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● Motivation: the open data ecosystem
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● Massively distributed machine learning: the 

gossip learning framework (GoLF), illustration 
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Number of smart
phones
has passed
one billion
last October
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Private
Cloud
Infrastructure

Big Data 
today

Data is owned privately 
(“closed source”)

Storage and 
processing is costly 
and problematic 
(privacy)

So data can serve 
limited applications 
(advertising, 
recommendation, etc)
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Sci-Fi (as of today)

● Anyone can work with comprehensive global “big” data 
available in billions of smart phones, and create data 
models (arbitrary features or predictive models)

● Privacy is fully respected

● Efficient and easy-to-use libraries and schemes are 
available to support this

● These models are shared and can be used to build 
further models (like in open source model)

● The cost of entry and cost of maintenance is zero
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So, what if data was open? 

● Science (e.g. health)
– E.g. test the influence of physical activity on chance 

of getting the flu (building on models for recording 
physical activity and probability of flu infection) 

● Business
– E.g. car accident prediction (training data based on 

accident detection, features can include flu 
infection, current mood (see below), etc) 

● Fun
– Sky is the limit... E.g. mood predictor, etc
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System model

● Large number (millions or more) computers (nodes)

● Packet switched communication

– Every node has an address

– Any node can send a message to any given address
● That is, almost: in reality, NATs, firewalls

– Delay tolerant networks, ad hoc networks, etc are also 
interesting, but here we will assume any-to-any

● Messages can be delayed or lost, nodes can crash 
(unreliable asynchronous communication)
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Fully distributed data

● Horizontal data distribution
● Every node has very few records, we assume 

they have only one
● Data can change (data streams from sensors, 

or concept drift)
● We do not allow for moving (uploading, 

collecting, sharing) data, only local processing 
(helps privacy preservation)
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BlueSky middleware
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Massively distributed data 
mining
● The massively distributed model is limited in 

computing abilities, but not as much as it seems!

● Asynchronous distributed numeric algorithms exist that

– Are very fast

– Are very simple to implement and reason about

– Provide almost exact, or often exact results in the face 
of chaotic communication

● E.g. chaotic power method, gossip based aggregation

● Our ambition is to achieve this for data mining 
algorithms (we focus on classification now)
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Classification problem in 
machine learning
● We are given a set of (x

i
,y

i
) examples, where y

i
 

is the class of x
i
 (y

i
 is eg.  -1 or 1)

● We want a model f(), such that for all i, f(x
i
)=y

● f() is very often a parameterized function f
w
(), 

and the classification problem becomes an 
error minimization problem in w.
– Neural net weights, linear model parameters, etc

● The error is often defined as a sum of errors 
over the examples
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Illustration of classification 
with a linear model
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Learning scheme: Walking 
models, static data
● So, the problem is to find an optimization method that 

fits into our system and data model

● Most distributed methods build local models and then 
combine these through ensemble learning: but we don't 
have enough local data

● Online algorithms
– They update the model based on one data record at a time

● Idea 1: models walk over overlays and get updated at 
local nodes using a suitable online algorithm

● Idea 2: we can combine models that visit the same node
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Stochastic gradient descent

● Assume the error is 
defined as

● Then the gradient is

● So the full gradient 
method looks like

● But one can take only 
one example at a time 
iterating in random 
order over examples

Err (w)=∑
i=1

n

Err (w ,x i)

∂Err (w)

∂w
=∑
i=1

n ∂Err (w , x i)

∂w

w t1=w  t − t ∑
i=1

n ∂Err w , x i

∂w

w t1=w  t − t 
∂ Errw , xi 

∂w
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Gossip learning
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The merge function for 
linear models
● Let z=merge(x,y)=(x+y)/2 (x and y are linear models)

● In the case of linear regression (a.k.a. Adaline perceptron)

– Updating z using an example has the same effect as 
updating x and y with the same example and then averaging 
these two updated models

● Update is distributive over merge
– Making predictions using z is the same as calculating the 

weighted average of the predictions of x and y
● Prediction is distributive over weighted vote

– So, we effectively propagate an exponential number of 
models, and the voting of these is our prediction

● For other linear models, like the linear SVM, this is only a 
heuristic argument
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Local prediction
● We use only local 

models

– The current 
model

– Or voting over 
a number of 
recent models
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Linear SVM
● We plugged in a linear SVM with stochastic gradient 

(Pegasos by Shalev-Shwartz et al (2010))

● We theoretically proved convergence under merging

● We used several benchmark data sets for evaluations

– Data is fully distributed: one data point per node
● We used extreme scenarios

– 50% message drop rate

– 1-10 cycles of message delay

– Churn modeled after the FileList.org trace from Delft
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Data sets

● Statistics of data sets
● The performance of some known algorithms
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Without merge
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With merge
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Low rank matrix approximation

● Work in progress!

● Given matrix R, we want to 
find U and I such that UI is 
close to R

● Dimension k is very small: 
we want compression (eg 
topic models)

● R is not fully defined (eg non-
rated items if R is user-item 
matrix for recommendation)

● We assume one node has 
one row of R: private 
information, eg item ratings

Um x k Rm x n 

U
i

I
j

R
ij

Ik x n

Credits: Levente Kocsis (main idea)
and András Benczúr, Inst. for CS and
Control, Budapest
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Low rank matrix approximation

Um x k Rm x n 

Ik x n

● The model that walks is mx. I

● Rows of U (and R) are local to 
nodes, they do not move

● Q
i
 contains rated item indices. 

Ignoring regularization:

Err (U i , I )=
1

∣Qi∣
∑
j∈Q i

(R i , j−U i I j)
2

∂Err (U i , I )

∂U i

=
2

∣Qi∣
∑
j∈Qi

(Ri , j−U i I j) I j
T

∀ j∈Qi :
∂Err (U i , I )

∂ I j

=
2

∣Q i∣
(Ri , j−U i I j)U i

T Gossip matrix I
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Low rank matrix approximation
● Matrix I is relatively small, but 

we might do better

– propagate only those 
columns that change

– Merge received columns to 
local version of I

● So, here we have a local 
complete version of I, in which 
we merge incoming columns 
as they arrive

Um x k Rm x n 

Ik x n

Gossip updated
columns only
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Small MovieLens (1000 users, 1700 movies, 100,000 ratings)
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Additional results

● We implemented multiclass boosting in the 
gossip framework

● We developed techniques for dealing with 
concept drift
– The algorithm is running continuously

– We keep the age distribution of models fixed

– At any point in time we have good models
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The Drifting problem
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How to set the TTL

● We want to control the distribution of model 
ages at time t (A

t
)

● But we can control only the distribution of TTL 
(X)

● The relationship between the two is given by 
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Concept Drift Conclusions

● If the sampling rate is rare relative to drift 
speed, then our algorithm is favorable
– Many improvements are possible, this is the 

“vanilla” version that uses only a single example in 
each cycle for update and uses no model merging

● Some results we did not discuss
– Robustness to failure is good, a slowdown can be 

observed due to slower random walks

– The algorithm is very insensitive to system size
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Remarks regarding 
convergence
● If uniformity of random walk is guaranteed, then all the 

models converge to the true model eventually, 
irrespective of all failures

● If no uniformity can be guaranteed, but the local data 
is statistically independent of the visiting probability, 
then we will have no bias, but variance will increase 
(effectively we work with fewer samples)

● If no uniformity and no independence could be 
guaranteed, convergence to a good model is still 
ensured provided that the data is separable, and all 
misclassified examples are visited “often enough”
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