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Recommendation
● We have a set of users and a set of items 

(movies, books, etc)
● Given a set of ratings by some users on some 

items,
– approximate the unknown ratings (ie the unknown 

elements of user-item matrix),
– or maybe just find a set of unrated items for a user 

that are predicted to be rated high by that user
● Machine learning problem

– Training data: known ratings
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Collaborative filtering
● A recommender system that makes use of data 

from many users (collaboration) to predict the 
taste of each user

● Memory based
– Similarity measures between, for example, users 

(correlation or cosine similarity, etc)
– For example, find the k nearest neighbors (k-nn), and 

use the ratings by those users to calculate any missing 
rating (weighted average, majority, etc)

– One can use item similarity too, etc
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Collaborative filtering
● Memory based methods, pros

– Simple, good enough, can build social links too, 
incremental

● Memory based methods, cons
– Sparse data is a problem (how to calculate 

similarity?)
– Users are in reality interested in a mixture of topics, 

and very few users are interested in exactly the 
same mixture, so basing everything on similarity is 
simplistic
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Collaborative filtering
● Model based methods

– Singular value decomposition (SVD), latent Dirichlet 
allocation (LDA), etc, on the user-item matrix

– machine learning methods, such as support vector 
machines (SVM), neural nets, etc

● Model based methods can handle sparsity but 
are more complex and expensive

● In this lecture we stick to memory based 
methods
– The key is to find K-nn neighbors!
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P2P collaborative filtering
● User-based collaborative filtering in a P2P environment

– Find “similar” users
– Use a weighted average of these users' 

recommendation as a prediction
● Not the best method, but it's very simple and naturally P2P
● Practical P2P aspects

– Efficiency
– Convergence
– Load balancing
– Parallel versions of existing and novel algorithms
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Properties of data sets
● Sparsity and 

#items are 
very 
different

● Minimal 
number of 
item 
evaluations 
is very 
different
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In-degree distribution of kNN graphs
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Algorithms
● BuddyCast

– We use the taste buddy list for recommendations
– Block list has limit of 100 for feasible simulation...

● Random samples
– Periodically get r random users
– Add these to the current list of known users
– Pick the k most similar users from the known users 

and throw away the rest
– This converges to kNN graph, although slowly
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Algorithms
● T-Man view exchange

– Select a peer to exchange the k known users with
– Merge the two views and keep the closest k users

● Peer selection methods we looked at
– Global: pick a random peer from the network
– View: pick a random peer from the view
– Best: pick the closest peer
– Proportional: from view, with probability inversely 

proportional to the load experienced by the peer
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BookCrossing database
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Jester database
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MovieLens database
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Not so close is sometimes better
● If k is too 

small, 
then it is 
better to 
add 
neighbors 
that are a 
bit further 
away (too 
similar is 
not good)
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Conclusions
● KNN similarity graphs can have long tails and 

therefore can induce unbalanced load
● Fully random communication combined with 

view exchange based convergence seems to 
be best (T-Man + global view selection)

● Sometimes it is better to use random samples 
too instead of only the top-k neighborhood.

● It is an open problem to develop P2P versions 
of other classes of recommender algorithms
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Ranking and recommendation
● Recommendation is personalized by definition
● Ranking is global

– Can be thought of as “default” ratings, aggregated 
over large populations of users

● Google is moving towards becoming a 
recommender service these days!

● Are there globally valid ratings at all in some 
domain?



17

Ranking algorithms
● We look at “user item matrices” again, but this 

time they are binary
– “Users” and “items” are the same (eg web pages)
– Rating is binary (page a links to page b, or not)
– In fact, this defines directed graphs (maybe 

weighted, but often not), eg the WWW.
● Accordingly, ranking algorithms are expressed 

as graph algorithms. (The reason is that often 
graphs are all what we have, eg social graphs, 
web graph etc.)
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Ranking algorithms
● Again, there are a large variety of these

– Centrality indices (degree, betweenness, etc)
– Eigenvector-based rankings (eg, PageRank)
– Model based ranking

● learning to rank based on available large training 
databases collected and rated by hand 

● We stick to eigenvector-based methods in this 
lecture
– Elegant, powerful, efficient, wide applicability
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● eigenvector centrality (sociology)
– my importance is depends on the importance of 

those I know
● PageRank (Google web search)

