Unstructured Networks:
Search

Mark Jelasity

Outline

* Emergence of decentralized networks

e The Gnutella network: how it worked and
looked like

e Search in unstructured networks

- Random walk search in power law networks
- Random walk search in random networks

- Replication strategies
- GIlA: a prominent algorithm

Central index

Index Is stored on central servers: search is
centralized

Download is P2P

For example, Napster

- Works well, but
— Not scalable

* Major investments needed if networks grows
* Eg Google has 100,000+ servers already

- Not robust to attacks (legal and malicious)
Incentive to go decentralized

First attempt to go decentralized:
Gnutella

Nullsoft (Justin Frankel)
First client is spread via gossip...

- AOL shuts down Nullsoft servers the day after the
release

Initially no attempt to control overlay topology
- Emergent complex overlay
Naive approach to search: flooding

All communication (queries) are via flooding too

4

How Gnutella works?

* Gnutella protocol: flooding of queries
- Ping, pong

* peer discovery at join and also continuously
- Query, query hit:

* Search hits are propagated back on the path of the
search query

e Join procedure

- Find any member
- Send ping message and collect pong messages

What is the Gnutella overlay looked
like?

* Measurements by Ripeanu et al.

* Distributed Gnutella crawler collecting
snapshots of size in the order of 50,000 for a

year

* They discover complex network structure and
highly dynamical composition: churn

- 40% spend less than 4 hours in the network
- 25% spend more than 24 hours

Growth of the network

91 Aep
4RGN

RN
AN
61 JeW
91 el
€1 el
60 JEW
S0 Jely
10 4Bl
LT A4

8C AON °
ST AON
¢ AON
0C AON

o o o o o
LN Al ™M o~ —_

(spuesnoyi) 3usuodwiod >Jdomiau 1sasae| Yl Ul SIPON|

2001

2000

Path lengths

50

40

20

10

Reachable node pairs (percent)

3 4 5 6 7 8 9
Node-to-node shortest path (hops)

Degree distribution 2000 November

10.000
1.000
)
S
0 100 o .
2 ¥ ¥ 1
n +
Q
S
o
e
10
Shle X0 .X []
> Ee (a2 551 4LV |
& IR TICE e e
| - DR -
| 10 100

Links (log scale)

Degree distribution 2001 May

10,000
1,000 § i3 ii“ .
0
¥
& 100 —
0
o
O
Z
10 =’ ¢
- * AN o
X ojime MEENE A E w0e
S Nke ¥ DI @ o
BEOIECED =c) AL 204

Links (log scale)

Underlying topology

* \We have seen the that Internet is also power
law

* |s there correlation between the overlay and the
Internet?

* Ripeanu et al find that there is none

Search: flooding

* The default search model is flooding

- Query is sent with a TTL, typically TTL=7

- Query hits are propagated back on the path of the
query

e Serious problems

- Extremely wasteful with bandwidth

* A large (linear) part of the network is covered
irrespective of hits found

* Enormous number of redundant messages

* All users do this in parallel: local load grows linearly

with size -

Questions

* Does the scale-free topology has an effect on
search protocols

- Can we exploit it, or is it a disadvantage
- What is the optimal search protocol for it

* In general, what search protocols can we come
up with in an unstructured network

* \WWhat other techniques can we apply

- Controlling topology to allow for better search
— Controlling placement of objects (replication)

13

Search In scale-free networks

e Basic observations

- In certain models if degree distribution is p, then the

distribution of the degree of a neighbor is
proportional to kp, (very important observation)

- Nodes can easily store index of objects stored by
their neighbors

* So in scale-free: high degree nodes are easy to
find by (biased) random walk

* And high degree nodes can store the index
about a large portion of the network

14

* Hint: a bit like the star topology

Search in scale-free networks

* Proposed algorithm variants
- Random walk (RW)

* avoiding the visit of last visited node
- Degree-biased random walk (DS)

