
Cooperative End-to-end
content distribution

Márk Jelasity

2

Content distribution
● So far we looked at search
● Content distribution is about allowing clients

(peers) to actually get a file or other data after it
has been located

● Different types of content require different
techniques
– Downloading huge files (dvd-s, linux distributions,

etc)
– Streaming media

3

Content distribution networks

● System organization
– Centralized

● Server farms behind single domain name, load
balancing

– Dedicated CDN
● CDN is an independent system for typically many

providers, that clients only download from (use it as
a service); typically http

– End-to-end (p2p)
● special client is needed and clients self-organize to

form the system themselves (as usual in p2p)

4

Outline
● Large file distribution

– Dedicated CDN
● Akamai: privately owned CDN
● CoralCDN: similar idea to Akamai, only cooperative

p2p technology is used
– End-to-end p2p CDN

● Bittorrent
● The network coding approach

● Media streaming
– SplitStream, bullet

5

Akamai

● Provider (eg CNN, BBC, etc) allows Akamai to handle a
subset of its domains (authoritive DNS)

● Http requests for these domains are redirected to nearby
proxies using DNS
– Akamai DNS servers use extensive monitoring info to

specify best proxy: adaptive to actual load, outages, etc
● Currently 20,000+ servers worldwide, claimed 10-20% of

overall Internet traffic is Akamai
● Wide area of services based on this architecture

– availability, load balancing, web based applications,
etc

6

CoralCDN: motivation
● Commercial CDN-s are good but expensive:

small sites with low bandwidth can't afford them
● Small sites are more vulnerable to flash crowds

and any fluctuation of traffic in general
● P2P filesharing has shown willingness to

provide bandwidth for popular content
● Let's build a P2P CDN to support (popular but)

small, underprovisioned websites
● [motivation is shaky, but interesting technology

anyway]

7

CoralCDN
● Participating peers form

– an indexing infrastucture (DHT-like)
– a network of HTTP proxies
– a network of DNS servers

● How to use the system?
– Publishers can “coralize” urls by appending the

domain “.nyud.net:8090” to the name of the server,
eg http://www.inf.u-szeged.hu.nyud.net:8090/

– In email, usenet, etc messages any url-s can be
coralized the same way (thereby preventing the
“slashdotting” of the site in question)

http://www.inf.u-szeged.hu.nyud.net:8090/

8

How it works
● Clients tries to resolve

www.inf.u-szeged.hu.nyud.net

● Coral DNS server probes
the client for RTT and
looks for coral DNS and
HTTP servers nearby

● Coral DNS returns DNS
and HTTP servers for
www.inf.u-szeged.hu.nyud.net

● Clients send HTTP request
to
http://www.inf.u-szeged.hu.nyud.net:8090/

● If given coral serever has
the page, sends it.

● Otherwise looks up the
URL in Coral, and if it is
available, caches it from
within Coral, and sends it

● Otherwise it fetches the
page from original location
http://www.inf.u-szeged.hu/

● The coral server notifies
the system that it now
caches the URL

http://www.inf.u-szeged.hu.nyud.net/
http://www.inf.u-szeged.hu.nyud.net/
http://www.inf.u-szeged.hu.nyud.net:8090/
http://www.inf.u-szeged.hu/

9

Overview of CoralCDN

10

Distributed sloppy hash table
● Sloppy: keys can be stored not only on nodes

that are the closest, but also in nodes that are
close enough: better load balancing

● Inserting a key
– Approach the reposnsible node through routing as

in DHT, but stop sooner, if nodes that are close are
“full” and “loaded” (load balancing technique)

● Retrieval
– Approach the responsible node for the key, and

stop when finding the first node storing the key

11

Clustering
● Many DSHT-s in parallel: hierarchical clustering

– 3 levels: according to RTT among cluster members
– All nodes have same ID in all clusters, level 0

cluster covers full network
● Implementation of clustering

– Storing hints in the DSHT: key: IP address of router
and subnet prefix: value: node

● Joining nodes quickly find other nodes in the same
subnets

– Collect RTT info in all contacts: if other cluster
seems closer, change cluster