– my usefulness (rank) depends on the usefulness 
of the pages I'm connected to

Applications of eigenvectors

x i∝∑
j=1

n

aij x j
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● EigenTrust (trust building in p2p networks)
– I have high(low) reputation if I have high 

reputation for peers that have high(low) reputation
● spectral graph layout

– my ideal position depends on the ideal position of 
my neighbors

Applications of eigenvectors

x i∝∑
j=1

n

aij x j
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PageRank
● The mathematical form is eigenvector 

calculation: Ax=λx
● For PageRank, the A matrix is given by the raw 

normalized, “desinkified” adjecency matrix B 
and some adjustments: for a 0<d<1 we want

x i=d [∑j=1
n

b ji x j]1−d 
n
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Personalized PageRank
● Instead of a uniform probability random surfer, 

we personalize the random surfing step, where 
r

i
 is the probability of jumping to page i

● In fact this is a recommender algorithm!

x i=d [∑j=1
n

b ji x j]+(1−d )ri
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Power iteration
● simplest method to get the dominant eigenvector

– iterate matrix multiplication with almost any initial 
vector, and normalize in the meantime

– stop when the angle of the vector has converged
● if =1 (Markovian processes, random walk) then 

normalization is not needed
● For a suitable dominant eigenvector v and large m:

x m1=Ax m =Am1 x 0≈m1 v
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HITS algorithm
● Two rankings: authority 

(x) and hubness (y)
– Good hubs point to 

good authorities
– Good authorities are 

pointed to by good 
hubs

● Let A be the adjecency 
matrix: we need the 
dominant eigenvectors of 
ATA and AAT

x i∝∑
j=1

n

a ji y j

y i∝∑
j=1

n

aij x j

x∝AT y∝AT Ax
y∝Ax∝AAT x
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HITS algorithm
● How about peer review: 

reviewer quality (x) and 
paper quality (y)

● a
ij
: rating of reviewer i of 

paper j
– Good reviewers rate 

good papers high
– Good papers are rated 

high by good reviewers
● A is user-item matrix like 

with recommender 
systems!

x i∝∑
j=1

n

a ji y j

y i∝∑
j=1

n

aij x j

x∝AT y∝AT Ax
y∝Ax∝AAT x
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Mapping the Network to Linear 
Algebra

● Each network node holds one vector element
● The matrix is in the weights of links
● intuition: matrix vector multiplication can be 

implemented using local operations

x i
m1=∑

j=1

n

aij x j
m 
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Asynchronous distributed iteration
● If matrix A is stochastic 

and irreducible, this 
algorithm is known to 
converge

● asynchronous power 
iteration (but not 
completely equivalent)

● We will now consider 
non-stochastic matrices 
and propose an 
algorithm to handle them
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normalization of non-stochastic 
matrices

● intuition: if ||>1 (or <1) then the power iteration 
keeps increasing (decreasing) vector length 
without normalization

● we need to control the length: we approximate 
growth rate and divide by it
– safe because eventually little variance among the 

nodes: converges to 

∥x m1 ∥=∥Axm∥=∥Am1 x0∥≈m1∥v∥
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A control component for 
normalization

asynchronous
iteration

growth rate
approximation

● growth rate is approximated through a gossip-
based averaging protocol that is run by all 
nodes beside the asynchronous iteration
– nodes record their own growth rate and cooperate 

in calculating the approximate average growth rate
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A control component for 
normalization

asynchronous
iteration

growth rate
approximation

vector average
(or maximum)
approximation

an additional (optional) control
component keeps the
vector average or vector
maximum constant (using the
same mechanism as with growth
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PageRank operator

● PageRank needs random surfer operator to 
make the graph strongly connected

● this can be implemented using the average of 
the vector (which we can provide)

x i
m1=d [∑j=1

n

b ji x j
m]1−d 

∥x m∥1
n
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PageRank on 
Notre Dame crawl data
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HITS algorithm
● Power iteration on AAT 

and ATA is equivalent 
to updating x and y in 
an alternatig fashion, 
and normalizing after a 
pair of updates

● Asynchronous 
version??

