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Outline

* Motivation: the open data ecosystem
* Brief notes on the systems issues

* Massively distributed machine learning: the
gossip learning framework (GoLF), illustration
through linear SVM

 Low rank matrix factorization in GoLF
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B |g Data SZECHENYI TERV
today “ '

Data is owned privately

(“closed source”) Private
Cloud
Storage and Infrastructure

processing is costly
and problematic

(privacy)

So data can serve
limited applications
(advertising, O=q
recommendation, etc) RELZ3
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Sci-Fi (as of today)

* Anyone can work with comprehensive global “big” data
available in billions of smart phones, and create data
models (arbitrary features or predictive models)

* Privacy is fully respected

» Efficient and easy-to-use libraries and schemes are
available to support this

e These models are shared and can be used to build
further models (like in open source model)

* The cost of entry and cost of maintenance is zero
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S0, what if data was open”? @

» Science (e.g. health)

- E.qg. test the influence of physical activity on chance
of getting the flu (building on models for recording
physical activity and probability of flu infection)

e Business

- E.g. car accident prediction (fraining data based on
accident detection, features can include flu
Infection, current mood (see below), etc)

 Fun
- Sky is the limit... E.g. mood predictor, etc
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Outline

* Brief notes on the systems issues
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System model

e Large number (millions or more) computers (nodes)

 Packet switched communication

- Every node has an address

- Any node can send a message to any given address
e That is, almost: in reality, NATs, firewalls

- Delay tolerant networks, ad hoc networks, etc are also
interesting, but here we will assume any-to-any

« Messages can be delayed or lost, nodes can crash
(unreliable asynchronous communication)
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Fully distributed data

 Horizontal data distribution

* Every node has very few records, we assume
they have only one

» Data can change (data streams from sensors,
or concept drift)

* We do not allow for moving (uploading,
collecting, sharing) data, only local processing
(helps privacy preservation)
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BlueSky middleware

Smart Device Apps
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* Massively distributed machine learning: the
gossip learning framework (GoLF), illustration
through linear SVM
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Massively distributed data SZECHENYI TERV
mining
 The massively distributed model is limited in

computing abilities, but not as much as it seems!

» Asynchronous distributed numeric algorithms exist that
- Are very fast
— Are very simple to implement and reason about

- Provide almost exact, or often exact results in the face
of chaotic communication

* E.g. chaotic power method, gossip based aggregation

* Our ambition is to achieve this for data mining
algorithms (we focus on classification now)
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Classification problem in SZECHENYI TERV
machine learning

- We are given a set of (x,y ) examples, where y.
is the class of x (y. is eg. -1 or 1)

- We want a model f(), such that for all i, f(x )=y

. f() Is very often a parameterized function f (),

and the classification problem becomes an
error minimization problem in w.

- Neural net weights, linear model parameters, etc

e The error is often defined as a sum of errors
over the examples
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lllustration of classification SZECHENYI TERV
with a linear model
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Learning scheme: Wa|k|ng SZECHENYI TERV
models, static data

* SO0, the problem is to find an optimization method that
fits into our system and data model

* Most distributed methods build local models and then
combine these through ensemble learning: but we don't
have enough local data

* Online algorithms
- They update the model based on one data record at a time

* |dea 1: models walk over overlays and get updated at
ocal nodes using a suitable online algorithm

e |dea 2: we can combine models that visit the same node
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Stochastic gradient descent

» Assume the error is Err(w ZErr (w,x,)
defined as i=1

» Then the gradient is 0 Err(w) :i OErr(w, x,)

e So the full gradient ow i=1 ow
method looks like " O Err(w,x)

» But one can take only Wt D=w(t)—alr) 2 ow
one example at a time
iterating in random
order over examples

0 Err(w, x;)
ow

w(t+1)=w(t)—x(z)
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Gossip learning

. procedure CREATEMODELRW

Algorithm 1 Gossip Learning Sch |
S i it - i m +— modelQueue.first()

initModel() update(m)
loop | return m
wait(A)

| : end procedure
p < selectPeer()

currentModel < createModel()
send currentModel to p

m1 < modelQueue.first()
end loop

mso <— modelQueue.second()
m $— merge(my, ms2)
update(m)

return m

- end procedure

procedure ONRECEIVEMODEL(m) -
modelQueue.add(m) |

1
2
3
4
5
6:
7: procedure CREATEMODELMU
8
9
0
1
2
end procedure ;

i = = I I = W &, T L 'S B o B

— j—
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The merge function for O p—
linear models

* Let z=merge(x,y)=(x+y)/2 (x and y are linear models)
* |n the case of linear regression (a.k.a. Adaline perceptron)

- Updating z using an example has the same effect as
updating x and y with the same example and then averaging
these two updated models

 Update is distributive over merge

- Making predictions using z is the same as calculating the
weighted average of the predictions of x and y

