
Structured networks:
search

Márk Jelasity

2

Outline
● Hash tables and distributed hash tables (DHT):

the abstraction
● An example implementation: Chord
● Implementing keyword search on a DHT
● Some other other DHTs: Pastry and CAN
● Summary of DHT complexity results
● Hybrid (structured/unstructured) approaches to

search

3

Motivation
● We have seen search does well in unstructured

networks except when items are rare
● Can we come up with a technique that provides

efficient search (lookup) for rare items?
– Yes: distributed hash tables (DHT)

● What is the ultimate solution that is robust,
cheap and works for popular and rare items
too?
– Hybrid solutions?
– Something not yet invented?

● DHTs are good for other things too

4

Hash tables
● Store arbitrary keys

and satellite data
(value)

● put(key,value)
● value = get(key)

● Lookup must be fast
● Calculate hash

function h() on key
that returns a
storage cell

● Chained hash table:
Store key (and
optional value) there

5

5=h(k5)

4

3=h(k3)=h(k4)

2

1=h(k1)=h(k2)

k5 v5

k4 v4k3 v3

k2 v2k1 v1

Allocated array:
indexed by hash
values Stored entriesStored entries

5

Why a hash table?
● Most often the point of a hash table is fast and

cheap lookup of data indexed by a key
● When used for search, the issue of query

richness comes up
– In random walk/flooding, a query can be arbitrarily

complex (even full text search with regular
expressions).

– If we use only key based lookup, we must be creative
and work more to allow for non-trivial queries

● Inverse indexing, etc
● The idea is trading some flexibility and simplicity

off for efficiency and effectivity

6

Distributed hash table
● We want hash table functionality in a p2p

network: lookup of data indexed by keys
● Assume the storage space is a distributed set

of nodes (not an array)
– Note that in all cases we will have an overlay

network that connects these nodes in tricky ways
– The exact set of nodes is not known locally and can

change all the time
– We work with an idealized storage space,

● Hash function maps to this ideal space
● We assign parts of the space to nodes in a

distributed way dynamically: extra complications

7

Distributed hash tables
Abstract “allocated array”
called ID space, indexed by
hash values

Actual nodes in the
network (dynamic) Stored entries

consistent hasing of keys to nodes
typically two step, as shown above

7
5=h(k5)

4=h(k4)

3=h(k3)

2

1=h(k1)=h(k2)

k5 v5

k4 v4k3 v3

k2 v2k1 v1

6

4

2

7

8

Distributed has tables:
main functions

● Key-hash ↔ node mapping
– Assign a unique live node to a key
– Find this node in the overlay network quickly and

cheaply (routing)
● Maintenance, optimizations

– Implement DHT API on top of routing
– Load balancing: maybe even change the key-hash

↔node mapping on the fly
– Replicate entries on more nodes to increase

robustness
– etc

9

Chord
● Most cited DHT implementation (3000+

citations to date!!!)
● Advantages

– Simple
– Good storage and message complexity

● Consistent hashing based on an ordered ring
overlay
– This is why it is “structured”

10

Hashing in the Chord ring
● Identifier circle

– 10 nodes
– 5 keys

● Both keys and
nodes are hashed to
160 bit IDs (SHA-1)

● Then keys are
assigned to nodes
using consistent
hashing
– Successor in ID

space

11

Chord hashing properties
● Consistent hashing

– randomized
● All nodes receive roughly equal share of load

– Local
● Adding or removing a node involves an O(1/N)

fraction of the keys getting new locations
● Actual lookup

– Chord needs to know only O(log N) nodes in
addition to successor and predecessor to achive
O(log N) message complexity for lookup

12

A primitive lookup algorithm

// ask node n to find the successor of id
n.find_successor(id)
 if (id ∈ (n, successor])
 return successor;
 else
 // forward the query
 // around the circle
 return successor.find_successor(id);

13

A scalable lookup algorithm

14

A scalable lookup algorithm

// ask node n to find the successor of id
n.find_successor(id)
 n' = find_predecessor(id);
 return n'.successor;

// ask node n to find the predecessor of id
n.find_predecessor(id)
 n' = n;
 while (id ∉ (n', n'.successor])
 n' = n'.closest_preceeding_finger(id);
 return n'

