
Márk Jelasity

University of Szeged and
Hungarian Academy of Sciences

Gossip-based self-organizing
overlay networks

2ELTE, Budapest08/09/23

Motivation
● Massively large scale distributed systems

are now common
– clouds, (desktop) Grid, P2P

● We want them to be efficient, cheap,
available, reliable, robust
– decentralization is often preferred

● Distributed overlay structures are needed
over the nodes
– construction, maintenance, repair

3ELTE, Budapest08/09/23

What is an overlay good for?

● multicasting (replacing IP multicast)
– based on random or tree(ish) overlays

● distributed data structures to support data
storage and lookup
– eg, distributed hash tables

● semantic clustering to enhance keyword
search

● etc

4ELTE, Budapest08/09/23

Overlay Networks

● nodes are processes with access to a
computer network
– overlays are in application layer

● links are defined by “knows-about” relation
– virtual link, can be changed dynamically and

flexibly

– nodes use the network's transport layer
(TCP/UDP) to pass messages based on target
address, possibly passing many routers

5ELTE, Budapest08/09/23

A

F

C

D E

B

Overlay network

Descriptor of C

Descriptor of E

Descriptor of A

View of B:

An overlay network

6ELTE, Budapest08/09/23

Outline

● gossip protocols: the basic skeleton
● “gossip” to build structures

– random networks

– more structured networks such as ring, mesh,
tree, clustering, sorting

● concluding remarks and open questions

7ELTE, Budapest08/09/23

A Gossip Skeleton

● the push-pull model
is sown

● the active thread
initiates
communication
(push) and receives
peer state (pull)

● the passive thread
mirrors this behavior

do once in each T time units at
a random time

p = selectPeer()
send state to p
receive state

p
 from p

state = update(state
p
)

do forever
receive state

p
 from p

send state to p
state = update(state

p
)

active thread

passive thread

8ELTE, Budapest08/09/23

Rumor mongering as an
instance

● state: set of active updates
● selectPeer: a random peer from the

network
– very important component, we get back to this soon

● update: add the received updates to the
local set of updates

● propagation of one given update can be
limited (max k times or with some
probability, etc)

9ELTE, Budapest08/09/23

Peer Sampling and random
overlays

● A key method is selectPeer in all gossip
protocols (influences performance and
reliability)

● In earliest works all nodes had a global
view to select a random peer from
– scalability and dynamism problems

● We use a random overlay, and we
maintain it through gossip
– random overlay has many other applications

10ELTE, Budapest08/09/23

Gossip based peer sampling

● basic idea: random peer samples are provided
by a gossip algorithm: the peer sampling service

● The peer sampling service uses itself as peer
sampling service

● state: a set of random overlay links to peers

● selectPeer: select a peer from the known set of
random peers

● update: (simplified) for example, keep a random
subset of the union of the received and the old
link set

11ELTE, Budapest08/09/23

Gossip based peer sampling

● in reality a huge number of variations exist

– timestamps on the overlay links can be taken into
account: we can select peers with newer links, or
in update we can prefer links that are newer

● these variations represent important differences
w.r.t. fault tolerance and the quality of samples

– the links at all nodes define a random-like overlay
that can have different properties (degree
distribution, clustering, diameter, etc)

– turns out actually not really random, but still good
for gossip

12ELTE, Budapest08/09/23

newscast: going for new
information

● update: keep freshest links
● simulations: N=100 000, view size c=30

– growing: start with no nodes, add 5000 nodes
in each cycle, connecting them to first node
only

– lattice: start with regular lattice

– random: start with c-out random topology

13ELTE, Budapest08/09/23

14ELTE, Budapest08/09/23

15ELTE, Budapest08/09/23

Gossip based topology
management in general

● We saw we can build random networks.
Can we build any network with gossip?

● Yes, many examples

– proximity networks
– DHT-s (Bamboo DHT: maintains Pastry

structure with gossip inspired protocols)
– semantic proximity networks
– etc

16ELTE, Budapest08/09/23

Gossip protocols for topology
management in general

A
D
E

S
X

W

A E

17ELTE, Budapest08/09/23

Gossip protocols for topology
management in general

A
D
E

S
X

W

A E

SelectPeer

18ELTE, Budapest08/09/23

Gossip protocols for topology
management in general

A E

Exchang
e of
views

19ELTE, Budapest08/09/23

Gossip protocols for topology
management in general

A E
Both sides
apply
update

thereby
redefining
topology

20ELTE, Budapest08/09/23

T-Man

● T-MAN is a protocol that captures many of
these in a common framework, with the
help of the ranking method:
– the ranking method orders any set of nodes

according to their desirability to be a neighbor
of some given node

– for example, based on hop count in a target
structure (ring, tree, etc)

– or based on more complicated criteria not
expressible by any distance measure

21ELTE, Budapest08/09/23

Gossip based topology
management

● basic idea: random peer samples are provided
by a gossip algorithm: the peer sampling service

● state: a set of overlay links to peers

● selectPeer: select the peer from the known set of
peers that ranks highest according to the ranking
method

● update: keep those links that point to nodes that
rank highest

● actual algorithm contains some more tricks...

22ELTE, Budapest08/09/23

Initial state Cycle 3 Cycle 5

Cycle 15Cycle 12Cycle 8

23ELTE, Budapest08/09/23

24ELTE, Budapest08/09/23

1

11

12

6
23

3

Sorting Clustering

Sorting and clustering

25ELTE, Budapest08/09/23

Illustration of clustering and sorting

26ELTE, Budapest08/09/23

27ELTE, Budapest08/09/23

28ELTE, Budapest08/09/23

29ELTE, Budapest08/09/23

30ELTE, Budapest08/09/23

31ELTE, Budapest08/09/23

32ELTE, Budapest08/09/23

● T-Man generates a wide range of
topologies

● the convergence is fast
– approx. logarithmic in the number of nodes,
– independently of the topologies we looked at

● not only approximate, but perfect
embedding can be achieved

● applications include communiction
topology, sorting and clustering

T-Man: summary

33ELTE, Budapest08/09/23

Some thoughts
● gossip protocols apply local operators to

reduce global “energy”
– this is true for not only structures:

dissemination and many other applications too

● the operators are applied in a massively
parallel way resulting in quick global
convergence

34ELTE, Budapest08/09/23

Some thoughts
● strong analogies with

– control theory,

– heuristic optimization (simulated annealing,
etc),

– parallel matrix iterations,

– etc

● theoretically very poorly understood!

35ELTE, Budapest08/09/23

Aggregation

● Calculate a global function over distributed data

– eg average, but more complex examples include
variance, network size, model fitting, etc

● usual structured/unstructured approaches exist

– structured: create an overlay (eg a tree) and use
that to calculate the function hierarchically

– unstructured: design a stochastic iteration
algorithm that converges to what you want
(gossip)

● we look at gossip here

36ELTE, Budapest08/09/23

Implementation of aggregation

● state: current approximation of the average
– initially the local value held by the node

● selectPeer: a random peer (based on peer
sampling service)

● updateState(s
1
,s

2
)

– (s
1
+s

2
)/2: result in averaging

– (s
1
s

2
)1/2: results in geometric mean

– max(s
1
,s

2
): results in maximum, etc

37ELTE, Budapest08/09/23

Illustration of averaging

12

8

7

2

6

3

38ELTE, Budapest08/09/23

Illustration of averaging

12

8

7

2

6

3

(12+6)/2=9

39ELTE, Budapest08/09/23

Illustration of averaging

9

8

7

2

9

3

40ELTE, Budapest08/09/23

Initial state Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5

Illustration of averaging