* Prediction is distributive over weighted vote

- So, we effectively propagate an exponential number of
models, and the voting of these is our prediction

* For other linear models, like the linear SVM, this is only a

heuristic argument
2013/06/03 BBN, Boston 19
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Local prediction

[: procedure PREDICT(x)
2 w — currentM odel
3: return sign({(w, x))
4: end procedure

* We use only local
models

— The current
model

- Orvoting over 5. procedure VOTEDPREDICT(x)
a number of 6:  pRatio— 0
recent models 7 for m € modelQueue do
8 if sign((m.w, x)) > 0 then

9: pRatio « pRatio +1

10: end if

L4 end for

12 return sign(pRatio/modelQueue.size()—0.5)

[3: end procedure
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Linear SVM

 We plugged in a linear SVM with stochastic gradient
(Pegasos by Shalev-Shwartz et al (2010))

* We theoretically proved convergence under merging
 We used several benchmark data sets for evaluations

- Data is fully distributed: one data point per node
 \WWe used extreme scenarios

- 50% message drop rate
- 1-10 cycles of message delay
- Churn modeled after the FileList.org trace from Delft

2013/06/03 BBN, Boston 21
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Data sets

[ris1 | Iris2 |Irirs3| Reuters |SpamBase| Maliciousl0
Training set size 90 | 90 | 90 2000 4140 2155622
Test set size [0 | 10 | 10 600 461 240508
Number of features|| 4 4 4 9947 57 10
Classlabel ratio 50/50(50/50|50/50{1300/1300|1813/2788|792145/1603985
Pegasos 20000 iter.|| 0 0 0 0.025 0.111 0.080 (0.081)
Pegasos 1000 iter. 0 0 | 04| 0.057 0.137 0.095 (0.060)
SVMLight 0 0 | 0.1 0.027 0.074 0.056 (-)

o Statistics of data sets

* The performance of some known algorithms

2013/06/03

BBN, Boston
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Without merge
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With merge
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Outline

 Low rank matrix factorization in GoLF
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Low rank matrix approximation

 Work in progress!

 Given matrix R, we want to
find U and | such that Ul is U - R
closetoR - - T T e i

 Dimension k is very small: | |
we want compression (eg : _
topic models) .1 Jkxn

» Ris not fully defined (eg non- j
rated items if R is user-item :
matrix for recommendation)

Credits: Levente Kocsis (main idea)
and Andras Benczur, Inst. for CS and
Control, Budapest

 \We assume one node has
one row of R: private
information, eg item ratings

2013/06/03 BBN, Boston 26
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Low rank matrix approximation

The model that walks is mx. |

m x k mXxn
Rows of U (and R) are local to U R

nodes, they do not move
y e Ep B

. Qi contains rated item indices.
Ignoring regularization:

1 2
Err(U,I)= |Q|J€ZQ (R, ,—U,I,) I] IIkxn
OErr(U,,I) 2

— Z <Ri,j_Uin)I;—'r

0 U, |Q1| jeq,

OErr(U,I) 2
oo

2013/06/03 BBN, Boston 27

Y jeqQ (R, ,—U,I,)U; Gossip matrix I




SZECHENYI TERV

Low rank matrix approximation

* Matrix | is relatively small, but
we might do better ymx K RM X1

— propagate only those
columns that change

- Merge received columns to
local version of |

* S0, here we have a local Jkxn
complete version of |, in which
we merge incoming columns
as they arrive

Gossip updated
columns only

2013/06/03 BBN, Boston 28
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Additional results

 WWe implemented multiclass boosting in the
gossip framework

* \We developed techniques for dealing with
concept drift

- The algorithm is running continuously
- We keep the age distribution of models fixed
- At any point in time we have good models

2013/06/03 BBN, Boston 31
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How to set the TTL e

 \We want to control the distribution of model
ages attime t (A)

* But we can control only the distribution of TTL
(X)

* The relationship between the two Is given by

2 4 £, <>f3} E(X2)\”
D) =3 ) (2E<X ))
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COncept Drift Conclusions @SZECHENYITERV

* If the sampling rate is rare relative to drift
speed, then our algorithm is favorable

- Many improvements are possible, this is the
“vanilla” version that uses only a single example in
each cycle for update and uses no model merging

e Some results we did not discuss

- Robustness to failure is good, a slowdown can be
observed due to slower random walks

- The algorithm is very insensitive to system size

2013/06/03 BBN, Boston 35
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convergence

* |f uniformity of random walk is guaranteed, then all the
models converge to the true model eventually,
irrespective of all failures

* |f no uniformity can be guaranteed, but the local data
IS statistically independent of the visiting probability,
then we will have no bias, but variance will increase
(effectively we work with fewer samples)

* |f no uniformity and no independence could be
guaranteed, convergence to a good model is still
ensured provided that the data is separable, and all
misclassified examples are visited “often enough”

2013/06/03 BBN, Boston 36
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