
Unstructured Networks:
Search

Márk Jelasity

2

Outline

● Emergence of decentralized networks
● The Gnutella network: how it worked and

looked like
● Search in unstructured networks

– Random walk search in power law networks

– Random walk search in random networks

– Replication strategies

– GIA: a prominent algorithm

3

Central index

● Index is stored on central servers: search is
centralized

● Download is P2P
● For example, Napster

– Works well, but

– Not scalable
● Major investments needed if networks grows
● Eg Google has 100,000+ servers already

– Not robust to attacks (legal and malicious)

● Incentive to go decentralized

4

First attempt to go decentralized:
Gnutella

● Nullsoft (Justin Frankel)
● First client is spread via gossip...

– AOL shuts down Nullsoft servers the day after the
release

● Initially no attempt to control overlay topology
– Emergent complex overlay

● Naive approach to search: flooding
● All communication (queries) are via flooding too

5

How Gnutella works?

● Gnutella protocol: flooding of queries
– Ping, pong

● peer discovery at join and also continuously

– Query, query hit:
● Search hits are propagated back on the path of the

search query

● Join procedure
– Find any member

– Send ping message and collect pong messages

6

What is the Gnutella overlay looked
like?

● Measurements by Ripeanu et al.
● Distributed Gnutella crawler collecting

snapshots of size in the order of 50,000 for a
year

● They discover complex network structure and
highly dynamical composition: churn
– 40% spend less than 4 hours in the network

– 25% spend more than 24 hours

7

Growth of the network

8

Path lengths

9

Degree distribution 2000 November

10

Degree distribution 2001 May

11

Underlying topology

● We have seen the that Internet is also power
law

● Is there correlation between the overlay and the
Internet?

● Ripeanu et al find that there is none

12

Search: flooding

● The default search model is flooding
– Query is sent with a TTL, typically TTL=7

– Query hits are propagated back on the path of the
query

● Serious problems
– Extremely wasteful with bandwidth

● A large (linear) part of the network is covered
irrespective of hits found

● Enormous number of redundant messages
● All users do this in parallel: local load grows linearly

with size

13

Questions

● Does the scale-free topology has an effect on
search protocols
– Can we exploit it, or is it a disadvantage

– What is the optimal search protocol for it

● In general, what search protocols can we come
up with in an unstructured network

● What other techniques can we apply
– Controlling topology to allow for better search

– Controlling placement of objects (replication)

14

Search in scale-free networks

● Basic observations

– In certain models if degree distribution is pk then the
distribution of the degree of a neighbor is
proportional to kpk (very important observation)

– Nodes can easily store index of objects stored by
their neighbors

● So in scale-free: high degree nodes are easy to
find by (biased) random walk

● And high degree nodes can store the index
about a large portion of the network

● Hint: a bit like the star topology

15

Search in scale-free networks
● Proposed algorithm variants

– Random walk (RW)
● avoiding the visit of last visited node

– Degree-biased random walk (DS)
● Select highest degree node, that has not been visited
● This first climbs to highest degree node, then climbs

down on the degree sequence
● Provably optimal coverage

● Examined networks

– Scale-free network with γ=2.1, abrupt cutoff

– ER graphs

– Different sizes, but N=10,000 if not specified

16

Climbing up the degree sequence

17

Speed of coverage

18

Half graph cover time

Scale free graph ER graph

19

Visited node degrees

20

Conclusions

● Advantages
– Takes advantage of scale-free distribution and

speeds up search relative to ER graphs

– Search time complexity is sublinear

● Disadvantages
– Difficulty with rare objects (but this is a common

problem of unstructured search)

– Places very high load on high degree nodes

● Keeping this in mind, let's look at other
topologies and see if they are better

21

More search algorithms

● Expanding ring
– Flooding with increasing TTL until result is found

– The point is to avoid a fixed TTL

● K-walker
– K independent random walks, to avoid message

duplication in flooding and expanded ring
● With checking: in every 4 steps all walks check back

if they need to go on or not
● With state keeping: to implement self-avoiding walks

22

Evaluation of search algorithms
● So far simplified model

– ignored query and replication distribution, focused
on coverage

● Three main components
– Overlay network, Query modeling, Replication

strategies

● Overlay networks
– ER graph, avg. degree 4, N=10000

– Power law (scale-free) graph, N=10000

– Gnutella snapshot 2000 Oct, N=4000

– 2-dim 100x100 grid

23

Problems with flooding

24

Evaluation of search algorithms

● Query distributions

– qi: the proportion of queries for object i

– Uniform: all objects receive the same amount of
queries

– Power law: a few objects are very popular, many
objects are not so much (heavy tail)

