Learning in networks of
millions of nodes
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Motivation

» Explosive growth of smart phone platforms, and
» Availability of sensor and other contextual data

* Makes collaborative data mining possible

- Health care: following and predicting epidemics,
personal diagnostics

- Smart city: traffic optimization, accident forecasting
- (predicting earthquakes, financial applications, etc)

 P2P networks, grid, etc, are also relevant
platforms
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P2P system model

e Large number (millions or more) computers (nodes)
« Packet switched communication

- Every node has an address

- Any node can send a message to any given
address

 Messages can be delayed or lost, nodes can crash

 (in parallel computing this is similar to the model of
asynchronous chaotic iterations)

2012/05/23 Almeria, Spain 5



Fully distributed data Sassess

 Horizontal data distribution

* Every node has very few records, we assume
they have only one

* \We do not allow for moving data, only local
processing (privacy preservation)

« We require that the models are cheaply
available for all the nodes
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lllustration: averaging
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lllustration: averaging
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lllustration: averaging
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lllustration: averaging
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Classification problem in s cesas
machine learning

- We are given a set of (x,y ) examples, where y.
is the class of x (y. is eg. -1 or 1)

- We want a model f(), such that for all i, f(x )=y

. f() Is very often a parameterized function f (),

and the classification problem becomes an
error minimization problem in w.

- Neural net weights, linear model parameters, etc

e The error is often defined as a sum of errors
over the examples
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lllustration of classification s ewas
with a linear model
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Stochastic gradient descent —° **"°

» Assume the error is Err(w ZEW (w, x,)
defined as =1
» Then the gradient is 0 Err(w) :Z”: 0 Err(w, x,)
: ow P ow
» So the full gradient
method looks like " A Err(w,x)
» But one can take only W(Hl)zw(t)_u(t); Ow

one example at a time
iterating in random
order over examples

0 Err(w, x;)
ow

w(t+1)=w(t)—x(z)
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Fully distributed classification

e So the problem is to find an optimization method that
fits into our system and data model

* Most distributed methods build local models and then
combine these through ensemble learning: but we
don't have enough local data

* Online algorithms

- Need only one data record at a time
- They update the model using this record

 The stochastic gradient method is a popular online
learning algorithm (we apply it to the primal form of the

SVM error function)
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Gossip learning

Algorithm 1 Gossip Learning Scheme

— j—

initModel()
loop
wait(A)
p < selectPeer()
currentModel < createModel()
send currentModel to p
end loop

procedure ONRECEIVEMODEL(m)
modelQueue.add(m) 1
end procedure
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procedure CREATEMODELRW
m +— modelQueue.first()
update(m)
return m

end procedure

procedure CREATEMODELMU
m1 < modelQueue.first()
mso <— modelQueue.second()
m $— merge(my, ms2)
update(m)
return m

- end procedure
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The merge function

* Let z=merge(x,y)=(x+y)/2 (x and y are linear models)
* |n the case of the Adaline perceptron

- Updating z using an example has the same effect as
updating x and y with the same example and then
averaging these two updated models

- Making predictions using z is the same as calculating
the weighted average of the predictions of x and y

 This means we effectively propagate an exponential
number of models, and the voting of these is our prediction

* For the linear SVM algorithm this is only a heuristic
argument
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Local prediction

[: procedure PREDICT(x)
2 w — currentM odel
3: return sign({(w, x))
4: end procedure

* \We use only local
models

- The current
model

- Orvoting over 5. procedure VOTEDPREDICT(x)
a number of 6:  pRatio— 0
recent models 7 for m € modelQueue do
8 if sign((m.w, x)) > 0 then

9: pRatio « pRatio +1

10: end if

L4 end for

12 return sign(pRatio/modelQueue.size()—0.5)

[3: end procedure
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Experiments

 We implemented a support vector machine with
stochastic gradient (Pegasos alg.)

e \We used several benchmark data sets for
evaluations

- Data is fully distributed: one data point per node
 We used extreme scenarios

- 50% message drop rate
- 1-10 cycles of message delay
- Churn modeled after the FileList.org trace from Delft
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o
Data sets

[ris1 | Iris2 |Irirs3| Reuters |SpamBase| Maliciousl0
Training set size 90 | 90 | 90 2000 4140 2155622
Test set size [0 | 10 | 10 600 461 240508
Number of features|| 4 4 4 9947 57 10
Classlabel ratio 50/50(50/50|50/50{1300/1300|1813/2788|792145/1603985
Pegasos 20000 iter.|| 0 0 0 0.025 0.111 0.080 (0.081)
Pegasos 1000 iter. 0 0 | 04| 0.057 0.137 0.095 (0.060)
SVMLight 0 0 | 0.1 0.027 0.074 0.056 (-)

o Statistics of data sets

* The performance of some known algorithms
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Without merge
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With merge
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Additional results

 We implemented multiclass boosting in the
gossip framework

* \We developed techniques for dealing with
concept drift

- The algorithms is running continuously
- We keep the age distribution of models fixed
- At any point in time we have good models
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Remarks regarding the . cesss
chaotic model

* |f uniformity of random walk is guaranteed, then all the
models converge to the true model eventually,
irrespective of all failures

* |f no uniformity can be guaranteed, but the local data
Is statistically independent of the visiting probability,
then again convergence to the true model is
guaranteed in general for all models

* |f no uniformity and no independence could be
guaranteed, convergence to a good model is still
ensured provided that the data is separable, and all
misclassified examples are visited “often enough”
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