● Jump to the closest
preceeding finger

● O(logN) jumps
● O(logN) neighbors

stored at each node
● This formulation

assumes one node
coordinates the
lookup (not
recursive) but could
be

15

Join: an expensive approach
● A new node has to

– Fill its own successor, predecessor and fingers
– Notify other nodes for which it can be a successor,

predecessor of finger
● With several optimizations this can be done on

O(logN) time
● But the resulting protocol is complex
● Can be done simpler, using a relaxed and

simple stabilization protocol, used also for error
correction

16

Join: a relaxed approach
● If the ring is correct, then

routing is correct, fingers are
needed for the speed only

● Stabilization
– Each node periodically runs the

stabilization rutine
– Each node refreshes all fingers

by periodically calling
find_successor(n+2i-1) for a
random i

– Periodic cost is O(logN) per node
due to finger refresh

n.stabilize()
 x = sucessor.predecessor;
 if (x ∈ (n, successor))

successor = x;
 successor.notify(n);

n.join(n')
 predecessor = nil;
 sucessor =
 n'.find_successor(n);

17

Join: a relaxed approach
● Node join: find successor and then stabilize

– Ring is immediately joined: routing works
– Routing also fast enough if not too many nodes join

concurrently, but eventually fingers will be ok too

18

Failure and replication
● Failed nodes are handled by

– Replication: instead of one successor, we keep r
successors

● More robust to node failure (we can find our new
successor if the old one failed)

– Alternate paths while routing
● If a finger does not respond, take the previous finger,

or the replicas, if close enough
● At the DHT level, we can replicate keys on the r

successor nodes
– The stored data becomes equally more robust

19

Virtual nodes
– A physical node

acts as if it was
many nodes

● The Chord network
appears to be
larger

● One phisical node
gets a much more
balanced number
of keys

● Maintenance cost
grows

● Path length does
not grow
significantly

20

Path length in simulations

21

Conclusions
● The DHT abstraction can be implemented in a

fairly simple and efficient way
● All implementations are based on a distributed

datastructure, a so called “structured overlay”
– Chord used an ordered ring, with fingers (shortcuts)

● Some remaining issues to consider
– Can more complex and more flexible applications be

implemented such as keyword search (yes)
– Can the storage or message complexity improved (yes)
– So, what is the best way to implement a file sharing

system?

22

Keyword search in DHTs
● DHTs support only key lookup by default
● We need to perform complex queries as in

unstructured networks
● We need to be creative: here we discuss an

inverted index-based approach
– Document identifiers are stored in a DHT with all

contained keywords as keys
– All keywords are looked up and the intersection of

matches is calculated
– A few techniques to optimize the cost of all this

23

Inverted index approach

● Inverted index usual
in search engines
– For all keywords

collect the documents
that contain that
keyword

– Create intersection,
union, etc, base on
keyword based query

● Do that P2P style

24

Distributing the inverted indices

Mainly centralized services
cheap update, expensive lookup

Better if update is rare but
communication is expensive

25

DHT for storing documents sets
● A DHT is used to map

keywords to nodes
– A node is assigned a set of

keywords, and stores sets
of pointers to documents
that contain the given
keyword

● The retreival procedure
needs to AND sets
– Naive procedure shown

● Set A on server sA
contains documents that
have keyword kA

Request is “kA & kB”

26

Optimizations: Bloom filters
● Bloom filter of A is sent to sB (2)

● sA removes false positives (“6”
in this example)

● It saves bandwidth if set is large
enough
– We use filters for more than

300 elements only
● Smaller set should be visited

first (natural thing)
● Works for more keywords too

– All servers need to see the
final result to remove false
positives

27

Optimizations: Caches
● Bloom filters or unencoded keyword match sets

can be cached
– Some measurements indicate there are very

popular keywords (power law distr) so hit rate can
be good

● Utilization of caches
– A server checks if it has cached info on a next

keyword to be intersected
– If yes, performs intersection locally, skips the

corresponing server

28

Optimizations: virtual nodes
● Same idea as in Chord
● Assign virtual nodes proportional to capacity

– Number of keywords proportional to capacity
– Variance due to random hashing is reduced (as in

Chord)
● Load balancing still a problem

– Keyword popularity is not equal
● Number of keywords is not a good measure,

popularity needs to be considered too

29

Experiments
● Network types

– All backbone, all
modem, and gnutella
trace

● Search trace:
IRCache log file

● Parameters
– Bloom filter threshold:

300, Bloom filter size:
18/24 with cache
on/off

30

Other DHT designs
● A DHT is an abstraction

– Eg previous keyword search technique used a
generic DHT

● A DHT has many popular implementations, we
review two briefly: CAN and Pastry

● Different implementations have different
tradeoffs and complexity properties, we review
these

31

Content addressable network (CAN)
● CAN became the name of a specific algorithm,

although it is in fact a synonim to DHT
● Logical space to which keys are mapped by a

hash function
– D-dimensional real space [0,1]d

● All nodes are assigned a partition of this space
– At any point in time the set of current nodes cover

the space
● Compare with Chord!