* Select highest degree node, that has not been visited

* This first climbs to highest degree node, then climbs
down on the degree sequence

* Provably optimal coverage
* Examined networks

- Scale-free network with y=2.1, abrupt cutoff
- ER graphs
- Different sizes, but N=10,000 if not specified

15

Climbing up the degree sequence

—_
o

(degree of neighbor — 1)/(degree of node)

0 20 40 60 80 100
degree of node

16

Speed of coverage

puUNo} S8pOoU SAIJE|NWND

17

50 80 70 80 90 100
step

40

20

10

Half graph cover time

Scale free graph

graph size

10’ . , .
(b)
8 A
Ewp ,o""o
= » % ;
: g-"
A A '
E? 1 -~ o - <> I'--‘l"-'ll'l
2 9 EEgl
I:FEI AW
B DS
10° . . i .
10 10° 10° 10’ 10

ER graph

11—
F| © const. av. deg. = 3.4
(|0 _incr. av. deg.

104;

£ |
Q |
O |
-

o |
o

0 40°L
Q 10 i
=
o
0

- L
GD

E10%
o

QD L

§ L

10'F

o
0

10 | R R | R | . T | sl L

10 10° 10° 10* 10° 10 10

number of nodes in graph

Visited node degrees

—— power—law

Poisson

19

...........

VvV

s e AR
ki -_FFF_WI!-.-EH.-C‘:I‘._ Pdawm
1 __..____ _...‘“._m______:.___:._____.____...__ I
_..:___.._r_r_.____________..,..._-. ;
o _J.J_._._____-.______:_.._.._.___:________:

i 4
[_-____._...:._

10°F

o'k
10°

apou juaiind F1mm..m0t

10°

step

Conclusions

* Advantages

- Takes advantage of scale-free distribution and
speeds up search relative to ER graphs

- Search time complexity is sublinear
* Disadvantages

— Difficulty with rare objects (but this is a common
problem of unstructured search)

- Places very high load on high degree nodes

* Keeping this in mind, let's look at other
topologies and see if they are better

20

More search algorithms

* Expanding ring
- Flooding with increasing TTL until result is found
- The point is to avoid a fixed TTL

o K-walker

- K independent random walks, to avoid message
duplication in flooding and expanded ring

* With checking: in every 4 steps all walks check back
if they need to go on or not

* With state keeping: to implement self-avoiding walks

21

Evaluation of search algorithms

e So far simplified model

- ignored query and replication distribution, focused
on coverage

* Three main components

- Overlay network, Query modeling, Replication
strategies

* Overlay networks
- ER graph, avg. degree 4, N=10000
- Power law (scale-free) graph, N=10000

- Gnutella snapshot 2000 Oct, N=4000
- 2-dim 100x100 grid

22

Prisuccess) %

dupplicate msgs (%)

Problems with flooding

Flooding: Pr(success) vs TTL Flooding: avg #msgs per node vs TTL
T T T T T T 5 T T T T T
l Random —+—
100 F oo EER—— — e Y S— - T s 3
A 4 L Gnutella % .
& / @ Grid 0O
80 | p i - =
5 o
+ Random —+ = 3t
- _.-'. 1] i
80 r by Gnutella %] > * /?}h
- / Grid -0 & 2 r ' ,a”z
40 | 1 & e
; o p
A s 1T
20 7 - .] . Iy
E /f O . et - I ﬁ
-+, - | 0 st e - =] =) a
UI I;I I;I 1 1 1 1 T_ 1 1 1 1 1 1
2 3 4 5 6 7 8 9 2 3 4 5 6 7 3
i TTI i ' .
Flooding: % duplicate msgs vs TTL Flooding: #nodes visited vs TTL
QD T T T T T T ’1DDDG T T T T T T
BD i s W rvarrmnznares e ETP I ;T ’-z-"’xl
o 8000
70 | B 1 7
60 Cmee Bl 8 6000
50 t I yd i} @
- +" - oo *- * *
= / - o 4000 et
- D-"- 4 8 Pl A Random —+—
30 b * . E=s ’ S
i / 2000 r S Gnutella -
20 + + Random —+ . * ¥ Lrd o
10 . Gnutella -# 1 = et ﬁ g g =R
Di T — L 1 Grid L - T L L 1 1 L L
2 3 < 5 5} 7 8 9 2 3 < 5 6 7 8

