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Motivation

e \Where are the networks?

- Some example computer systems
* WWW, Internet routers, software components

- Large decentralized systems

* Communication topology is always a non-trivial
network

— Other networks

* Social relationships, food web, chemical reactions
(DNA), etc

* Complex self-managing systems will inevitably have
to deal with complex networks



Motivation

* Some networks are actually important (not only
interesting)

- WWW, Internet, food web, metabolic nets, etc

* Some common aspects must be understood for
most networks
- Robustness
- Epidemics (spreading of info, etc)
- Efficiency
* function of network depending on its structure

- Design and engineering
* need to understand emergent properties
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Outline

* Basic concepts recap (graphs, probability)

 Graph models
- ErdGs-Renyi
- General degree distribution
- Watts-Strogatz
- Barabasi-Albert
— [motifs]



Graph theoretical concepts

* Node, edge
* Graph
— Directed, undirected, simple

* Paths
- Length, average length, diameter

 Connected graph
- Strongly, weakly

* Node degree
- In-, out-, average, distribution



Probability

* Discrete distribution, random variable
* Expectation value, variance

* What is a random graph?
- Probability space of graphs



The model

Simple undirected graph G,

Parameters

- N: number of nodes

— p: probability of connecting any pairs of nodes
Algorithm

- Start with empty graph of N nodes

- Draw all N(N-1)/2 possible edges with probability p
Stats of degree of a fixed node |

- <k>=p(N-1), k. has binomial distr, approx Poisson



Probabillistic properties

* Usual question: P(Q) over a probability
space of graphs

- Q can be eg “connected”, or “contains a
triangle”, etc

e Usually P(Q) depends on N and p
* We are interested in “almost always™ Q:

Py (Q)=1 (N=c)



Probabillistic properties

o Often there is a critical probability p. such
that |
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- _ | p.(N)
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« We are interested in p, for different Q-s
e Example: G,\Lp has a subgraph
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Critical pr. for small subgraphs
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* Note the case p~1/N where cycles of all

order appear
* Note that this is understood as N tends to
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Connectivity

* Let's look at connectivity as a function of
P

- AKA “graph evolution™ when we keep adding
edges

* Note that if p grows slower than 1/N, the
graph is a disconnected collection of
small (constant size) components

* [f p~1/N, avg node degree <k>is
constant, cycles of all order have finite
probabillity

- What's going on if <k> is constant? 12



The case when p~1/N

0< <k> <1
- One cycle, otherwise trees, the larges being O(In N)
size
- The number of clusters is N-n (ie each new edge
connects two clusters)
<k>=1
— Critical value: largest cluster is suddenly O(N2?3), with
complex structure
<k> >1

- The largest cluster is of size (1-f(<k>))N nodes
where f decreases exponentially

[If <k>>=|n N, completely connected (but here the

avg degree grows with N)]
13



Degree distribution

e k the degree of fixed node
- k. is binomial (Bin(N-1,p))

* Degree distribution: the degree of a
random node from a random graph

- X,. humber of nodes with degree k
- <X >=NP(k=k)
— Distribution of x, has very low variance

- So it is a reasonable assumption to say that a
random graph G, has very close to binomial

degree distribution
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Diameter

* The longest shortest path

e L=In N/In <k>=log,. N

* The reason is that these graphs are
locally like trees

* The average path length (l) grows also as
log.,.. N

e Observed networks tend to have a
diameter consistent with this prediction
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Statistics of some networks

Network Size (k) £ £ vand C C,and Reference
WWW,site level, undir. 153127 35.21 3.1 3.35 0.1078  0.00023 Adamic, 1999
Internet, domain level — 3015-6209 3.52-4.11 3.7-3.76 6.36-6.18 0.18-0.3  0.001 Yook et al., 2001a,
Pastor-Satorras et al., 2001
Movie actors 225226 61 3.65 2.99 0.79  0.00027 Watts and Strogatz, 1998
LANL co-authorship 52909 9.7 5.9 479 043 18x10™* Newman, 2001a, 2001b, 2001¢

MEDLINE co-authorship 1520251 18.1 4.6 4.91 0.066 1.1x107> Newman, 2001a, 2001b, 2001c
SPIRES co-authorship 56627 173 4.0 2.12 0.726 0.003  Newman, 2001a, 2001b, 2001c
NCSTRL co-authorship 11994 3.59 9.7 7.34 0496 3x10™* Newman, 2001a, 2001b, 2001c

