithms
● BuddyCast

– We use the taste buddy list for recommendations
– Block list has limit of 100 for feasible simulation...

● Random samples
– Periodically get r random users
– Add these to the current list of known users
– Pick the k most similar users from the known users

and throw away the rest
– This converges to kNN graph, although slowly

10

Algorithms
● T-Man view exchange

– Select a peer to exchange the k known users with
– Merge the two views and keep the closest k users

● Peer selection methods we looked at
– Global: pick a random peer from the network
– View: pick a random peer from the view
– Best: pick the closest peer
– Proportional: from view, with probability inversely

proportional to the load experienced by the peer

11

BookCrossing database

12

Jester database

13

MovieLens database

14

Not so close is sometimes better
● If k is too

small,
then it is
better to
add
neighbors
that are a
bit further
away (too
similar is
not good)

15

Conclusions
● KNN similarity graphs can have long tails and

therefore can induce unbalanced load
● Fully random communication combined with

view exchange based convergence seems to
be best (T-Man + global view selection)

● Sometimes it is better to use random samples
too instead of only the top-k neighborhood.

● It is an open problem to develop P2P versions
of other classes of recommender algorithms

16

Ranking and recommendation
● Recommendation is personalized by definition
● Ranking is global

– Can be thought of as “default” ratings, aggregated
over large populations of users

● Google is moving towards becoming a
recommender service these days!

● Are there globally valid ratings at all in some
domain?

17

Ranking algorithms
● We look at “user item matrices” again, but this

time they are binary
– “Users” and “items” are the same (eg web pages)
– Rating is binary (page a links to page b, or not)
– In fact, this defines directed graphs (maybe

weighted, but often not), eg the WWW.
● Accordingly, ranking algorithms are expressed

as graph algorithms. (The reason is that often
graphs are all what we have, eg social graphs,
web graph etc.)

18

Ranking algorithms
● Again, there are a large variety of these

– Centrality indices (degree, betweenness, etc)
– Eigenvector-based rankings (eg, PageRank)
– Model based ranking

● learning to rank based on available large training
databases collected and rated by hand

● We stick to eigenvector-based methods in this
lecture
– Elegant, powerful, efficient, wide applicability

19

● eigenvector centrality (sociology)
– my importance is depends on the importance of

those I know
● PageRank (Google web search)

– my usefulness (rank) depends on the usefulness
of the pages I'm connected to

Applications of eigenvectors

x i∝∑
j=1

n

aij x j

20

● EigenTrust (trust building in p2p networks)
– I have high(low) reputation if I have high

reputation for peers that have high(low) reputation
● spectral graph layout

– my ideal position depends on the ideal position of
my neighbors

Applications of eigenvectors

x i∝∑
j=1

n

aij x j

21

PageRank
● The mathematical form is eigenvector

calculation: Ax=λx
● For PageRank, the A matrix is given by the raw

normalized, “desinkified” adjecency matrix B
and some adjustments: for a 0<d<1 we want

x i=d [∑j=1
n

b ji x j]1−d
n

22

Personalized PageRank
● Instead of a uniform probability random surfer,

we personalize the random surfing step, where
r

i
 is the probability of jumping to page i

● In fact this is a recommender algorithm!

x i=d [∑j=1
n

b ji x j]+(1−d)ri

23

Power iteration
● simplest method to get the dominant eigenvector

– iterate matrix multiplication with almost any initial
vector, and normalize in the meantime

– stop when the angle of the vector has converged
● if =1 (Markovian processes, random walk) then

normalization is not needed
● For a suitable dominant eigenvector v and large m:

x m1=Ax m =Am1 x 0≈m1 v

24

HITS algorithm
● Two rankings: authority

(x) and hubness (y)
– Good hubs point to

good authorities
– Good authorities are

pointed to by good
hubs

● Let A be the adjecency
matrix: we need the
dominant eigenvectors of
ATA and AAT

x i∝∑
j=1

n

a ji y j

y i∝∑
j=1

n

aij x j

x∝AT y∝AT Ax
y∝Ax∝AAT x

25

HITS algorithm
● How about peer review:

reviewer quality (x) and
paper quality (y)

● a
ij
: rating of reviewer i of

paper j
– Good reviewers rate

good papers high
– Good papers are rated

high by good reviewers
● A is user-item matrix like

with recommender
systems!

x i∝∑
j=1

n

a ji y j

y i∝∑
j=1

n

aij x j

x∝AT y∝AT Ax
y∝Ax∝AAT x

26

Mapping the Network to Linear
Algebra

● Each network node holds one vector element
● The matrix is in the weights of links
● intuition: matrix vector multiplication can be

implemented using local operations

x i
m1=∑

j=1

n

aij x j
m

27

Asynchronous distributed iteration
● If matrix A is stochastic

and irreducible, this
algorithm is known to
converge

● asynchronous power
iteration (but not
completely equivalent)

● We will now consider
non-stochastic matrices
and propose an
algorithm to handle them

28

normalization of non-stochastic
matrices

● intuition: if ||>1 (or <1) then the power iteration
keeps increasing (decreasing) vector length
without normalization

