Cooperative End-to-end
content distribution

Mark Jelasity

Content distribution

e So far we looked at search

* Content distribution is about allowing clients
(peers) to actually get a file or other data after it
has been located

* Different types of content require different
techniques

- Downloading huge files (dvd-s, linux distributions,
etc)

- Streaming media

Content distribution networks

e System organization

— Centralized

* Server farms behind single domain name, load
balancing

— Dedicated CDN

* CDN is an independent system for typically many
providers, that clients only download from (use it as
a service); typically http

- End-to-end (p2p)

* special client is needed and clients self-organize to
form the system themselves (as usual in p2p)

Outline

* L arge file distribution

- Dedicated CDN

* Akamai: privately owned CDN

* CoralCDN: similar idea to Akamai, only cooperative
p2p technology is used

- End-to-end p2p CDN
* Bittorrent
* The network coding approach

* Media streaming
- SplitStream, bullet

Akamai

Provider (eg CNN, BBC, etc) allows Akamai to handle a
subset of its domains (authoritive DNS)

Http requests for these domains are redirected to nearby
proxies using DNS

— Akamai DNS servers use extensive monitoring info to
specify best proxy: adaptive to actual load, outages, etc

Currently 20,000+ servers worldwide, claimed 10-20% of
overall Internet traffic is Akamai

Wide area of services based on this architecture

— availability, load balancing, web based applications,
etc 5

CoralCDN: motivation

e Commercial CDN-s are good but expensive:
small sites with low bandwidth can't afford them

e Small sites are more vulnerable to flash crowds
and any fluctuation of traffic in general

* P2P filesharing has shown willingness to
provide bandwidth for popular content

* |et's build a P2P CDN to support (popular but)
small, underprovisioned websites

* [motivation is shaky, but interesting technology
anyway]

6

CoralCDN

* Participating peers form

- an indexing infrastucture (DHT-like)
- a network of HT TP proxies
- a network of DNS servers

* How to use the system?

- Publishers can “coralize” urls by appending the
domain “.nyud.net:8090" to the name of the server,
eg http://www.inf.u-szeged.hu.nyud.net:8090/

- In email, usenet, etc messages any url-s can be
coralized the same way (thereby preventing the
“slashdotting” of the site in question)

http://www.inf.u-szeged.hu.nyud.net:8090/

How It works

Clients tries to resolve
www.inf.u-szeged.hu.nyud.net

Coral DNS server probes
the client for RTT and
looks for coral DNS and
HTTP servers nearby

Coral DNS returns DNS

and HT TP servers for
www.inf.u-szeged.hu.nyud.net

Clients send HTTP request

to
http://www.inf.u-szeged.hu.nyud.net:8090/

If given coral serever has
the page, sends it.

Otherwise looks up the
URL in Coral, and if it is
available, caches it from
within Coral, and sends it

Otherwise it fetches the

page from original location
http://www.inf.u-szeged.hu/

The coral server notifies
the system that it now
caches the URL

http://www.inf.u-szeged.hu.nyud.net/
http://www.inf.u-szeged.hu.nyud.net/
http://www.inf.u-szeged.hu.nyud.net:8090/
http://www.inf.u-szeged.hu/

Overview of CoralCDN

Coral
dns s1v
Coral Coral hitp prx
dns srv dns srv
http prx http prx

h 8, 11

Coral
dns s1v
http prx

Coral
dns srv
http prx

. :- http prx)
2 t

\ \ WWww.X.com

nyud.net ‘5 J 1 G '10
Resolver |<-- & | Browser

Distributed sloppy hash table

* Sloppy: keys can be stored not only on nodes
that are the closest, but also in nodes that are
close enough: better load balancing

* Inserting a key

- Approach the reposnsible node through routing as
in DHT, but stop sooner, if nodes that are close are
“full” and “loaded” (load balancing technique)

e Retrieval

- Approach the responsible node for the key, and
stop when finding the first node storing the key

10

Clustering

* Many DSHT-s in parallel: hierarchical clustering

- 3 levels: according to RTT among cluster members

— All nodes have same ID in all clusters, level O
cluster covers full network

* [mplementation of clustering

- Storing hints in the DSHT: key: IP address of router
and subnet prefix: value: node

* Joining nodes quickly find other nodes in the same
subnets

— Collect RTT info in all contacts: if other cluster
seems closer, change cluster

11

Exploiting clustering

* Retrieval is biased towards lower levels, so
nearby HT TP and DNS servers can be located

- Start routing protocol at level 2 (closest nodes)

- If no key found, go to level 1 and simply continue
the routing (the nodes level 2 cluster is subset of its
level 1 cluster)

— Go until reaching level 0

* Clusters do not increase lookup time (roughly
the same as a simple routing at level 0)

12

Some notes

 CoralCDN is deployed on PlanetLab

- 750 nodes
- 1,500 Gbytes for 700,000 IP addresses a day

* |t is only a proof of concept, but wide scale
deployment is a question

- If it is single administrative domain, why not more
control, why the p2p approach?