Math. co-authorship 70975 3.9 9.5 8.2 0.59 54x107° Barabasi et al., 2001
Neurosci. co-authorship 209293 11.5 6 5.01 076  55x107° Barabasi et al., 2001
E. coli, substrate graph 282 7.35 2.9 3.04 0.32 0.026 Wagner and Fell, 2000
E. coli, reaction graph 315 28.3 2.62 1.98 0.59 0.09 Wagner and Fell, 2000
Ythan estuary food web 134 8.7 2.43 2.26 0.22 0.06 Montoya and Sole, 2000
Silwood Park food web 154 4.75 3.40 3.23 0.15 0.03 Montoya and Sole, 2000
Words, co-occurrence 460.902 70.13 2.67 3.03 0437  0.0001 Ferrer i Cancho and Sole, 2001
Words, synonyms 22311 13.48 4.5 3.84 0.7 0.0006 Yook et al., 2001b
Power grid 4941 2.67 18.7 124 0.08 0.005 Watts and Strogatz, 1998

C. Elegans 282 14 2.63 2.25 0.28 0.05 Watts and Strogatz, 1998




Clustering coefficient

* Definition of clustering coefficient

- Ratio of actual and possible number of edges
between neighbors of a node

* In this model it is evident
- C=p=<k>/N
- Very small

* This does NOT predict the clustering in
real networks
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Some other similar models

G_r_reg: probability space is the set of r-regular graphs
with equal probability

- G; 4 IS Hamiltonian

- Note that G;,,_,,\ Is not even connected

G .. we generate a random graph by adding 3

r-out"

edges from all nodes
- G, Is Hamiltonian

— It is believed that G, , is also Hamiltonian

So we need to be careful

When there is guarantee that all nodes have some
edges, things are radically different
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Watts-Strogatz model

Motivation: random graphs don’t model clustering

Local structure + randomness (“shortcuts”)
- Ring with links to K nearest neighbors

- Rewire each of the K/2 links to the left of a node with
probability p (pNK/2 shortcuts on average)

Clustering is c=3(K-2)/4(K-1) if p=0

Average path length is O(N) if p=0

With p=1 we get the G, ,_, model, not the Erdds-
Rényi model
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Watts-Strogatz model

Increasing randomness
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Statistical properties
* Clustering in the general case

C(p)~C(0)(1-pp=tK=2)

1_p)
(K1 )( p)
* Degree distribution

- Transition from constant (K) to
Poisson(K/2)+K/2

* Path length
- Small p: linear; large p: logarithmic
- Transition: p=2/NK (1 shortcut on average)
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Growth models

e So far we can model clustering and path
length. Is this all”? No

* Degree distribution is very often heavy talil
- P(k)~k(often some cutoff eg P(k)~ke™")
- Without cutoff
* No expectation value (ie <k>=c) if y<=2
* No variance (ie Var(k)=c=) if y<=3, etc

e Called scale-free because of fractals
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Observed scale free networks

Network Size (k) K Y out Yin  Lreat €rand £ pow Reference NI
WWW 325729 4.51 900 245 21 112 832 477 Albert, Jeong, and Barabasi 1999 |
WWW 4x10° 7 238 21 Kumar ef al., 1999 2
WWWwW 2% 108 7.5 4000 272 2.1 16 B85 7.6l Broder et al., 2000 3

WWW. site 260 000 1.04 Huberman and Adamic, 2000 4
Internet, domain®  3015-4380 3.42-376 30-40 2.1-22 2.1-22 4 3 52 Faloutsos, 1909 5
Internet, router® 3888 2.57 30 248 248 1215 RIS 7.467 Faloutsos, 1909 6
Internet, router® 150 000 2.66 60 2.4 2.4 11 128 747 Govindan, 2000 7

Movie actors® 212250 28.78 900 2.3 23 454 365 401 Barabasi and Albert, 1999 8
Co-authors, SPIRES* 56627 173 100 1.2 1.2 4 212 1.95 Newman, 2001b Q
Co-authors, neuro.® 200203 11.54 400 2.1 2.1 6 501 3.86 Barabasi et al., 2001 10
Co-authors, math.* 70975 3.0 120 2.5 2.5 05 K2 053 Barabasi ef al., 2001 11
Sexual contacts™ 2810 34 3.4 Liljeros et al., 2001 12
Metabolic, E. coli 778 74 110 2.2 2.2 32 332 289 Jeong et al., 2000 13
Protein, S. cerev.* 1870 2.39 2.4 2.4 Jeong, Mason, er al., 2001 14
Ythan estuary™ 134 8.7 33 1.05 105 243 226 171 Montoya and Solé, 2000 14
Silwood Park® 154 4.75 27 1.13 113 34 323 2 Montoya and Solé, 2000 16
Citation 783330 8.57 3 Redner, 1998 17