12

Exploiting clustering
● Retrieval is biased towards lower levels, so

nearby HTTP and DNS servers can be located
– Start routing protocol at level 2 (closest nodes)
– If no key found, go to level 1 and simply continue

the routing (the nodes level 2 cluster is subset of its
level 1 cluster)

– Go until reaching level 0
● Clusters do not increase lookup time (roughly

the same as a simple routing at level 0)

13

Some notes
● CoralCDN is deployed on PlanetLab

– 750 nodes
– 1,500 Gbytes for 700,000 IP addresses a day

● It is only a proof of concept, but wide scale
deployment is a question
– If it is single administrative domain, why not more

control, why the p2p approach?
– If it is voluntary, multiple admin domain, who would

want to join voluntarily without restricting content?
What kind of content? Etc

– DNS and other overhead makes it rather slow

14

End-to-end P2P CDN: BitTorrent
● Invented by Bram Cohen
● Currently 20-50% of Internet traffic is BitTorrent
● Special client software is needed
● Basic idea

– Clients that download a file at the same time help
each other (ie, also upload chunks to each other)

– BitTorrent clients form a swarm: a random overlay
network

15

BitTorrent
● Publishing a file

– Put a “.torrent” file on the web: it contains the
address of the tracker, and information about the
published file: eg chunk hashes (256M chunks)

– Start a tracker, a server that
● Gives joining downloaders random peers to

download from and to
● Collects statistics about the swarm

– [Note that there are “trackerless” implementations
already]

● Download a file
– Install a bittorrent client and click on a “.torrent” file

16

BitTorrent overview

17

BitTorrent client
● Client first asks 50 random peers from tracker

– Also learns about what chunks they have
● Picks a chunk and tries to download its pieces (16K) from

the neighbors that have them
– Download does not work if neighbor is disconnected or

denies download (choking)
● Allows only 4 neighbors to download (unchoked

neighbors)
– Periodically (30s) does optimistic unchoke: allows

download to random peer (important for bootstrapping
and optimization (exploration))

– Otherwise unchokes peer that allows the most
download (each 10s)

18

tit-for-tat
● Tit-for-tat in iterated prisoners dilemma

– Cooperate first, then do what the opponent did in
the previous game

– Very good strategy (Axelrod)
● BitTorrent is a kind of tit-for-tat

– We unchoke peers (allow them to download) that
allowed us to download from them

– Optimistic unchoking is the initial cooperation step
to bootstrap the thing

● How about hacked clients? Why don't they
spread and kill BitTorrent?

19

Chunk selection
● Another very important question is what chunk

to select to download?
● Clients select the chunk that is rarest among

the neighbors (local decision)
– Keeps all chunks equally represented
– This is good because no chunks get lost, and it is

likely that peers find chunks they don't have
● Exception is first chunk

– Select a random one (to make it fast: many
neighbors must have it)

20

Measurements
● 5 month trace of the 1.77GB RedHat ISO image
● Two sources of data

– Tracker statistics
– Modified client participating in the swarm

● 180,000 clients total
● 50,000 clients in the first five days

– Flash crowd

21

Initial flash crowd

22

Seeds and leechers: altruism

23

Some statistics
● Average download rate is 500kb/s, during flash

crowd, active clients averged at 800kb/s
● 5% of sessions is “seed session”

– Joining peer already has to complete file, joins only
to share it

● About 50% of sessions (peer joins) belong to
peers that spend little time in the network and
down/upload little data
– Maybe disappointed users behind slow links

24

Summary
● BitTorrent: simple (by design and also to use),

almost optimal and works → it is popular
● The devil is in the details too (good efficient

client)
● Only slight problem: endgame

– Last chunks in endgame mode: aggressive parallel
downloads to maximize speed

– Does not result in very significant overhead

25

Network coding
● In bittorrent: chunk selection and peer selection

are important to make sure that
– All chunks are represented equally
– We have a random network

● We can get rid of these using coding theory
– Works even if overlay has bottlenecks
– No need to worry about chunk selection

26

Coding theory for CDNs
● Erasure codes

– Data is divided into k packets
– Transformed into n>k packets such that any k

packets can reconstruct the original data (erasure
codes)