Evaluation of search algorithms

* Query distributions

- q;: the proportion of queries for object i

- Uniform: all objects receive the same amount of
queries

- Power law: a few objects are very popular, many
objects are not so much (heavy tail)

* Replication plays a role too

- Spread copies of objects to peers: more popular
objects can be found easier

- File-sharing networks show an emergent replication
behavior >

Evaluation of search algorithms

* Object replication
- Replication of object i typically proportional to g,

- Uniform: all objects receive the same amount of
copies

- Proportional: proportional to g,
- Square-root: proportional to square-root g,

* Can be proven to be optimal in certain cases (see
later)

* Meaningful combinations of query/replication

— uniform/uniform, power-law/proportional, power-
law/square-root

25

Some results

distribution model 50 7o (querles for hot objects) 100 % (all querles)
query /replication metrics flood | ring | check | state [| Hlood | ring | check | state
Fhops 3.40 [5.77 [10.30 [7.00 J[340 [5.77 [10.30 | 7.00
Uniform / #msgs per node || 2.509 [0.062 | 0.031 | 0.024 [2.509 [0.061 | 0.031 | 0.024
Uniform F#nodes visited V220 250 14Y 1b3 Y220 200 1449 1b5
peak #Fmsgs 0,37 0.26 0.22 0. 1Y b.37 0.26 0.22 U. 1Y
#hops 1.60 | 2.08 1.72 1.64 251 1 403 | 912] 6.66
Zipt-like / #msgs per node || 1.265 | 0.0U4 | 0.010 [0,010 I L.sbs | 0U.055 | OUZ7 | U.UZZ
Proportional F#nodes visited GHlo 36 33 a7 T84T | 396 132 150
peak #1msgs 4,01 0.02 U.11 0.10 0,20 0.20 .17 U.14
#hops 223 | 319 | 2.82 2.51 270 [424 [5.74 | 4.43
Zipf-like / #msgs per node || 2.154 | 0.0I10 T 0.0I4 [0.0I3 [2.308 | 0.031 [0.021 | 0.01I8
Square root Fnodes visited siral 2 ol by U8 264 s34 10Y
peak #Fmsgs 0. 58 0.04 0.16 0.16 b.14 0. 12 0.17 0.16
distribution model 50 7 (queries for hot objects) 100 % (all querles)
query /replication metrics flood | ring | check | state || flood | ring [check | state
HTops 237 [350 [895 [847 [237 [3.50 [8.95 | 8.47 |
Uniform / #msgs per node || 3.331 | 1.325 | 0.030 [0,029 [3.331 | 1.325 | 0.030 | 0.029
Uniform #nodes visited aY3n | 4874 147 158 av30 | 4574 147 158
peak Zmsgs IO T I327 1 123 [11,7 [5104 | 1327 | 123 | 11.7
#hops .74 | 2.36 1.81 1.82 200 | 293 | 985 | 8.98
Zipt-like _,f #msgs per node || 2,597 | U.0Y5 | 0011 [0011 || 2.800 | 0,961 [U.051 | 0,029
Proportional F#nodes visited bubY | 2432 435 4Y 1925 | abal 156 145
peak #Fmsgs 412.7 | 58.3 4.9 5.1 464.3 | 98.9 12.7 11.7
#hops 207 | 294 | 2.65 2.49 221 | 317 | 5.37 [4.9
Zipt-like / #msgs per node [[3.079 [0.967 [0.014 [0.014 [3.199 | 1.115] 0.021 | 0.020
Square root #nodes visited 8434 | 4750 b2 bY sbird | 4200 a7 103
peak F#Fmsgs 496.0 | Yo7 b.J b.5 4996 | L1L.7 5.9 5.4

