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Outline
● Hash tables and distributed hash tables (DHT): 

the abstraction
● An example implementation: Chord
● Implementing keyword search on a DHT
● Some other other DHTs: Pastry and CAN
● Summary of DHT complexity results
● Hybrid (structured/unstructured) approaches to 

search
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Motivation
● We have seen search does well in unstructured 

networks except when items are rare
● Can we come up with a technique that provides 

efficient search (lookup) for rare items?
– Yes: distributed hash tables (DHT)

● What is the ultimate solution that is robust, 
cheap and works for popular and rare items 
too?
– Hybrid solutions?
– Something not yet invented?

● DHTs are good for other things too
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Hash tables
● Store arbitrary keys 

and satellite data 
(value)

● put(key,value)
● value = get(key)

● Lookup must be fast
● Calculate hash 

function h() on key 
that returns a 
storage cell

● Chained hash table: 
Store key (and 
optional value) there

5

5=h(k5)

4

3=h(k3)=h(k4)

2

1=h(k1)=h(k2)

k5    v5

k4    v4k3    v3

k2    v2k1    v1

Allocated array:
indexed by hash
values Stored entriesStored entries
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Why a hash table?
● Most often the point of a hash table is fast and 

cheap lookup of data indexed by a key
● When used for search, the issue of query 

richness comes up
– In random walk/flooding, a query can be arbitrarily 

complex (even full text search with regular 
expressions).

– If we use only key based lookup, we must be creative 
and work more to allow for non-trivial queries

● Inverse indexing, etc
● The idea is trading some flexibility and simplicity 

off for efficiency and effectivity
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Distributed hash table
● We want hash table functionality in a p2p 

network: lookup of data indexed by keys
● Assume the storage space is a distributed set 

of nodes (not an array)
– Note that in all cases we will have an overlay 

network that connects these nodes in tricky ways
– The exact set of nodes is not known locally and can 

change all the time
– We work with an idealized storage space,

● Hash function maps to this ideal space
● We assign parts of the space to nodes in a 

distributed way dynamically: extra complications
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Distributed hash tables
Abstract “allocated array”
called ID space, indexed by
hash values

Actual nodes in the
network (dynamic) Stored entries

consistent hasing of keys to nodes
typically two step, as shown above

7
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Distributed has tables:
main functions

● Key-hash ↔ node mapping
– Assign a unique live node to a key
– Find this node in the overlay network quickly and 

cheaply (routing)
● Maintenance, optimizations

– Implement DHT API  on top of routing
– Load balancing: maybe even change the key-hash 

↔node mapping on the fly
– Replicate entries on more nodes to increase 

robustness
– etc
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Chord
● Most cited DHT implementation (3000+ 

citations to date!!!)
● Advantages

– Simple
– Good storage and message complexity

● Consistent hashing based on an ordered ring 
overlay
– This is why it is “structured”
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Hashing in the Chord ring
● Identifier circle

– 10 nodes
– 5 keys

● Both keys and 
nodes are hashed to 
160 bit IDs (SHA-1)

● Then keys are 
assigned to nodes 
using consistent 
hashing
– Successor in ID 

space
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Chord hashing properties
● Consistent hashing

– randomized
● All nodes receive roughly equal share of load

– Local
● Adding or removing a node involves an O(1/N) 

fraction of the keys getting new locations
● Actual lookup

– Chord needs to know only O(log N) nodes in 
addition to successor and predecessor to achive 
O(log N) message complexity for lookup
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A primitive lookup algorithm

// ask node n to find the successor of id
n.find_successor(id)
  if (id  ∈ (n, successor])
    return successor;
  else
    // forward the query
    // around the circle
    return successor.find_successor(id);
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A scalable lookup algorithm
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A scalable lookup algorithm

// ask node n to find the successor of id
n.find_successor(id)
  n' = find_predecessor(id);
  return n'.successor;

// ask node n to find the predecessor of id
n.find_predecessor(id)
  n' = n;
  while (id  ∉ (n', n'.successor])
    n' = n'.closest_preceeding_finger(id);
  return n'

