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● Where are the networks?
– Some example computer systems

● WWW, Internet routers, software components

– Large decentralized systems
● Communication topology is always a non-trivial 

network

– Other networks
● Social relationships, food web, chemical reactions 

(DNA), etc

● Complex self-managing systems will inevitably have 
to deal with complex networks

Motivation
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● Some networks are actually important (not only 
interesting)
– WWW, Internet, food web, metabolic nets, etc

● Some common aspects must be understood for 
most networks
– Robustness
– Epidemics (spreading of info, etc)
– Efficiency

● function of network depending on its structure
– Design and engineering

● need to understand emergent properties

Motivation
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Real world 
(empirical

data)

Design
experiments

Construct
(refine, reject)

model

Analise
model

(come up with
predictions)

This is empirical science

● Complex networks 
is a branch of 
physics
– Empirical: loop of 

modeling and 
observation

● Models capture 
only selected 
aspects
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Outline

● Basic concepts recap (graphs, probability)
● Graph models

– Erdős-Rényi

– General degree distribution

– Watts-Strogatz

– Barabási-Albert

– [motifs]
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● Node, edge
● Graph

– Directed, undirected, simple
● Paths

– Length, average length, diameter
● Connected graph

– Strongly, weakly
● Node degree

– In-, out-, average, distribution

Graph theoretical concepts
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● Discrete distribution, random variable
● Expectation value, variance
● What is a random graph?

– Probability space of graphs

Probability
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● Simple undirected graph GN,p

● Parameters
– N: number of nodes
– p: probability of connecting any pairs of nodes

● Algorithm
– Start with empty graph of N nodes
– Draw all N(N-1)/2 possible edges with probability p

● Stats of degree of a fixed node i
– <ki>=p(N-1), ki has binomial distr, approx Poisson 

The model
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● Usual question: P(Q) over a probability 
space of graphs
– Q can be eg “connected”, or “contains a 

triangle”, etc
● Usually P(Q) depends on N and p
● We are interested in “almost always” Q:

P N , p Q 1 N ∞

Probabilistic properties
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● Often there is a critical probability pc such 
that

lim
N ∞

PN , p Q = {0 p N 
pc N 

0

1
p N 
pcN 

∞

Probabilistic properties

● We are interested in pc for different Q-s

● Example: GN,p has a subgraph
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● Note the case p~1/N where cycles of all 
order appear

● Note that this is understood as N tends to 


Critical pr. for small subgraphs
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● Let’s look at connectivity as a function of 
p
– AKA “graph evolution”: when we keep adding 

edges
● Note that if p grows slower than 1/N, the 

graph is a disconnected collection of 
small (constant size) components

● If p~1/N, avg node degree <k> is 
constant, cycles of all order have finite 
probability
– What’s going on if <k> is constant?

Connectivity



13

● 0< <k> <1
– One cycle, otherwise trees, the larges being O(ln N) 

size
– The number of clusters is N-n (ie each new edge 

connects two clusters)
● <k>=1

– Critical value: largest cluster is suddenly O(N2/3), with 
complex structure

● <k> >1
– The largest cluster is of size (1-f(<k>))N nodes 

where f decreases exponentially
● [If <k> >= ln N, completely connected (but here the 

avg degree grows with N)]

The case when p~1/N
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● ki the degree of fixed node
– ki is binomial (Bin(N-1,p))

● Degree distribution: the degree of a 
random node from a random graph
– xk: number of nodes with degree k
– <xk>=NP(ki=k)
– Distribution of xk has very low variance
– So it is a reasonable assumption to say that a 

random graph GN,p has very close to binomial 
degree distribution

Degree distribution
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● The longest shortest path
● L = ln N/ln <k> = log<k> N
● The reason is that these graphs are 

locally like trees
● The average path length (l) grows also as 

log<k> N
● Observed networks tend to have a 

diameter consistent with this prediction

Diameter
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Statistics of some networks
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● Definition of clustering coefficient
– Ratio of actual and possible number of edges 

between neighbors of a node
● In this model it is evident

– C = p = <k>/N
– Very small

● This does NOT predict the clustering in 
real networks

Clustering coefficient
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● Gr-reg: probability space is the set of r-regular graphs 
with equal probability
– G3-reg is Hamiltonian
– Note that G3/(N-1),N is not even connected

● Gr-out: we generate a random graph by adding 3 
edges from all nodes
– G4-out is Hamiltonian
– It is believed that G3-out is also Hamiltonian