- If it is voluntary, multiple admin domain, who would
want to join voluntarily without restricting content?
What kind of content? Etc

- DNS and other overhead makes it rather slow 4

End-to-end P2P CDN: BitTorrent

* |nvented by Bram Cohen
e Currently 20-50% of Internet traffic is BitTorrent
e Special client software is needed

e Basic idea

- Clients that download a file at the same time help
each other (ie, also upload chunks to each other)

- BitTorrent clients form a swarm: a random overlay
network

14

BitTorrent

* Publishing a file

- Put a “.torrent” file on the web: it contains the
address of the tracker, and information about the
published file: eg chunk hashes (256M chunks)

— Start a tracker, a server that

* Gives joining downloaders random peers to
download from and to

e Collects statistics about the swarm

— [Note that there are “trackerless” implementations
already]

e Download a file

— Install a bittorrent client and click on a “.torrent” file "

BitTorrent overview

seeder

tracker

16

BitTorrent client

* Client first asks 50 random peers from tracker

- Also learns about what chunks they have

* Picks a chunk and tries to download its pieces (16K) from
the neighbors that have them

- Download does not work if neighbor is disconnected or
denies download (choking)

* Allows only 4 neighbors to download (unchoked
neighbors)

— Periodically (30s) does optimistic unchoke: allows
download to random peer (important for bootstrapping
and optimization (exploration))

- Otherwise unchokes peer that allows the most
download (each 10s) 17

tit-for-tat

e Tit-for-tat in iterated prisoners dilemma

— Cooperate first, then do what the opponent did in
the previous game

- Very good strategy (Axelrod)
* BitTorrent is a kind of tit-for-tat

- We unchoke peers (allow them to download) that
allowed us to download from them

- Optimistic unchoking is the initial cooperation step
to bootstrap the thing

* How about hacked clients? Why don't they
spread and kill BitTorrent?

18

Chunk selection

* Another very important question is what chunk
to select to download?

* Clients select the chunk that is rarest among
the neighbors (local decision)

- Keeps all chunks equally represented

- This Iis good because no chunks get lost, and it is
likely that peers find chunks they don't have

* Exception is first chunk

- Select a random one (to make it fast: many
neighbors must have it)

19

Measurements

* 5 month trace of the 1.77GB RedHat ISO image

e Two sources of data

- Tracker statistics
- Modified client participating in the swarm

* 180,000 clients total
* 50,000 clients in the first five days

- Flash crowd

20

Initial flash crowd

4500 L
All peers

4000 r SEEDS ---memeee- i

3500 | LEECHERS o

3000 |
2500 |
2000 |
1500 | i
1000 S e e,]
500 t ;f """"""""" e

O | . .J". | . . . | . . . | . . . | .
30/03 31/03 01/04 02/04 03/04
24:00 24:00 24:00 24:00 24:00

Time

Number of peers

21

Cumulative uploaded bytes

Seeds and leechers: altruism

F ot T Cl | 1[]{} v vl " | T [
Uploaded by SEEDS —— | [EECHERS -
3t Uploaded by LEECHERS - : | , SEEDS —

Fha i i,'li | E
Loty o WARERVALIN
3 3 :) I|J'-. .=i.'Jii:'| '.,I'II I"'".I II,' Wi i\}l IL_'; T',r|
e+ B m i II: .:II lll' -il Jiqi . - ’
E 0} sl’li# .I VAN T
Je+d L : .
o 40+t
| he+ il

—
T

1
1
1
1
20e+13 ¢
1
1
1
1

[—
L= IS
-+ -+

3103 0105 0106 0107 01/08 01/09 303 0105 0106 0107 0108 0109
Time Time

22

Some statistics

* Average download rate is 500kb/s, during flash
crowd, active clients averged at 800kb/s

e 5% of sessions is “seed session”

- Joining peer already has to complete file, joins only
to share it

* About 50% of sessions (peer joins) belong to
peers that spend little time in the network and
down/upload little data

- Maybe disappointed users behind slow links

23

Summary

* BitTorrent: simple (by design and also to use),
almost optimal and works - it is popular

* The devil is in the details too (good efficient
client)

* Only slight problem: endgame

- Last chunks in endgame mode: aggressive parallel
downloads to maximize speed

- Does not result in very significant overhead

24

Network coding

* In bittorrent: chunk selection and peer selection
are important to make sure that