● Jump to the closest 
preceeding finger

● O(logN) jumps
● O(logN) neighbors 

stored at each node
● This formulation 

assumes one node 
coordinates the 
lookup (not 
recursive) but could 
be
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Join: an expensive approach
● A new node has to

– Fill its own successor, predecessor and fingers
– Notify other nodes for which it can be a successor, 

predecessor of finger
● With several optimizations this can be done on 

O(logN) time
● But the resulting protocol is complex
● Can be done simpler, using a relaxed and 

simple stabilization protocol, used also for error 
correction
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Join: a relaxed approach
● If the ring is correct, then 

routing is correct, fingers are 
needed for the speed only 

● Stabilization
– Each node periodically runs the 

stabilization rutine
– Each node refreshes all fingers 

by periodically calling 
find_successor(n+2i-1) for a 
random i

– Periodic cost is O(logN) per node 
due to finger refresh

n.stabilize()
  x = sucessor.predecessor;
  if (x ∈ (n, successor) )

successor = x;
  successor.notify(n);

n.join(n')
  predecessor = nil;
  sucessor = 
          n'.find_successor(n);
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Join: a relaxed approach
● Node join: find successor and then stabilize

– Ring is immediately joined: routing works
– Routing also fast enough if not too many nodes join 

concurrently, but eventually fingers will be ok too
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Failure and replication
● Failed nodes are handled by

– Replication: instead of one successor, we keep r 
successors

● More robust to node failure (we can find our new 
successor if the old one failed)

– Alternate paths while routing
● If a finger does not respond, take the previous finger, 

or the replicas, if close enough
● At the DHT level, we can replicate keys on the r 

successor nodes
– The stored data becomes equally more robust
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Virtual nodes
– A physical node 

acts as if it was 
many nodes

● The Chord network 
appears to be 
larger

● One phisical node 
gets a much more 
balanced number 
of keys

● Maintenance cost 
grows

● Path length does 
not grow 
significantly
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Path length in simulations
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Conclusions
● The DHT abstraction can be implemented in a 

fairly simple and efficient way
● All implementations are based on a distributed 

datastructure, a so called “structured overlay”
– Chord used an ordered ring, with fingers (shortcuts)

● Some remaining issues to consider
– Can more complex and more flexible applications be 

implemented such as keyword search (yes)
– Can the storage or message complexity improved (yes)
– So, what is the best way to implement a file sharing 

system?
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Keyword search in DHTs
● DHTs support only key lookup by default
● We need to perform complex queries as in 

unstructured networks
● We need to be creative: here we discuss an 

inverted index-based approach
– Document identifiers are stored in a DHT with all 

contained keywords as keys
– All keywords are looked up and the intersection of 

matches is calculated
– A few techniques to optimize the cost of all this
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Inverted index approach

● Inverted index usual 
in search engines
– For all keywords 

collect the documents 
that contain that 
keyword

– Create intersection, 
union, etc, base on 
keyword based query

● Do that P2P style
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Distributing the inverted indices

Mainly centralized services
cheap update, expensive lookup

Better if update is rare but
communication is expensive
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DHT for storing documents sets
● A DHT is used to map 

keywords to nodes
– A node is assigned a set of 

keywords, and stores sets 
of pointers to documents 
that contain the given 
keyword

● The retreival procedure 
needs to AND sets
– Naive procedure shown

● Set A on server sA 
contains documents that 
have keyword kA

Request is “kA & kB”
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Optimizations: Bloom filters
● Bloom filter of A is sent to sB (2)

● sA removes false positives (“6” 
in this example)

● It saves bandwidth if set is large 
enough
– We use filters for more than 

300 elements only
● Smaller set should be visited 

first (natural thing)
● Works for more keywords too

– All servers need to see the 
final result to remove false 
positives
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Optimizations: Caches
● Bloom filters or unencoded keyword match sets 

can be cached
– Some measurements indicate there are very 

popular keywords (power law distr) so hit rate can 
be good

● Utilization of caches
– A server checks if it has cached info on a next 

keyword to be intersected
– If yes, performs intersection locally, skips the 

corresponing server
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Optimizations: virtual nodes
● Same idea as in Chord
● Assign virtual nodes proportional to capacity