– Logical space is different; partitioning of this space
is implicit (but nevertheless well defined)

32

CAN logical space

33

Routing and node join
● Greedy routing to neighbor that is closest to

destination
– Hop count is O(dN1/d)
– Number of neighbors is O(d)
– If d=O(logN), then roughly same as Chord

● Join
– Create random point in virtual space
– Find the node that is responsible for that point
– Split the block of that node and update neighbors

appropriately

34

Node join in CAN

35

Node departure and recovery
● Failure detection through missing heartbeat
● Neighbors of failed node independently try to

take over the zone of the failed node
● The winning node merges the failed zone if

possible, or simply holds it if not possible
● Background repair mechanism reassigns zones

to prevent fractioning
● Perhaps this is the weakest point of CAN

– Possibility for incosistency, complex repair and
failure handling procedure

36

Optimizations
● Increasing d

– Shorter path length, more fault tolerance (more
paths) but more neighbors

● More realities
– Maintain many virtual spaces (CANs) in parallel
– Replicate stored data on all realities
– Improves path lengths (jumps inside a node) and

fault tolerance (replication, more paths)
● Uniform partitioning: more balanced zone sizes

– When joining, the selected random node replaces
itself with the neighbor with the largest zone

37

Optimizations
● Improved routing taking proximity into account

– When selecting a neighbor, use network latency also
● Overloading zones: more nodes in the same zone

– When joining, zones are not split, only if enough nodes
are in the zone

– Reduces path length (fewer zones)
– Reduces latency (possibility to select neighbor that has

smallest latency)
– Improved fault tolerance due to redundancy

38

Pastry: another DHT
● Applies a sorted ring in ID space like Chord
● Virtual space: same as Chord

– We interpret IDs as sequeces of digits with base 2b

● Applies Finger-like shortcuts to speed up
routing

● The node that is reponsible for a key is the
numerically closest (not the successor)
– Pastry is bidirectional and uses numeric distance

39

Pastry routing
● If destination is among the

leafs, stop
● Otherwise Pastry either

forwards the message to a
node which
– has a longer common

prefix with the
destination or

– has an equally long
prefix but is numerically
closer

● Routing is succesful if no
L/2 consequtive nodes fail
(ring is intact)

40

Pastry maintenance
● Join

– Use routing to find numerically closest node already
in network

– Ask state from all nodes on the route and initialize
own state

● Error correction
– Failed leaf node: contact a leaf node on the side of

the failed node and add appropriate new neighbor
– Failed table entry: contact a live entry with same

prefix as failed entry until new live entry found, if
none found, keep trying with longer prefix table
entries

41

Proximity in Pastry
● All routing table entries are drawn from rather

large sets (unlike with Chord)
– Pastry puts emphasis on optimizing the actual entry

based on proximity
– Entries can be selected based on other criteria as

well (semantic proximity, capacity, etc)
● The shorter the common prefix, the larger the

set of potential entries (exponentially)
● Original Pastry approach for actually

implementing the proximity bias can be
improved (not discussed here)

42

Are Pastry and Chord a different
protocol?

● Chord and Pastry are variations of the same idea
and can be tranformed into each other smoothly

● What is not different
– Basic idea: ring + shortcuts to exponentially

increasing distance
– Leaf set/successor list: Chord also uses r

successors/predecessors
– Chord can also use more fingers to achieve the same

hop count and model a b letter alphabet ID space
– Same lazy repair protocol for leafs/successors

43

Are Pastry and Chord a different
protocol?

● What is different?
– A Chord finger is a unique node, whereas with Pastry

a routing table entry can come from a large set
● Chord could define fingers more loosely, but that

needs a different update protocol for fingers
– Chord routing is unidirectional, Pastry is direction

independent
● Chord could easily be bidirectional too with fingers

into two directions

44

A final note on complexity
● Chord and Pastry have O(logN) storage and

hop count complexity
● CAN have O(dN1/d) hop count complexity and

O(d) storage
● It is possible to have O(1) storage complexity

with O(logN) hop count (Viceroy) or with
O(log2N) hop count (Symphony)
– Sounds good but more complex protocols, less

reliability and logN is small enough: is it worth it?