— All chunks are represented equally
- We have a random network

* We can get rid of these using coding theory

- Works even if overlay has bottlenecks
- No need to worry about chunk selection

25

Coding theory for CDNSs

e Erasure codes

- Data is divided into k packets

- Transformed into n>k packets such that any k
packets can reconstruct the original data (erasure
codes)

- Reed-Solomon or Tornado codes
* Implementing a digital fountain

- “fountain” keeps transmitting these n packets

- Downloaders can join at any time, can catch any k
of the packets (perhaps from neighbors) and leave

26

Network coding

Not only server does encoding but also the clients

A huge, practically unlimited number of different
packets are floating around, generated by clients
concurrently

Any k of these packets is enough for decoding

Possible coding approach: linear combination over
finite fields

- All codes are linear combinations of the original packets

- Clients create new linear combinations when they offer
content

- Decoding is solving a linear system of equations

27

Packet 1

Advantage of network coding

Source

Node A Node B

Packet 1. or 2, or [®27?

Packet 1

Node C

Only
the
number
of
packets
counts,
no
worries
about
which
packet
to fetch

28

A possible protocol

e Same as BitTorrent, only

— Clients offer new random linear combinations for
download and transfer the coefficients as well (low
overhead)

- There Is no chunk selection problem

* No rare chunks can occur

* No endgame problem

* No topology bottleneck problem

* No data loss problem due to catastrophic failure

e Same incentive mechanisms too (tit-for-tat), but
with explicit accounting (no more upload than
download) »

Experimental results

Three algorithms

- Local rarest chunk selection (LR) (similar to
BitTorrent)

- Local rarest combined with server encoding
- Network encoding

Network size is 200 (small!)
Neighbors is max 6 (small!)
Different scenarios

- Clustered topology, heterogeneity, dynamism (If
random network and homogeneous static peers,
then the strategies are very similar)

30

110 T T T T T T T T T
100F <
90r
i I_R
2ol == [RIFEC
mm |\
¢ 70f
£
= nrrrtatyod '
% 60-“"- 01,"\\',“\\\& d""‘ =" ¢ ‘.~-""\--"'--l
I
5o
m. -
30- L

Clustering and heterogeneity

Two clusters: 100 nodes each

100 120 140 160 180 200
Nodes

20 40 60 80

Finish Times

10 fast nodes (4x faster) 190 slow nodes

170 . .
% " x*
*'i- ---K--. .’ ‘x--- “n i.‘
wob X w
*’z
150p . Xk
TR X
140p X
130p
=% LR
troh ::: ||;]Fé+FEC
100 [[] [[[[[
1 2 3 4 78 9 10

of Peers Finished

Server availability

500
m— NC
450 == FEC Server leaves
e Simple after serving
400 all chunks
350 plus 5% extra
chunks, nodes
300 immediately
leave when
250 finished
200 server coding
needs 10-15%,
150 :
no coding 20-
100 30% extra
chunks to
50 achieve full
coverage

?DD 150 200 250 300
Time 32

Final note

* BitTorrent is in fact quite good in practice

— No network bottlenecks occur because a random
network is maintained

- Rarest chunk policy is very good (combined with
initial random chunk and end-game strategies)

- Heterogeneity might be an issue (in practice low
capacity nodes simply go away, as we saw...)

* A convincing study is still to be written with
larger scale systems and a more complete BT
implementation

33

Media streaming

e Similar to distribution of large files but time is
important
- Packets must have low delay

- If we do not get a packet for some time, we forget
about it

* Classification as before
- Dedicated router infrastructure (Cisco, etc)

- Dedicated application layer overlay (Akamai, etc)
- P2P cooperative approaches

* We look at SplitStream and Bullet (both P2P)

34

Multiple description coding

* \We have seen erasure codes for large file
distribution

- Here any k packets were enough for decoding, but
k-1 packets is of not much help

* Multiple description code (MDC) is similar

— k packets are enough for decoding

- Less than k packets can be used to approximate
content

* Similar to progressive encoding, only order of
packets is insignificant

* Useful for multimedia (video, audio) but not for other
data 35

Multiple description coding

* Media streaming
applications often use
MDC in some form
because

- Loosing a packet results in
no interruption, only quality
degradation

- Lower bandwidth nodes
simply ask for < k packets

e Streams can be sliced into
parallel “stripes” that are
MDC encoded

stripes

R

aw

36

Trees: not optimal

* The most natural way of cooperative media
streaming is through broadcast trees

* Trees have problems though, esp in end-to-end
approaches

- Vulnerable to failure (no cycles)
- Bandwidth strictly decreases towards leaves

- Difficult to create optimal tree (and it is important to
do so)

- Leaves do not contribute in a cooperative setting

37

Solving the problems with trees

* Use multiple trees

* Use a tree but also use a mesh for cooperation
* Axe them (Chainsaw, IPTPS 2005)