– Reed-Solomon or Tornado codes
● Implementing a digital fountain

– “fountain” keeps transmitting these n packets
– Downloaders can join at any time, can catch any k

of the packets (perhaps from neighbors) and leave

27

Network coding
● Not only server does encoding but also the clients
● A huge, practically unlimited number of different

packets are floating around, generated by clients
concurrently

● Any k of these packets is enough for decoding
● Possible coding approach: linear combination over

finite fields
– All codes are linear combinations of the original packets
– Clients create new linear combinations when they offer

content
– Decoding is solving a linear system of equations

28

Advantage of network coding

Only
the
number
of
packets
counts,
no
worries
about
which
packet
to fetch

29

A possible protocol
● Same as BitTorrent, only

– Clients offer new random linear combinations for
download and transfer the coefficients as well (low
overhead)

– There is no chunk selection problem
● No rare chunks can occur
● No endgame problem
● No topology bottleneck problem
● No data loss problem due to catastrophic failure

● Same incentive mechanisms too (tit-for-tat), but
with explicit accounting (no more upload than
download)

30

Experimental results
● Three algorithms

– Local rarest chunk selection (LR) (similar to
BitTorrent)

– Local rarest combined with server encoding
– Network encoding

● Network size is 200 (small!)
● Neighbors is max 6 (small!)
● Different scenarios

– Clustered topology, heterogeneity, dynamism (If
random network and homogeneous static peers,
then the strategies are very similar)

31

Clustering and heterogeneity
Two clusters: 100 nodes each 10 fast nodes (4x faster) 190 slow nodes

32

Server availability

Server leaves
after serving
all chunks
plus 5% extra
chunks, nodes
immediately
leave when
finished

server coding
needs 10-15%,
no coding 20-
30% extra
chunks to
achieve full
coverage

33

Final note
● BitTorrent is in fact quite good in practice

– No network bottlenecks occur because a random
network is maintained

– Rarest chunk policy is very good (combined with
initial random chunk and end-game strategies)

– Heterogeneity might be an issue (in practice low
capacity nodes simply go away, as we saw...)

● A convincing study is still to be written with
larger scale systems and a more complete BT
implementation

34

Media streaming
● Similar to distribution of large files but time is

important
– Packets must have low delay
– If we do not get a packet for some time, we forget

about it
● Classification as before

– Dedicated router infrastructure (Cisco, etc)
– Dedicated application layer overlay (Akamai, etc)
– P2P cooperative approaches

● We look at SplitStream and Bullet (both P2P)

35

Multiple description coding
● We have seen erasure codes for large file

distribution
– Here any k packets were enough for decoding, but

k-1 packets is of not much help
● Multiple description code (MDC) is similar

– k packets are enough for decoding
– Less than k packets can be used to approximate

content
● Similar to progressive encoding, only order of

packets is insignificant
● Useful for multimedia (video, audio) but not for other

data

36

Multiple description coding
● Media streaming

applications often use
MDC in some form
because
– Loosing a packet results in

no interruption, only quality
degradation

– Lower bandwidth nodes
simply ask for < k packets

● Streams can be sliced into
parallel “stripes” that are
MDC encoded

tim
e

stripes

37

Trees: not optimal

● The most natural way of cooperative media
streaming is through broadcast trees

● Trees have problems though, esp in end-to-end
approaches
– Vulnerable to failure (no cycles)
– Bandwidth strictly decreases towards leaves
– Difficult to create optimal tree (and it is important to

do so)
– Leaves do not contribute in a cooperative setting

38

Solving the problems with trees

● Use multiple trees
● Use a tree but also use a mesh for cooperation
● Axe them (Chainsaw, IPTPS 2005)

– We do not discuss this here, although remarkable
● In the following we look at

– SplitStream that uses multiple trees
– Bullet that uses the union of a mesh and a tree

39

SplitStream
● Basic idea

– Split the stream into k stripes (perhaps with MDC
encoding)

– For each stripe create a multicast tree such that the
forrest

● Contains interior-node-disjoint trees
● Respects nodes' individual bandwidth constraints

