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Outline

* Emergence of decentralized networks

e The Gnutella network: how it worked and
looked like

e Search in unstructured networks

- Random walk search in power law networks
- Random walk search in random networks

- Replication strategies
- GIlA: a prominent algorithm



Central index

Index Is stored on central servers: search is
centralized

Download is P2P

For example, Napster

- Works well, but
— Not scalable

* Major investments needed if networks grows
* Eg Google has 100,000+ servers already

- Not robust to attacks (legal and malicious)
Incentive to go decentralized



First attempt to go decentralized:
Gnutella

Nullsoft (Justin Frankel)
First client is spread via gossip...

- AOL shuts down Nullsoft servers the day after the
release

Initially no attempt to control overlay topology
- Emergent complex overlay
Naive approach to search: flooding

All communication (queries) are via flooding too
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How Gnutella works?

* Gnutella protocol: flooding of queries
- Ping, pong

* peer discovery at join and also continuously
- Query, query hit:

* Search hits are propagated back on the path of the
search query

e Join procedure

- Find any member
- Send ping message and collect pong messages



What is the Gnutella overlay looked
like?

* Measurements by Ripeanu et al.

* Distributed Gnutella crawler collecting
snapshots of size in the order of 50,000 for a

year

* They discover complex network structure and
highly dynamical composition: churn

- 40% spend less than 4 hours in the network
- 25% spend more than 24 hours



Growth of the network
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Degree distribution 2000 November
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Underlying topology

* \We have seen the that Internet is also power
law

* |s there correlation between the overlay and the
Internet?

* Ripeanu et al find that there is none




Search: flooding

* The default search model is flooding

- Query is sent with a TTL, typically TTL=7

- Query hits are propagated back on the path of the
query

e Serious problems

- Extremely wasteful with bandwidth

* A large (linear) part of the network is covered
irrespective of hits found

* Enormous number of redundant messages

* All users do this in parallel: local load grows linearly

with size -



Questions

* Does the scale-free topology has an effect on
search protocols

- Can we exploit it, or is it a disadvantage
- What is the optimal search protocol for it

* In general, what search protocols can we come
up with in an unstructured network

* \WWhat other techniques can we apply

- Controlling topology to allow for better search
— Controlling placement of objects (replication)
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Search In scale-free networks

e Basic observations

- In certain models if degree distribution is p, then the

distribution of the degree of a neighbor is
proportional to kp, (very important observation)

- Nodes can easily store index of objects stored by
their neighbors

* So in scale-free: high degree nodes are easy to
find by (biased) random walk

* And high degree nodes can store the index
about a large portion of the network
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* Hint: a bit like the star topology



Search in scale-free networks

* Proposed algorithm variants
- Random walk (RW)

* avoiding the visit of last visited node
- Degree-biased random walk (DS)

* Select highest degree node, that has not been visited

* This first climbs to highest degree node, then climbs
down on the degree sequence

* Provably optimal coverage
* Examined networks

- Scale-free network with y=2.1, abrupt cutoff
- ER graphs
- Different sizes, but N=10,000 if not specified
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Climbing up the degree sequence
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Speed of coverage
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Half graph cover time

Scale free graph
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Visited node degrees
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Conclusions

* Advantages

- Takes advantage of scale-free distribution and
speeds up search relative to ER graphs

- Search time complexity is sublinear
* Disadvantages

— Difficulty with rare objects (but this is a common
problem of unstructured search)

- Places very high load on high degree nodes

* Keeping this in mind, let's look at other
topologies and see if they are better
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More search algorithms

* Expanding ring
- Flooding with increasing TTL until result is found
- The point is to avoid a fixed TTL

o K-walker

- K independent random walks, to avoid message
duplication in flooding and expanded ring

* With checking: in every 4 steps all walks check back
if they need to go on or not

* With state keeping: to implement self-avoiding walks
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Evaluation of search algorithms

e So far simplified model

- ignored query and replication distribution, focused
on coverage

* Three main components

- Overlay network, Query modeling, Replication
strategies

* Overlay networks
- ER graph, avg. degree 4, N=10000
- Power law (scale-free) graph, N=10000