- We do not discuss this here, although remarkable
* |n the following we look at

- SplitStream that uses multiple trees
— Bullet that uses the union of a mesh and a tree

38

SplitStream

e Basic idea

- Split the stream into k stripes (perhaps with MDC
encoding)

— For each stripe create a multicast tree such that the
forrest

* Contains interior-node-disjoint trees
* Respects nodes' individual bandwidth constraints

* Approach

- Use Scribe (and some hacks) to create the forrest
- Scribe is on top of Pastry

39

lllustration of SplitStream

Source

@ ---------- stripe 2
-,

hr

stripe 1

LI}
, - -.._.I-I

L ___ I}
— -,
oot e

40

The forrest construction problem

* A constraint satisfaction problem

— All nodes have incoming capacity requirements
(number of stripes they need) and outgoing capacity
limits

- There is one or more source for each stripe

- We have to construct a weighted directed acyclic

distribution graph (forrest) that respects these
constraints

e An observation: such a forrest exists if

- Sum of incoming capacity is less then or equal to the
sum of outgoing capacity over the nodes and

- All nodes that have large outgoing than incoming
capacities must posess (receive or originate) all strlpes

Constructing the forrest: scribe

* Scribe works over Pastry

- Mutlicast groups are identified by an ID

- Tree is definied by the route towards the ID in the
Pastry network

- Join: route towards the ID, connect to first member
as child

e Basic idea

- All k stripes are assigned a group ID, and Scribe is
used to create mutlicast trees

— This does not necessarily satisfy constraints

42

Constructing the forrest

e Additional tricks for constraint satisfaction

- Group IDs start with a different letter: interior-node-
disjoint forrest

- If a node has too many children

* “Push-down” approach: joining node looks for a
parent further down the tree, or if not found, in the
“spare capacity group”

- Spare capacity group

* Scribe group that contains nodes that can take more
children

* Algorithm always succeeds if all nodes want to receive all
stripes or suceeds with a high probability as a function of

spare capacity and minimal incoming capacity +

Bullet

e Basic idea

— Use a multicast tree as a basis

- In addition each node continuously looks for peers
to download from

- In effect, the overlay is a tree combined with a
random network

* Approach

- A service (ranSub) that provides random peers
- A mechanism to select “good” peers
- Low level transfer protocol (to replace TCP)

44

Bullet: RanSub

* Two phases

— Collect phase: using the tree, membership info is
propagated upwards (random sample and subtree
size)

- Distribution phase: moving down the tree, all nodes
are provided with a random sample from the entire
tree, or from the non-descendant part of the tree,
etc.

* Nodes in the network receive random peers this
way end select those that seem to be most
useful

45

Bullet

* \WWhen selecting a peer, first a similarity measure is
calculated

- Based on “summary-sketches”
* Before exchange missing packets need to be identified

- Bloom filter of available packets is exchanged
(usual false positive issue)

- Old packets are removed from the filter (to keep the
size of the set constant)

* Periodically re-evaluate senders (how useful they are)

- If needed, senders are dropped and new ones are
requested

46

Some comments

e Tree Is needed

- Because of RanSub: but other sampling services
can be used that do not rely on trees

- To maximize diversity of packets in the network: but
rarest first chunk selection in BT does the same,
besides, with encoding techniques, it is irrelevant

e So is the tree needed?

* [sn't the protocol unnecessarily complex trying
to explicitly control things that are “for free” in
simpler approaches?

- Eg in BT through the local-rarest-first strategy Y

Some refs

* Papers this presentation used material from

C Gkantsidis and P R Rodriguez. Network coding for large scale content distribution.
In INFOCOM 2005, pp 2235-2245, 2005.

M Freedman, E Freudenthal, and D Mazieres. Democratizing content publication with
Coral. In NSDI '04, 2004.

M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A. Al Hamra, and L. Garcés-
Erice. Dissecting bittorrent: Five months in a torrent's lifetime. In Passive and Active
Network Measurement, LNCS 3015, pages 1-11. Springer, 2004.

M Castro, P Druschel, A-M Kermarrec, A Nandi, A Rowstron, and A Singh.
Splitstream: high-bandwidth multicast in cooperative environments. In SOSP'03,
pages 298-313, New York, NY, USA, 2003

B Cohen. Incentives build robustness in bittorrent. In P2PECON, 2003.

D Kostic, A Rodriguez, J Albrecht, and A Vahdat. Bullet: high bandwidth data
dissemination using an overlay mesh. In SOSP'03, pages 282-297

* The course website
- http://www.inf.u-szeged.hu/~jelasity/p2p/ 48

http://www.inf.u-szeged.hu/~jelasity/p2p/