● we need to control the length: we approximate
growth rate and divide by it
– safe because eventually little variance among the

nodes: converges to

∥x m1 ∥=∥Axm∥=∥Am1 x0∥≈m1∥v∥

29

A control component for
normalization

asynchronous
iteration

growth rate
approximation

● growth rate is approximated through a gossip-
based averaging protocol that is run by all
nodes beside the asynchronous iteration
– nodes record their own growth rate and cooperate

in calculating the approximate average growth rate

30

A control component for
normalization

asynchronous
iteration

growth rate
approximation

vector average
(or maximum)
approximation

an additional (optional) control
component keeps the
vector average or vector
maximum constant (using the
same mechanism as with growth

31

PageRank operator

● PageRank needs random surfer operator to
make the graph strongly connected

● this can be implemented using the average of
the vector (which we can provide)

x i
m1=d [∑j=1

n

b ji x j
m]1−d

∥x m∥1
n

32

PageRank on
Notre Dame crawl data

33

HITS algorithm
● Power iteration on AAT

and ATA is equivalent
to updating x and y in
an alternatig fashion,
and normalizing after a
pair of updates

● Asynchronous
version??

● Gossip-based
normalization
approach is applicable
(still no proof though)

x i
m1=∑

j=1

n

a ji y j
m

y i
m1=∑

j=1

n

a ij x j
m

34

Some thoughts
● Distributed power iteration

– Applicable in many cases where principal
eigenvectors are needed

– If the graph is sparse, then it is very efficient
● HITS algorithm

– When applied for single graph, the distributed
(alternating) iteration is efficient

– When applied to a user-item matrix, we have a
problem: users might have a location but items do
not; not clear how to do an efficient distributed
version

35

Social computer systems
● A large number of large-scale complex

computer systems involve human input and
decisions, personal data, or directly serve a
social purpose
– Social networking websites
– Recommender systems
– Web search
– Forums, blogs, news
– Wikipedia
– BitTorrent (esp. private communities)

36

Privacy
● List of friends, personal data, preferences,

browsing history, purchased items, physical
location, etc

● Knowing others' data is good for me
● Others knowing my data is bad for me
● Privacy preserving techniques come to the

rescue

37

Trusted services
● Centralized services need to be trusted

– They store and process our data
– They use secret algorithms to answer our queries
– They might use settings and options we cannot control

(eg google personalization)
– They are often highly available, but can easily be made

completely unavailable (by criminals, governments,
defamation lawsuits, or software or hardware problems,
etc)

– They are now free, but they cost a lot: can advertising
revenue maintain this ecosystem forever? Can net
neutrality be maintained forever?

38

Decentralization
● Decentralized services offer the possibility (but

do not guarantee!) that
– Our data does no leave our computer
– Our activity is not traced back to us
– Yet the system still functions at tolerable performance

levels
– The algorithms used are all open and transparent
– Availability and cost depends only on the availability

and cost of the underlying global communication
infrastructure

– Performance degrades gracefully

39

Motivation

Let us design algorithms that are fully distributed,
privacy preserving, and help us build the services

we depend on!

40

Privacy preservation basics
● We are interested in the models over shared data but

do not wish to share data
● Degree of distribution

– A few large database chunks (hospitals, etc)
– One database record per node (P2P)

● Basic approaches
– Statistical
– Cryptographic
– Relay networks
– etc

41

Statistical techniques
● Sequrity in statistical databases

– Queries for only aggregate data (sum, count, etc)
– No access to individual records

● Restricting queries
● Perturbation of entries

– Adding noise to data
– Swapping attributes among records
– Replacing attribute values with samples from the

same distribution
– Sampling the query results

42

Cryptographic techniques
● Secure multi-party computation

– Compute a function from private inputs
– Perhaps simplest example: 1-2 oblivious transfer

● Node A has attributes x and y
● Node B wants the value of either x or y, say, x.
● Problem: B should get x without learning about the value

of y, and A should not learn about what B wanted!
– Zero knowledge proofs are related

● Threshold cryptography, secret sharing
– Collusion needed to uncover private values

43

Anonymous relay networks
● For example, TOR (P2P relay network)

– Onion routing to hide the source of queries from
servers

– Supports two-way communication
● Can be used to mask the ownership of data

– Relay data to a peer
– Perform computations
– Share the model

44

Aspects to consider
● Adversary models

– Malicious: can inject false information, can bias the
end result

– Semi-honest: follows the protocol, but wants to
steal our data

● Often secure channels are assumed (no
eavesdropping)

45

Privacy preserving power iteration

● Each network node holds one vector element
● The matrix is in the weights of links
● The basic primitive is that each node needs the

sum of their neighbors' values (individual values
are not needed)

x i
m1=∑

j=1

n

aij x j
m

46

x
m x

l

i

m l

x
j

x
k

j ka
ji

a
ki

a
li

a
mi

Shamir secret sharing

47

x
j

j
a

ji

Using Shamir secret sharing
● Every neighbor j of i

generates a
polinomial P

j
 of

degree d
i
-1and sends

it to the neighbors l of
i evaluated in l.

● The coefficients are
random, except the
constant

i
P ji m= x ja1ma2m

2a3m
3

P ji l

P ji k
P ji j

48

Using Shamir secret sharing
● Every neighbor j of i

sends the sum of the
polinomials it received
to I.

● The constant
coefficient, which is
the weighted some
we want, can be
determined using the
d

i
 points of the

polinomial

i

Qi j = ∑
y= j , k ,l , m

ayi Pyi j

Qi m

Qi k

Qi l

49

Some open questions
● How about desirable features of power iteration

such as
– Asynchronicity?
– robustness and flexibility ?

● How about the normalization component?
● How about HITS, collaborative filtering, etc?

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49