– Number of keywords proportional to capacity
– Variance due to random hashing is reduced (as in 

Chord)
● Load balancing still a problem

– Keyword popularity is not equal
● Number of keywords is not a good measure, 

popularity needs to be considered too
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Experiments
● Network types

– All backbone, all 
modem, and gnutella 
trace

● Search trace: 
IRCache log file

● Parameters
– Bloom filter threshold: 

300, Bloom filter size: 
18/24 with cache 
on/off
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Other DHT designs
● A DHT is an abstraction

– Eg previous keyword search technique used a 
generic DHT

● A DHT has many popular implementations, we 
review two briefly: CAN and Pastry

● Different implementations have different 
tradeoffs and complexity properties, we review 
these
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Content addressable network (CAN)
● CAN became the name of a specific algorithm, 

although it is in fact a synonim to DHT
● Logical space to which keys are mapped by a 

hash function
– D-dimensional real space [0,1]d

● All nodes are assigned a partition of this space
– At any point in time the set of current nodes cover 

the space
● Compare with Chord!

– Logical space is different; partitioning of this space 
is implicit (but nevertheless well defined)
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CAN logical space
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Routing and node join
● Greedy routing to neighbor that is closest to 

destination
– Hop count is O(dN1/d)
– Number of neighbors is O(d)
– If d=O(logN), then roughly same as Chord

● Join
– Create random point in virtual space
– Find the node that is responsible for that point
– Split the block of that node and update neighbors 

appropriately
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Node join in CAN
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Node departure and recovery
● Failure detection through missing heartbeat
● Neighbors of failed node independently try to 

take over the zone of the failed node
● The winning node merges the failed zone if 

possible, or simply holds it if not possible
● Background repair mechanism reassigns zones 

to prevent fractioning
● Perhaps this is the weakest point of CAN

– Possibility for incosistency, complex repair and 
failure handling procedure
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Optimizations
● Increasing d

– Shorter path length, more fault tolerance (more 
paths) but more neighbors

● More realities
– Maintain many virtual spaces (CANs) in parallel
– Replicate stored data on all realities
– Improves path lengths (jumps inside a node) and 

fault tolerance (replication, more paths)
● Uniform partitioning: more balanced zone sizes

– When joining, the selected random node replaces 
itself with the neighbor with the largest zone
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Optimizations
● Improved routing taking proximity into account

– When selecting a neighbor, use network latency also
● Overloading zones: more nodes in the same zone

– When joining, zones are not split, only if enough nodes 
are in the zone

– Reduces path length (fewer zones)
– Reduces latency (possibility to select neighbor that has 

smallest latency)
– Improved fault tolerance due to redundancy
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Pastry: another DHT
● Applies a sorted ring in ID space like Chord
● Virtual space: same as Chord

– We interpret IDs as sequeces of digits with base 2b

● Applies Finger-like shortcuts to speed up 
routing

● The node that is reponsible for a key is the 
numerically closest (not the successor)
– Pastry is bidirectional and uses numeric distance
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Pastry routing
● If destination is among the 

leafs, stop
● Otherwise Pastry either 

forwards the message to a 
node which
– has a longer common 

prefix with the 
destination or

– has an equally long 
prefix but is numerically 
closer

● Routing is succesful if no 
L/2 consequtive nodes fail 
(ring is intact)
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Pastry maintenance
● Join

– Use routing to find numerically closest node already 
in network

– Ask state from all nodes on the route and initialize 
own state

● Error correction
– Failed leaf node: contact a leaf node on the side of 

the failed node and add appropriate new neighbor
– Failed table entry: contact a live entry with same 

prefix as failed entry until new live entry found, if 
none found, keep trying with longer prefix table 
entries
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Proximity in Pastry
● All routing table entries are drawn from rather 

large sets (unlike with Chord)
– Pastry puts emphasis on optimizing the actual entry 

based on proximity
– Entries can be selected based on other criteria as 

well (semantic proximity, capacity, etc)
● The shorter the common prefix, the larger the 

set of potential entries (exponentially)
● Original Pastry approach for actually 

implementing the proximity bias can be 
improved (not discussed here)
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Are Pastry and Chord a different 
protocol?