ER
graph

power-law
graph

26

Notes for the experiments

e Parameters

- 100 objects, avg replication ratio 1%

- ER graph: TTL for flooding is 8, “check” and “state”
are 32-walkers, y=1.2 for query distribution

- Power-law graph: same, but TTL=5
* Algorithms

- Check: 32-walker with checking for termination
- State: same as 32-walker, but also self-avoiding

27

Conclusions

* Fixed TTL must be avoided, be adaptive
instead

* Avoid exponential spreading of queries

- Note that this assumes that each object is
replicated enough, otherwise search takes too long

* Message duplication must be avoided

- ER random graph is best for this
- S0 now: is scale-free good or bad?

e Square-root replication is optimal

- How about dynamic methods for achieving that? 2

Replication strategies

* Average search size

- The uniform and proportional strategies result in the
same avg search size (avg number of random
probes to find an object)

- Avg search sizes for individual objects differ with
the proportional strategy

- Square-root can reduce avg search size
e Utilization ratio

- Avqg utilization ratio is 1 if we run each search until
success

- Variance is quite different with different strategies »

Achieving good replication

Owner replication

- Results in proportional replication
Path replication

- Results in square root replication
Random replication

- Same as path replication, only using the given
number of random nodes, not the path

Removal strategy

— Must be random or based on fixed time

30

replication ratio (normalized)

0.01 }

0.001

Achieved replication distribution

Replication Distribution: Path Replication

01

+ real result +
square rool X
: 3
X N
o
£
0
£
g 001¢
E L
-
o
8
[+
y
e — 0.0M

10 100
object rank

Replication Distribution: Random Replication

0.1

4'_ 'real fesﬁlt | '+' -
+ square root X
Ty
Ao j;'l'_l_
5
s
'!.!'-.
| ! L L Lo
10 100

object rank

31

Performance of different replications

Dynamic simulation: Hop Distribution (5000s ~ 9000s)

B
Q _
o
Q
-
= _
=
w
Qo i
O
=
O
20 | Owner Replication ——]
0 | | | Iﬁandom1RﬁpHcgﬂon K

1 2 4 8 16 32 64 128 256
#hops 32

GIA: motivation

* Unstructured networks are good

- Fault tolerant, robust
- Support arbitrary keyword queries

* Flooding is not good

* Random walks are better but not perfect

- They are too blind without some help, such as
biased walk (see scale-free nets)

- Load balancing can be a problem esp in
heterogeneous networks under high query load

33

GIA motivation

* Major problem seems to be poor load balancing

* So let us now make they query “throughput” of
the system the main evaluation criterion

- Load balancing is the major thing to optimize here
* \We know networks are heterogeneous

* This means we must make sure nodes process
gueries proportional to their bandwidth

- Topology: Let's adapt the topology so that all nodes
have the right amount of neighbors

- Flow control: Let's cleverly limit the number of
forwarded queries to neighbors

34

Components

* One hop replication
- Pointers to objects are replicated on neighbors
* Topology adaptation

- Put most nodes within short reach of high capacity
nodes

* Flow control
e Search protocol

- Random walk biased towards high capacity (not high
degree) nodes

- Note that without topology adaptation, capacity and
degree do not necessarily correlate 35

Topology adaptation

* All nodes keep trying to improve their neighbor
set until possible (satisfaction function)

— Candidates in “host cache’

- Using candidates, we continuously want to

* increase the capacity of our neighbors
* decrease the number of neighbors of our neighbors

* Topology is undirected: handshake mechanism

- We need to ask nodes to accept us as a neighbor
- They might need to drop neighbors

36

Flow control

* Nodes assign tokens to their neighbors
proportional to their capacity

* More tokens are assigned to higher capacity
nodes (incentive to be honest when reporting
capacity)

e Search protocol

- Picks highest capacity neighbor to forward query,
for which there is a token available