● Approach
– Use Scribe (and some hacks) to create the forrest
– Scribe is on top of Pastry

40

Illustration of SplitStream

41

The forrest construction problem
● A constraint satisfaction problem

– All nodes have incoming capacity requirements
(number of stripes they need) and outgoing capacity
limits

– There is one or more source for each stripe
– We have to construct a weighted directed acyclic

distribution graph (forrest) that respects these
constraints

● An observation: such a forrest exists if
– Sum of incoming capacity is less then or equal to the

sum of outgoing capacity over the nodes and
– All nodes that have large outgoing than incoming

capacities must posess (receive or originate) all stripes

42

Constructing the forrest: scribe
● Scribe works over Pastry

– Mutlicast groups are identified by an ID
– Tree is definied by the route towards the ID in the

Pastry network
– Join: route towards the ID, connect to first member

as child
● Basic idea

– All k stripes are assigned a group ID, and Scribe is
used to create mutlicast trees

– This does not necessarily satisfy constraints

43

Constructing the forrest
● Additional tricks for constraint satisfaction

– Group IDs start with a different letter: interior-node-
disjoint forrest

– If a node has too many children
● “Push-down” approach: joining node looks for a

parent further down the tree, or if not found, in the
“spare capacity group”

– Spare capacity group
● Scribe group that contains nodes that can take more

children
● Algorithm always succeeds if all nodes want to receive all

stripes or suceeds with a high probability as a function of
spare capacity and minimal incoming capacity

44

Bullet
● Basic idea

– Use a multicast tree as a basis
– In addition each node continuously looks for peers

to download from
– In effect, the overlay is a tree combined with a

random network
● Approach

– A service (ranSub) that provides random peers
– A mechanism to select “good” peers
– Low level transfer protocol (to replace TCP)

45

Bullet: RanSub
● Two phases

– Collect phase: using the tree, membership info is
propagated upwards (random sample and subtree
size)

– Distribution phase: moving down the tree, all nodes
are provided with a random sample from the entire
tree, or from the non-descendant part of the tree,
etc.

● Nodes in the network receive random peers this
way end select those that seem to be most
useful

46

Bullet
● When selecting a peer, first a similarity measure is

calculated
– Based on “summary-sketches”

● Before exchange missing packets need to be identified
– Bloom filter of available packets is exchanged

(usual false positive issue)
– Old packets are removed from the filter (to keep the

size of the set constant)
● Periodically re-evaluate senders (how useful they are)

– If needed, senders are dropped and new ones are
requested

47

Some comments
● Tree is needed

– Because of RanSub: but other sampling services
can be used that do not rely on trees

– To maximize diversity of packets in the network: but
rarest first chunk selection in BT does the same,
besides, with encoding techniques, it is irrelevant

● So is the tree needed?
● Isn't the protocol unnecessarily complex trying

to explicitly control things that are “for free” in
simpler approaches?
– Eg in BT through the local-rarest-first strategy

48

Some refs
● Papers this presentation used material from

– C Gkantsidis and P R Rodriguez. Network coding for large scale content distribution.
In INFOCOM 2005, pp 2235–2245, 2005.

– M Freedman, E Freudenthal, and D Mazières. Democratizing content publication with
Coral. In NSDI '04, 2004.

– M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A. Al Hamra, and L. Garcés-
Erice. Dissecting bittorrent: Five months in a torrent's lifetime. In Passive and Active
Network Measurement, LNCS 3015, pages 1–11. Springer, 2004.

– M Castro, P Druschel, A-M Kermarrec, A Nandi, A Rowstron, and A Singh.
Splitstream: high-bandwidth multicast in cooperative environments. In SOSP'03,
pages 298–313, New York, NY, USA, 2003

– B Cohen. Incentives build robustness in bittorrent. In P2PECON, 2003.
– D Kostic, A Rodriguez, J Albrecht, and A Vahdat. Bullet: high bandwidth data

dissemination using an overlay mesh. In SOSP'03, pages 282–297

● The course website
– http://www.inf.u-szeged.hu/~jelasity/p2p/

http://www.inf.u-szeged.hu/~jelasity/p2p/