● Replication plays a role too
– Spread copies of objects to peers: more popular

objects can be found easier

– File-sharing networks show an emergent replication
behavior

25

Evaluation of search algorithms

● Object replication

– Replication of object i typically proportional to qi

– Uniform: all objects receive the same amount of
copies

– Proportional: proportional to qi

– Square-root: proportional to square-root qi

● Can be proven to be optimal in certain cases (see
later)

● Meaningful combinations of query/replication
– uniform/uniform, power-law/proportional, power-

law/square-root

26

Some results

ER
graph

power-law
graph

27

Notes for the experiments

● Parameters
– 100 objects, avg replication ratio 1%

– ER graph: TTL for flooding is 8, “check” and “state”
are 32-walkers, γ=1.2 for query distribution

– Power-law graph: same, but TTL=5

● Algorithms
– Check: 32-walker with checking for termination

– State: same as 32-walker, but also self-avoiding

28

Conclusions

● Fixed TTL must be avoided, be adaptive
instead

● Avoid exponential spreading of queries
– Note that this assumes that each object is

replicated enough, otherwise search takes too long

● Message duplication must be avoided
– ER random graph is best for this

– So now: is scale-free good or bad?

● Square-root replication is optimal
– How about dynamic methods for achieving that?

29

Replication strategies

● Average search size
– The uniform and proportional strategies result in the

same avg search size (avg number of random
probes to find an object)

– Avg search sizes for individual objects differ with
the proportional strategy

– Square-root can reduce avg search size

● Utilization ratio
– Avg utilization ratio is 1 if we run each search until

success

– Variance is quite different with different strategies

30

Achieving good replication

● Owner replication
– Results in proportional replication

● Path replication
– Results in square root replication

● Random replication
– Same as path replication, only using the given

number of random nodes, not the path

● Removal strategy
– Must be random or based on fixed time

31

Achieved replication distribution

32

Performance of different replications

33

GIA: motivation

● Unstructured networks are good
– Fault tolerant, robust

– Support arbitrary keyword queries

● Flooding is not good
● Random walks are better but not perfect

– They are too blind without some help, such as
biased walk (see scale-free nets)

– Load balancing can be a problem esp in
heterogeneous networks under high query load

34

GIA motivation
● Major problem seems to be poor load balancing
● So let us now make they query “throughput” of

the system the main evaluation criterion
– Load balancing is the major thing to optimize here

● We know networks are heterogeneous
● This means we must make sure nodes process

queries proportional to their bandwidth
– Topology: Let's adapt the topology so that all nodes

have the right amount of neighbors

– Flow control: Let's cleverly limit the number of
forwarded queries to neighbors

35

Components
● One hop replication

– Pointers to objects are replicated on neighbors

● Topology adaptation
– Put most nodes within short reach of high capacity

nodes

● Flow control
● Search protocol

– Random walk biased towards high capacity (not high
degree) nodes

– Note that without topology adaptation, capacity and
degree do not necessarily correlate

36

Topology adaptation

● All nodes keep trying to improve their neighbor
set until possible (satisfaction function)
– Candidates in “host cache”

– Using candidates, we continuously want to
● increase the capacity of our neighbors
● decrease the number of neighbors of our neighbors

● Topology is undirected: handshake mechanism
– We need to ask nodes to accept us as a neighbor

– They might need to drop neighbors

37

Flow control

● Nodes assign tokens to their neighbors
proportional to their capacity

● More tokens are assigned to higher capacity
nodes (incentive to be honest when reporting
capacity)

● Search protocol
– Picks highest capacity neighbor to forward query,

for which there is a token available

38

Performance measures
● Main focus is system load, and metrics as a

function of that
● Behavior is captured by “collapse point”:

success rate passes 90%

39

Results: collapse points

40

Results: hop count before collapse

41

Factor analysis of components

● 10,000 nodes, 0.1%
replication

● Only all components
together achieve the
desired effect

42

Summary
● Major components are

– Search algorithm

– Overlay topology

– Replication strategies (pointer and object)

– Flow control

● All of these can (and should) be adapted
cleverly!

● At least topology and replication can be
emergent as well (that is, influenced by
aggregate user behavior)

● Problem of poor performance on rare files still
exists

43

Some refs

● Papers this presentation used material from
– Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott

Shenker. Making gnutella-like p2p systems scalable. In Proceedings of ACM
SIGCOMM 2003, pages 407–418, 2003.

– Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and
replication in unstructured peer-to-peer networks. In Proceedings of the 16th
ACM International Conference on Supercomputing (ICS'02), 2002.

– Matei Ripeanu, Adriana Iamnitchi, and Ian Foster. Mapping the gnutella
network. IEEE Internet Computing, 6(1):50–57, 2002.
(doi:10.1109/4236.978369)

– Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A.
Huberman. Search in power-law networks. Physical Review E, 64:046135,
2001.

● The course website
– http://www.inf.u-szeged.hu/~jelasity/p2p/

http://www.inf.u-szeged.hu/~jelasity/p2p/