● Gossip-based 
normalization 
approach is applicable 
(still no proof though)

x i
m1=∑

j=1

n

a ji y j
m

y i
m1=∑

j=1

n

a ij x j
m 
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Some thoughts
● Distributed power iteration

– Applicable in many cases where principal 
eigenvectors are needed

– If the graph is sparse, then it is very efficient
● HITS algorithm

– When applied for single graph, the distributed 
(alternating)  iteration is efficient

– When applied to a user-item matrix, we have a 
problem: users might have a location but items do 
not; not clear how to do an efficient distributed 
version
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Social computer systems
● A large number of large-scale complex 

computer systems involve human input and 
decisions, personal data, or directly serve a 
social purpose
– Social networking websites
– Recommender systems
– Web search
– Forums, blogs, news
– Wikipedia
– BitTorrent (esp. private communities)
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Privacy
● List of friends, personal data, preferences, 

browsing history, purchased items, physical 
location, etc

● Knowing others' data is good for me
● Others knowing my data is bad for me
● Privacy preserving techniques come to the 

rescue
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Trusted services
● Centralized services need to be trusted

– They store and process our data
– They use secret algorithms to answer our queries
– They might use settings and options we cannot control 

(eg google personalization)
– They are often highly available, but can easily be made 

completely unavailable (by criminals, governments, 
defamation lawsuits, or software or hardware problems, 
etc)

– They are now free, but they cost a lot: can advertising 
revenue maintain this ecosystem forever? Can net 
neutrality be maintained forever?
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Decentralization
● Decentralized services offer the possibility (but 

do not guarantee!) that
– Our data does no leave our computer
– Our activity is not traced back to us
– Yet the system still functions at tolerable performance 

levels
– The algorithms used are all open and transparent
– Availability and cost depends only on the availability 

and cost of the underlying global communication 
infrastructure

– Performance degrades gracefully
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Motivation

Let us design algorithms that are fully distributed, 
privacy preserving, and help us build the services 

we depend on!
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Privacy preservation basics
● We are interested in the models over shared data but 

do not wish to share data
● Degree of distribution

– A few large database chunks (hospitals, etc)
– One database record per node (P2P)

● Basic approaches
– Statistical
– Cryptographic
– Relay networks
– etc
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Statistical techniques
● Sequrity in statistical databases

– Queries for only aggregate data (sum, count, etc)
– No access to individual records

● Restricting queries
● Perturbation of entries

– Adding noise to data
– Swapping attributes among records
– Replacing attribute values with samples from the 

same  distribution
– Sampling the query results



42

Cryptographic techniques
● Secure multi-party computation

– Compute a function from private inputs
– Perhaps simplest example: 1-2 oblivious transfer

● Node A has attributes x and y
● Node B wants the value of either x or y, say, x.
● Problem: B should get x without learning about the value 

of y, and A should not learn about what B wanted!
– Zero knowledge proofs are related

● Threshold cryptography, secret sharing
– Collusion needed to uncover private values
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Anonymous relay networks
● For example, TOR (P2P relay network)

– Onion routing to hide the source of queries from 
servers

– Supports two-way communication
● Can be used to mask the ownership of data

– Relay data to a peer
– Perform computations
– Share the model
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Aspects to consider
● Adversary models

– Malicious: can inject false information, can bias the 
end result

– Semi-honest: follows the protocol, but wants to 
steal our data

● Often secure channels are assumed (no 
eavesdropping)
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Privacy preserving power iteration

● Each network node holds one vector element
● The matrix is in the weights of links
● The basic primitive is that each node needs the 

sum of their neighbors' values (individual values 
are not needed)

x i
m1=∑

j=1

n

aij x j
m 



46

x
m x

l

i

m l

x
j

x
k

j ka
ji

a
ki

a
li

a
mi

Shamir secret sharing
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x
j

j
a

ji

Using Shamir secret sharing
● Every neighbor j of i 

generates a 
polinomial P

j
 of 

degree d
i
-1and sends 

it to the neighbors l of 
i evaluated in l.

● The coefficients are 
random, except the 
constant

i
P ji m= x ja1ma2m

2a3m
3

P ji  l 

P ji k 
P ji  j 
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Using Shamir secret sharing
● Every neighbor j of i 

sends the sum of the 
polinomials it received 
to I.

● The constant 
coefficient, which is 
the weighted some 
we want, can be 
determined using the 
d

i
 points of the 

polinomial

i

Qi  j = ∑
y= j , k ,l , m

ayi Pyi  j 

Qi m

Qi k 

Qi l 
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Some open questions
● How about desirable features of power iteration 

such as 
– Asynchronicity?
– robustness and flexibility ?

● How about the normalization component?
● How about HITS, collaborative filtering, etc?
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