37

Sucoess rate

Performance measures

* Main focus is system load, and metrics as a

function of that
* Behavior is captured by “collapse point”:

success rate passes 90%

1 (I
vy
DE i II; I|
06 | \
ll".. \
04 Vo
2 sy alcaion ——x
: 0.1% replication %~
001 01 10 100 1000 1000

QUeries per second

0 1§
3 16

Hop Count (for sucocessTful

P - T TR SR
LI L

0 5% replication —

o)1 % rRDICALON =bes]
Wt '

12}
10}
E.

(JUeries per second

0t 0t 10 100 1000 1000

2= =V

00t

0 5t replcatioll ——
0.1% repl uati?*n i}

10 100 100.0 1000
Queries per secand

Collapse Point (qps)

Results: collapse points

GIA; N=10,000 —&—
RWRT: N=10,000 —--¢---
FLOOD: N=10,000 @
SUPER: N=10.000 -
GIA; N=5,000 ---%--- ﬂ__,_,%/’
IQ"M"I’\U'!I'_\).T1 N:51000 . _&__%__.___:7:.----'-'-"'"""__;_"_
FLOOD:; N:5,Q%w*t’f
SUPER; N=5]000 — ®--

T
X

1000
100

10
1

01
o

0.01 F |

& el
0.00001 |

0.001 -
0.0001

1 X
| i
p
o0 ¥ |+H
i i .
: b :

i
II .I

]

N

@

0.01 0.05 0.1 0.5
Replication Rate (percentage)

1 39

Results: hop count before collapse

10000 w—

GIA; N=10,000 —+—

RWRT: N=10,000 -

FLOOD: N=10,000 -
%~ SUPER:N=10,000 3

@ o

2 1000 | ~~9_ GIA:N=5000 - @ |
S “RWRT- N=5.000 O

3 T FLOOD~N=5.000 @

© \ SUPER; N=5.000._, 5O

‘D 100 + ™~ TR
@ MHH“‘&

8 KH:;;;:;

) 10 & \! .
T .. S % R S |

0.01 0.05 0.1 0.5

40
Replication Rate (percentage)

Factor analysis of components

* 10,000 nodes, 0.1%
replication

* Only all components
together achieve the
desired effect

Algorithm Collapse Point | Hop-count
GIA 7 15.0
GIA - OHR 0.004 8570
GIA - BIAS 6 24.0
GIA — TADAPT 0.2 133.7
GIA - FLWCTL 2 15.1
Algorithm Collapse Pomt | Hop-count
RWRT 0.0005 978
RWRT + OHR 0.005 134
RWRT + BIAS 0.0015 997
RWRT + TADAPT 0.001 1129
RWRT + FLWCTL 0.0006 957

41

Summary
* Major components are

- Search algorithm

- Overlay topology

- Replication strategies (pointer and object)
- Flow control

* All of these can (and should) be adapted
cleverly!

* At least topology and replication can be
emergent as well (that is, influenced by
aggregate user behavior)

* Problem of poor performance on rare files still .,
exists

Some refs

* Papers this presentation used material from

Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott

Shenker. Making gnutella-like p2p systems scalable. In Proceedings of ACM
SIGCOMM 2003, pages 407-418, 2003.

Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and
replication in unstructured peer-to-peer networks. In Proceedings of the 16th
ACM International Conference on Supercomputing (ICS'02), 2002.

Matei Ripeanu, Adriana lamnitchi, and lan Foster. Mapping the gnutella
network. IEEE Internet Computing, 6(1):50-57, 2002.
(doi:10.1109/4236.978369)

Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A.

Huberman. Search in power-law networks. Physical Review E, 64:046135,
2001.

* The course website
- http://www.inf.u-szeged.hu/~jelasity/p2p/ »

http://www.inf.u-szeged.hu/~jelasity/p2p/