● So we need to be careful
● When there is guarantee that all nodes have some 

edges, things are radically different

Some other similar models
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● Motivation: random graphs don’t model clustering
● Local structure + randomness (“shortcuts”)

– Ring with links to K nearest neighbors
– Rewire each of the K/2 links to the left of a node with 

probability p (pNK/2 shortcuts on average)
● Clustering is c=3(K-2)/4(K-1) if p=0
● Average path length is O(N) if p=0
● With p=1 we get the Gk/2-out model, not the Erdős-

Rényi model

Watts-Strogatz model
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Watts-Strogatz model
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In a wide 
region 
clustering is 
large, path 
length is 
short:
small world 
graph

The small world region
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C  p ≈C 01− p 3=
3K−2 
4 K−1 

1− p 3

Statistical properties

● Clustering in the general case

● Degree distribution
– Transition from constant (K) to 

Poisson(K/2)+K/2

● Path length
– Small p: linear; large p: logarithmic

– Transition: p=2/NK (1 shortcut on average)
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● So far we can model clustering and path 
length. Is this all? No

● Degree distribution is very often heavy tail
– P(k)~k- (often some cutoff eg P(k)~k-e-
– Without cutoff

● No expectation value (ie <k if <=2
● No variance (ie Var(k if <=3, etc

● Called scale-free because of fractals

Growth models
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Observed scale free networks
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● Preferential attachment rule
– Start with a small number (m0) of nodes

– Repeat adding a new node with m<=m0 
links, where each linked is linked to node i 
according to 

Π k i =
k i

∑
j

k j

Barabási-Albert model

● T time step, t+m0 nodes, mt edges
● Converges to exponent γ=3
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Empirical results with BA model
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● Average path length
– L~ln N/ ln ln N (somewhat smaller then 

random)
● Clustering

– C~N-0.75, (recall that random was 1/N)
● In Sum

– Models degree distribution
– But doesn’t model clustering

Some statistics
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● BA model has another problem
– Correlation between degree of neighbors

● General model
– Given a sequence of degrees
– Construct a probability space in which all 

graphs with the given sequence are 
equiprobable

– Stubs method
● Problems: loop edges, multiple edges

General degree distribution
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● [Recall the ER model had <k>=1 as a 
tipping point for giant component]

● General rule for connectivity (critical 
value): <k2>-2<k>=0

● For the Poisson distribution this gives 
<k>2=<k>, that is, <k>=1

Connectivity of general model
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● Degree distribution, path length, clustering; is this 
all to account for?

● In a random model, small subgraphs have a 
theoretical distribution

● In a real network, some small subgraphs are 
represented more or less frequently
– This is yet another aspect to account for in a model

● Are motifs functional? Or just side effects? 
● In other words, should we bother?

● Z-score: (Nreal-Nrand)/SD

Network motifs
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Some examples for motifs
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● We need to understand how vulnerable existing 
systems are

● We need to design self-healing and self-protecting 
systems

● Models
– Node removal: failure

● A random node is removed along with all the links

– Node removal: attack
● The most connected (highest degree) nodes are 

removed

Error and attack tolerance
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Node removal
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N=10 000
<k>=4

ER and BA
model

Achilles' heel



35

Real world examples
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● Internet and WWW
– Extremely sensitive to attack, and extremely robust 

to random failure
● Cellular networks

– 8% removal 500% increase in path length is attack, 
otherwise unchanged

● Ecologial networks Silwood Park web
– Error tolerance: 95% removal
– Attack tolerance: 20% removal
– Secondary extinctions under attack: 16% removal

Real world examples
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● Papers this presentation used material from
– Réka Albert and Albert-László Barabási. 

Statistical mechanics of complex networks. Reviews of Modern 
Physics, 74(1):47-97, January 2002.

– R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and 
U Alon. Network motifs: Simple building blocks of complex networks. 
Science, 298:824-827, 2002.

– Mark E. J. Newman. Random graphs as models of networks. In Stefan 
Bornholdt and Heinz G. Schuster, editors, Handbook of Graphs and 
Networks: From the Genome to the Internet, chapter 2. John Wiley, 
New York, NY, 2002.

● The course website
– http://www.inf.u-szeged.hu/~jelasity/p2p/

Some refs

http://www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/networkMotifs.pdf
http://www.inf.u-szeged.hu/~jelasity/p2p/