45

So, how to implement filesharing?
● Get the best of both worlds: hybrid approaches
● Use DHT for rare items, random walk for

popular items
● What about the topology of the overlay

network?
– Unstructured networks are easy to build and

maintain, and robust to churn
– Are DHT-s realy more complicated or expensive or

less robust? Not necessarily
● We overview two hybrid approaches along the

lines above

46

Gnutella: observing the long tail
● Gnutella (latest version with ultrapeers and

dynamic query) is excellent for locating popular
items (reliable, fast)

● Gnutella is not so good at locating rare items
– 41% of queries receive <10 results, 18% none at all
– Queries that return a single result take 73s on

average, and for <10 results, first is 50s on average
– Very often results are not found that actually exist

(eg the 18% failure can be reduced to 6%)
● Lots of room (we knew that) and need (this is

new info) for improvement for rare items

47

Hybrid approach
● Inverted index for popular keywords is

– expensive to compute (many messages to the
responsible node)

– Expensive to use (the distributed join (ie intersection of
matches for keywords in query) is expensive)

● For rare keywords all that is cheap
– We need to identify rare files and rare keywords and

publish those to the DHT
– When a query has no result for some tome (~30s), we

ask the DHT
– Rarity can be determined by seeing a file in a small

result set, and by other heuristics

48

Another kind of hybrid
● Common wisdom

– Structured overlays are more expensive and less
robust to churn and failures

● Is this true?
– Comparison is very difficult: too many factors, not

clear how to be fair
– But there are indications it is NOT necessarily true

● If it is indeed not true, they are actually (much)
better to support “unstructured” search
algorithms, such as flooding and random walks

49

Busting a myth?
● On some real traces maintenance cost of MS

Pastry appears to be better than that of
Gnutella
– Heartbeat messages only to one node: the left

neighbor in ring (as opposed to gnutella)
● Heterogeneity can also be captured

– Super Pastry: similar to Gnutella, but ultrapeers
form a Pastry network

– Hetero Pastry: similar to GIA: routing table entries
are optimized to prefer high capacity nodes, and a
bound on the in-degree can also be set

– Maintenance overhead is still fine here

50

Flooding and random walk in
structured networks

● Exploiting the structure of the overlay,
broadcast can be optimized to have almost no
wasted traffic

● Restricted flooding: a given number of nodes
can be visited effectively in parallel
– Same mechanism for random walk: sequential

instead of parallel traversial
● Compare some algorithms

– using an eDonkey trace
– max 128 node random walk, one hop replication in

all cases (in Pastry, on routing table entries)

51

Experimental results

52

Experimental results

53

Conclusions
● DHTs are an alternative to support search

– They are very efficient
– They support key based lookup but
– They can be adapted to support more complex

queries as well
● Restricted flooding and random walk is still

better for not-so-rare items
● Hybrid approcahes

– Use DHT for rare items only
– Use structured network to support flooding-style

queries instead of random network

54

Some refs
● Papers this presentation used material from

– Miguel Castro, Manuel Costa, and Antony Rowstron. Peer-to-peer overlays: structured, unstructured, or
both?. Technical Report MSR-TR-2004-73, Microsoft Research, Cambridge, UK, 2004.

– Boon Thau Loo, Ryan Huebsch, Ion Stoica, and Joseph M. Hellerstein. The case for a hybrid P2P
search infrastructure. In Proceedings of the 3rd International Workshop on Peer-to-Peer Systems
(IPTPS'04), San Diego, CA, USA, 2004.

– Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword searching. In Middleware 2003,
volume 2672 of Lecture Notes in Computer Science, pages 21–40. Springer-Verlag, 2003.

– Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A scalable content-
addressable network. In Proceedings of the 2001 Conference on Applications, Technologies,
Architectures, and Protocols for Computer Communications (SIGCOMM), pages 161–172, San Diego,
CA, 2001. ACM, ACM Press.

– Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and routing for
large-scale peer-to-peer systems. In Rachid Guerraoui, editor, Middleware 2001, volume 2218 of
Lecture Notes in Computer Science, pages 329–350. Springer-Verlag, 2001.

– Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan. Chord: A scalable
peer-to-peer lookup service for internet applications. In Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications (SIGCOMM),
pages 149–160, San Diego, CA, 2001. ACM, ACM Press.

● http://www.inf.u-szeged.hu/~jelasity/p2p/

http://www.inf.u-szeged.hu/~jelasity/p2p/