● Chord and Pastry are variations of the same idea 
and can be tranformed into each other smoothly

● What is not different
– Basic idea: ring + shortcuts to exponentially 

increasing distance
– Leaf set/successor list: Chord also uses r 

successors/predecessors
– Chord can also use more fingers to achieve the same 

hop count and model a b letter alphabet ID space
– Same lazy repair protocol for leafs/successors
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Are Pastry and Chord a different 
protocol?

● What is different?
– A Chord finger is a unique node, whereas with Pastry 

a routing table entry can come from a large set
● Chord could define fingers more loosely, but that 

needs a different update protocol for fingers
– Chord routing is unidirectional, Pastry is direction 

independent
● Chord could easily be bidirectional too with fingers 

into two directions
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A final note on complexity
● Chord and Pastry have O(logN) storage and 

hop count complexity
● CAN have O(dN1/d) hop count complexity and 

O(d) storage
● It is possible to have O(1) storage complexity 

with O(logN) hop count (Viceroy) or with 
O(log2N) hop count (Symphony)
– Sounds good but more complex protocols, less 

reliability and logN is small enough: is it worth it?
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So, how to implement filesharing?
● Get the best of both worlds: hybrid approaches
● Use DHT for rare items, random walk for 

popular items
● What about the topology of the overlay 

network?
– Unstructured networks are easy to build and 

maintain, and robust to churn
– Are DHT-s realy more complicated or expensive or 

less robust? Not necessarily
● We overview two hybrid approaches along the 

lines above
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Gnutella: observing the long tail
● Gnutella (latest version with ultrapeers and 

dynamic query) is excellent for locating popular 
items (reliable, fast)

● Gnutella is not so good at locating rare items
– 41% of queries receive <10 results, 18% none at all
– Queries that return a single result take 73s on 

average, and for <10 results, first is 50s on average
– Very often results are not found that actually exist 

(eg the 18% failure can be reduced to 6%)
● Lots of room (we knew that) and need (this is 

new info) for improvement for rare items
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Hybrid approach
● Inverted index for popular keywords is

– expensive to compute (many messages to the 
responsible node)

– Expensive to use (the distributed join (ie intersection of 
matches for keywords in query) is expensive)

● For rare keywords all that is cheap
– We need to identify rare files and rare keywords and 

publish those to the DHT
– When a query has no result for some tome (~30s), we 

ask the DHT
– Rarity can be determined by seeing a file in a small 

result set, and by other heuristics
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Another kind of hybrid
● Common wisdom

– Structured overlays are more expensive and less 
robust to churn and failures

● Is this true?
– Comparison is very difficult: too many factors, not 

clear how to be fair
– But there are indications it is NOT necessarily true

● If it is indeed not true, they are actually (much) 
better to support “unstructured” search 
algorithms, such as flooding and random walks 
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Busting a myth?
● On some real traces maintenance cost of MS 

Pastry appears to be better than that of 
Gnutella
– Heartbeat messages only to one node: the left 

neighbor in ring (as opposed to gnutella)
● Heterogeneity can also be captured

– Super Pastry: similar to Gnutella, but ultrapeers 
form a Pastry network

– Hetero Pastry: similar to GIA: routing table entries 
are optimized to prefer high capacity nodes, and  a 
bound on the in-degree can also be set

– Maintenance overhead is still fine here
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Flooding and random walk in 
structured networks

● Exploiting the structure of the overlay, 
broadcast can be optimized to have almost no 
wasted traffic

● Restricted flooding: a given number of nodes 
can be visited effectively in parallel
– Same mechanism for random walk: sequential 

instead of parallel traversial
● Compare some algorithms

– using an eDonkey trace
– max 128 node random walk, one hop replication in 

all cases (in Pastry, on routing table entries)
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Experimental results
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Experimental results
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Conclusions
● DHTs are an alternative to support search

– They are very efficient
– They support key based lookup but
– They can be adapted to support more complex 

queries as well
● Restricted flooding and random walk is still 

better for not-so-rare items
● Hybrid approcahes

– Use DHT for rare items only
– Use structured network to support flooding-style 

queries instead of random network
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