- Gnutella snapshot 2000 Oct, N=4000
- 2-dim 100x100 grid
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Problems with flooding
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Evaluation of search algorithms

* Query distributions

- q;: the proportion of queries for object i

- Uniform: all objects receive the same amount of
queries

- Power law: a few objects are very popular, many
objects are not so much (heavy tail)

* Replication plays a role too

- Spread copies of objects to peers: more popular
objects can be found easier

- File-sharing networks show an emergent replication
behavior >



Evaluation of search algorithms

* Object replication
- Replication of object i typically proportional to g,

- Uniform: all objects receive the same amount of
copies

- Proportional: proportional to g,
- Square-root: proportional to square-root g,

* Can be proven to be optimal in certain cases (see
later)

* Meaningful combinations of query/replication

— uniform/uniform, power-law/proportional, power-
law/square-root
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Some results

distribution model 50 7o (querles for hot objects) 100 % (all querles)
query /replication metrics flood | ring | check | state [| Hlood | ring | check | state
Fhops 3.40 [ 5.77 [ 10.30 [ 7.00 J[ 340 [ 5.77 [ 10.30 | 7.00
Uniform / #msgs per node || 2.509 [ 0.062 | 0.031 | 0.024 [ 2.509 [ 0.061 | 0.031 | 0.024
Uniform F#nodes visited V220 250 14Y 1b3 Y220 200 1449 1b5
peak #Fmsgs 0,37 0.26 0.22 0. 1Y b.37 0.26 0.22 U. 1Y
#hops 1.60 | 2.08 1.72 1.64 251 1 403 | 912 ] 6.66
Zipt-like / #msgs per node || 1.265 | 0.0U4 | 0.010 [ 0,010 I L.sbs | 0U.055 | OUZ7 | U.UZZ
Proportional F#nodes visited GHlo 36 33 a7 T84T | 396 132 150
peak #1msgs 4,01 0.02 U.11 0.10 0,20 0.20 .17 U.14
#hops 223 | 319 | 2.82 2.51 270 [ 424 [ 5.74 | 4.43
Zipf-like / #msgs per node || 2.154 | 0.0I10 T 0.0I4 [ 0.0I3 [ 2.308 | 0.031 [ 0.021 | 0.01I8
Square root Fnodes visited siral 2 ol by U8 264 s34 10Y
peak #Fmsgs 0. 58 0.04 0.16 0.16 b.14 0. 12 0.17 0.16
distribution model 50 7 (queries for hot objects) 100 % (all querles)
query /replication metrics flood | ring | check | state || flood | ring [ check | state
HTops 237 [ 350 [ 895 [ 847 [ 237 [ 3.50 [ 8.95 | 8.47 |
Uniform / #msgs per node || 3.331 | 1.325 | 0.030 [ 0,029 [ 3.331 | 1.325 | 0.030 | 0.029
Uniform #nodes visited aY3n | 4874 147 158 av30 | 4574 147 158
peak Zmsgs IO T I327 1 123 [ 11,7 [ 5104 | 1327 | 123 | 11.7
#hops .74 | 2.36 1.81 1.82 200 | 293 | 985 | 8.98
Zipt-like _,f #msgs per node || 2,597 | U.0Y5 | 0011 [ 0011 || 2.800 | 0,961 [ U.051 | 0,029
Proportional F#nodes visited bubY | 2432 435 4Y 1925 | abal 156 145
peak #Fmsgs 412.7 | 58.3 4.9 5.1 464.3 | 98.9 12.7 11.7
#hops 207 | 294 | 2.65 2.49 221 | 317 | 5.37 [ 4.9
Zipt-like / #msgs per node [[ 3.079 [ 0.967 [ 0.014 [ 0.014 [ 3.199 | 1.115 ] 0.021 | 0.020
Square root #nodes visited 8434 | 4750 b2 bY sbird | 4200 a7 103
peak F#Fmsgs 496.0 | Yo7 b.J b.5 4996 | L1L.7 5.9 5.4

ER
graph

power-law
graph
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Notes for the experiments

e Parameters

- 100 objects, avg replication ratio 1%

- ER graph: TTL for flooding is 8, “check” and “state”
are 32-walkers, y=1.2 for query distribution