Phone call 533 10° 3.16 2.1 2.1 Adello et al., 2000 18

Words, co-occurrence® 460 902 70.13 2.7 2.7 Ferrer 1 Cancho and Solé, 2001 19

Words, synonyms® 22311 13.48 2.8 2.8 Yook et al., 2001b 20




Barabasi-Albert model

* Preferential attachment rule
— Start with a small number (m,) of nodes

- Repeat adding a new node with m<=m0
links, where each linked is linked to node |
according to r

o T time step, t+m, nodes, mt edges
* Converges to exponent y=3

25



Empirical results with BA model
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Some statistics

* Average path length

— L~In N/ In In N (somewhat smaller then
random)

* Clustering
- C~N7 (recall that random was 1/N)
* |n Sum

- Models degree distribution
- But doesn’t model clustering
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General degree distribution

* BA model has another problem
- Correlation between degree of neighbors

* General model
- Given a sequence of degrees

— Construct a probability space in which all
graphs with the given sequence are
equiprobable

- Stubs method
* Problems: loop edges, multiple edges

28



Connectivity of general model

* [Recall the ER model had <k>=1 as a
tipping point for giant component]

* General rule for connectivity (critical
value): <k*>-2<k>=0

* For the Poisson distribution this gives
<k>*=<k>, that is, <k>=1
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Network motifs

Degree distribution, path length, clustering; is this
all to account for?

In a random model, small subgraphs have a
theoretical distribution

In a real network, some small subgraphs are
represented more or less frequently

- This is yet another aspect to account for in a model
* Are motifs functional? Or just side effects?
* |[n other words, should we bother?

Z-score: (N__-N__)/SD

real rand
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Some examples for motifs

Network Nodes  Edges | MNeal Npand=5D  Zscore | Neal Npand = 5D Zscore | Meal MNand=SD  Zscore
Gene regulation X Feed- X Y Bi-fan
(transcription) W/ forward M
Y loop
\/ Z W
L
E. coli 424 5319 40 T3 10 203 4712 13
S. cerevisiae®* 685 1.052 70 11+4 14 1812 30040 41
Neurons X Feed- A ' Bi-fan X Bi-
W/ forward M v\ parallel
Y loo Y Z
\/ g Z W N K
7 W
C. eleganst 232 509 125 90=10 37 127 35=+13 53 227 3510 20
Food webs X Three X Bi-
v chain 2 parallel
Y Y Z
W/ N K
Z w
Little Rock 92 084 3219 312050 21 7295 2220210 25
Ythan 83 391 1182 1020 £ 20 7.2 1357 230 £ 350 23
St. Martin 42 205 469 45010 NS 382 130 =20 12
Chesapeake 31 67 80 §2+4 NS 26 5+2 8
Coachella 29 243 279 235+12 36 181 80 =20 5
Skipwith 25 189 184 1507 3.5 397 8025 13
B. Brook 25 104 1581 1307 74 267 EE=N) 32




Error and attack tolerance

* We need to understand how vulnerable existing
systems are

* We need to design self-healing and self-protecting
systems

* Models

- Node removal: failure
* A random node is removed along with all the links
- Node removal: attack

* The most connected (highest degree) nodes are
removed

32



Node removal
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Achilles’ heel
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Real world examples
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Real world examples

* |nternet and WWW

- Extremely sensitive to attack, and extremely robust
to random failure

e Cellular networks

- 8% removal 500% increase in path length is attack,
otherwise unchanged

* Ecologial networks Silwood Park web
- Error tolerance: 95% removal
- Attack tolerance: 20% removal
- Secondary extinctions under attack: 16% removal
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Some refs

* Papers this presentation used material from
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Physics, 74(1):47-97, January 2002.

- R. Milo, S. Shen-Orr, S. ltzkovitz, N. Kashtan, D. Chklovskii, and
U Alon. Network motifs: Simple building blocks of complex networks.
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- Mark E. J. Newman. Random graphs as models of networks. In Stefan
Bornholdt and Heinz G. Schuster, editors, Handbook of Graphs and
Networks: From the Genome to the Internet, chapter 2. John Wiley,
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* The course website
- http://www.inf.u-szeged.hu/~jelasity/p2p/
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http://www.weizmann.ac.il/mcb/UriAlon/Papers/networkMotifs/networkMotifs.pdf
http://www.inf.u-szeged.hu/~jelasity/p2p/

