Learning in networks of millions of nodes

Márk Jelasity
Installed Bases (millions of US users)

60m
© asymco.com

Android

iPhone

BlackBerry

Microsoft Other

Data: comScore MobiLens

0m

Almeria, Spain
Motivation

- Explosive growth of smart phone platforms, and
- Availability of sensor and other contextual data
- Makes collaborative data mining possible
 - Health care: following and predicting epidemics, personal diagnostics
 - Smart city: traffic optimization, accident forecasting
 - (predicting earthquakes, financial applications, etc)
- P2P networks, grid, etc, are also relevant platforms
P2P system model

- Large number (millions or more) computers (nodes)
- Packet switched communication
 - Every node has an address
 - Any node can send a message to any given address
- Messages can be delayed or lost, nodes can crash
- (in parallel computing this is similar to the model of asynchronous chaotic iterations)
Fully distributed data

- Horizontal data distribution
- Every node has very few records, we assume they have only one
- We do not allow for moving data, only local processing (privacy preservation)
- We require that the models are cheaply available for all the nodes
Illustration: averaging
Illustration: averaging

kérés
Illustration: averaging

válasz
Illustration: Averaging

(12 + 6) / 2 = 9
Classification problem in machine learning

- We are given a set of \((x_i, y_i)\) examples, where \(y_i\) is the class of \(x_i\) (\(y_i\) is e.g. -1 or 1)

- We want a model \(f()\), such that for all \(i\), \(f(x_i) = y_i\)

- \(f()\) is very often a parameterized function \(f_w()\), and the classification problem becomes an error minimization problem in \(w\).
 - Neural network weights, linear model parameters, etc

- The error is often defined as a sum of errors over the examples
Illustration of classification with a linear model
Stochastic gradient descent

• Assume the error is defined as

\[Err(w) = \sum_{i=1}^{n} Err(w, x_i) \]

• Then the gradient is

\[\frac{\partial Err(w)}{\partial w} = \sum_{i=1}^{n} \frac{\partial Err(w, x_i)}{\partial w} \]

• So the full gradient method looks like

\[w(t + 1) = w(t) - \alpha(t) \sum_{i=1}^{n} \frac{\partial Err(w, x_i)}{\partial w} \]

• But one can take only one example at a time iterating in random order over examples

\[w(t + 1) = w(t) - \alpha(t) \frac{\partial Err(w, x_i)}{\partial w} \]
Fully distributed classification

- So the problem is to find an optimization method that fits into our system and data model.
- Most distributed methods build local models and then combine these through ensemble learning: but we don't have enough local data.
- Online algorithms
 - Need only one data record at a time
 - They update the model using this record.
- The stochastic gradient method is a popular online learning algorithm (we apply it to the primal form of the SVM error function).
Gossip learning

Algorithm 1 Gossip Learning Scheme

1: initModel()
2: loop
3: wait(Δ)
4: p ← selectPeer()
5: currentModel ← createModel()
6: send currentModel to p
7: end loop
8:
9: procedure ONRECEIVEMODEL(m)
10: modelQueue.add(m)
11: end procedure

1: procedure CREATEMODELRW
2: m ← modelQueue.first()
3: update(m)
4: return m
5: end procedure

6:
7: procedure CREATEMODELMU
8: m₁ ← modelQueue.first()
9: m₂ ← modelQueue.second()
10: m ← merge(m₁, m₂)
11: update(m)
12: return m
13: end procedure
The merge function

- Let $z = \text{merge}(x, y) = (x + y)/2$ (x and y are linear models)
- In the case of the Adaline perceptron
 - Updating z using an example has the same effect as updating x and y with the same example and then averaging these two updated models
 - Making predictions using z is the same as calculating the weighted average of the predictions of x and y
- This means we effectively propagate an exponential number of models, and the voting of these is our prediction
- For the linear SVM algorithm this is only a heuristic argument
Local prediction

- We use only local models
 - The current model
 - Or voting over a number of recent models

```
1: procedure PREDICT(x)
2:     w ← currentModel
3:     return sign(⟨w, x⟩)
4: end procedure

5: procedure VOTEDPREDICT(x)
6:     pRatio ← 0
7:     for m ∈ modelQueue do
8:         if sign(⟨m.w, x⟩) ≥ 0 then
9:             pRatio ← pRatio + 1
10:         end if
11:     end for
12:     return sign(pRatio/modelQueue.size() − 0.5)
13: end procedure
```
Experiments

- We implemented a support vector machine with stochastic gradient (Pegasos alg.)
- We used several benchmark data sets for evaluations
 - Data is fully distributed: one data point per node
- We used extreme scenarios
 - 50% message drop rate
 - 1-10 cycles of message delay
 - Churn modeled after the FileList.org trace from Delft
Data sets

<table>
<thead>
<tr>
<th></th>
<th>Iris1</th>
<th>Iris2</th>
<th>Iris3</th>
<th>Reuters</th>
<th>SpamBase</th>
<th>Malicious10</th>
</tr>
</thead>
<tbody>
<tr>
<td>Training set size</td>
<td>90</td>
<td>90</td>
<td>90</td>
<td>2000</td>
<td>4140</td>
<td>2155622</td>
</tr>
<tr>
<td>Test set size</td>
<td>10</td>
<td>10</td>
<td>10</td>
<td>600</td>
<td>461</td>
<td>240508</td>
</tr>
<tr>
<td>Number of features</td>
<td>4</td>
<td>4</td>
<td>4</td>
<td>9947</td>
<td>57</td>
<td>10</td>
</tr>
<tr>
<td>Classlabel ratio</td>
<td>50/50</td>
<td>50/50</td>
<td>50/50</td>
<td>1300/1300</td>
<td>1813/2788</td>
<td>792145/1603985</td>
</tr>
<tr>
<td>Pegasos 20000 iter.</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.025</td>
<td>0.111</td>
<td>0.080 (0.081)</td>
</tr>
<tr>
<td>Pegasos 1000 iter.</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0.057</td>
<td>0.137</td>
<td>0.095 (0.060)</td>
</tr>
<tr>
<td>SVMLight</td>
<td>0</td>
<td>0</td>
<td>0.1</td>
<td>0.027</td>
<td>0.074</td>
<td>0.056 (−)</td>
</tr>
</tbody>
</table>

- Statistics of data sets
- The performance of some known algorithms
Without merge

Ins1

Malicious URLs

Reuters

SpamBase

Average of 0-1 Error (over nodes)

Cycles

Average of 0-1 Error (over nodes)

Cycles
With merge

SpamBase No Failure

SpamBase with Failures

Reuters No Failure

Reuters with Failures
Additional results

• We implemented multiclass boosting in the gossip framework
• We developed techniques for dealing with concept drift
 – The algorithms is running continuously
 – We keep the age distribution of models fixed
 – At any point in time we have good models
Adaptivity

Sampling rate: 0.1 samples/Δ

Number of cycles (Δ)

0-1 Error
Publications

Remarks regarding the chaotic model

- If uniformity of random walk is guaranteed, then all the models converge to the true model eventually, irrespective of all failures.

- If no uniformity can be guaranteed, but the local data is statistically independent of the visiting probability, then again convergence to the true model is guaranteed in general for all models.

- If no uniformity and no independence could be guaranteed, convergence to a good model is still ensured provided that the data is separable, and all misclassified examples are visited “often enough”.