- Power-law graph: same, but TTL=5
* Algorithms

- Check: 32-walker with checking for termination
- State: same as 32-walker, but also self-avoiding
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Conclusions

* Fixed TTL must be avoided, be adaptive
instead

* Avoid exponential spreading of queries

- Note that this assumes that each object is
replicated enough, otherwise search takes too long

* Message duplication must be avoided

- ER random graph is best for this
- S0 now: is scale-free good or bad?

e Square-root replication is optimal

- How about dynamic methods for achieving that? 2



Replication strategies

* Average search size

- The uniform and proportional strategies result in the
same avg search size (avg number of random
probes to find an object)

- Avg search sizes for individual objects differ with
the proportional strategy

- Square-root can reduce avg search size
e Utilization ratio

- Avqg utilization ratio is 1 if we run each search until
success

- Variance is quite different with different strategies »



Achieving good replication

Owner replication

- Results in proportional replication
Path replication

- Results in square root replication
Random replication

- Same as path replication, only using the given
number of random nodes, not the path

Removal strategy

— Must be random or based on fixed time

30



replication ratio (normalized)
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Performance of different replications

Dynamic simulation: Hop Distribution (5000s ~ 9000s)
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GIA: motivation

* Unstructured networks are good

- Fault tolerant, robust
- Support arbitrary keyword queries

* Flooding is not good

* Random walks are better but not perfect

- They are too blind without some help, such as
biased walk (see scale-free nets)

- Load balancing can be a problem esp in
heterogeneous networks under high query load
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GIA motivation

* Major problem seems to be poor load balancing

* So let us now make they query “throughput” of
the system the main evaluation criterion

- Load balancing is the major thing to optimize here
* \We know networks are heterogeneous

* This means we must make sure nodes process
gueries proportional to their bandwidth

- Topology: Let's adapt the topology so that all nodes
have the right amount of neighbors

- Flow control: Let's cleverly limit the number of
forwarded queries to neighbors
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Components

* One hop replication
- Pointers to objects are replicated on neighbors
* Topology adaptation

- Put most nodes within short reach of high capacity
nodes

* Flow control
e Search protocol

- Random walk biased towards high capacity (not high
degree) nodes

- Note that without topology adaptation, capacity and
degree do not necessarily correlate 35



Topology adaptation

* All nodes keep trying to improve their neighbor
set until possible (satisfaction function)

— Candidates in “host cache’

- Using candidates, we continuously want to

* increase the capacity of our neighbors
* decrease the number of neighbors of our neighbors

* Topology is undirected: handshake mechanism

- We need to ask nodes to accept us as a neighbor
- They might need to drop neighbors
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Flow control

* Nodes assign tokens to their neighbors
proportional to their capacity

* More tokens are assigned to higher capacity
nodes (incentive to be honest when reporting
capacity)

e Search protocol

- Picks highest capacity neighbor to forward query,
for which there is a token available
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Sucoess rate

Performance measures

* Main focus is system load, and metrics as a

function of that
* Behavior is captured by “collapse point”:

success rate passes 90%
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Collapse Point (qps)

Results: collapse points
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Results: hop count before collapse
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Factor analysis of components

* 10,000 nodes, 0.1%
replication

* Only all components
together achieve the
desired effect

Algorithm Collapse Point | Hop-count
GIA 7 15.0
GIA - OHR 0.004 8570
GIA - BIAS 6 24.0
GIA — TADAPT 0.2 133.7
GIA - FLWCTL 2 15.1
Algorithm Collapse Pomt | Hop-count
RWRT 0.0005 978
RWRT + OHR 0.005 134
RWRT + BIAS 0.0015 997
RWRT + TADAPT 0.001 1129
RWRT + FLWCTL 0.0006 957
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Summary
* Major components are

- Search algorithm

- Overlay topology

- Replication strategies (pointer and object)
- Flow control

* All of these can (and should) be adapted
cleverly!

* At least topology and replication can be
emergent as well (that is, influenced by
aggregate user behavior)

* Problem of poor performance on rare files still .,
exists
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