How to build large scale
distributed systems on self-
organization”?

Mark Jelasity

University of Szeged and
Hungarian Academy of Sciences

Motivation

Massively large scale distributed systems
are now common

- clouds, (desktop) Grid, P2P

We want them to be cheap, available,
reliable, robust

bottom-up self-organization (emergence) is
a promising mindset to try here (cheap,
robust, etc)

But how to build systems out of it?

Outline

* What is a self-organizing service”? Why
self-organization?

 Examples of such services

- gossip based overlays and monitoring
 How to combine such services?

 An example application
- heuristic global optimization
 Toward a general purpose architecture

non-self-organizing
self-management

" The autonomic

computing / \
architecture starts .

from the premise that
implementing self-
managing attributes

involves an intelligent
control loop” [Resource }

An architectural \\ /
blueprint for

autonomic computing,
IBM

0KR/09/05 DAPSYS 2008. Debhrecen 4

measure
control

self-managing resource

Self-organization

« N O N
| esarce @

\\ Resource / \\ /

self-organizing resource control loop

control

measure

0KR/09/05 DAPSYS 2008. Debhrecen 5

comparison of bottom-up and
top-down self-management

* emergence
e extreme simplicity

* no explicit knowledge

(representation)
* no explicit decisions
* no separation of

manager/managed at

any level
* |low predictability (?)

0K/09/05

ML, Al (even GOFAI):
symbolic approach

high (extreme?)
complexity

knowledge based, often
explicit conceptual, rule
based knowledge
representation (policy)

separation of managed
entity and manager
(homunculus)

predictability (?)

DAPSYS 2008. Debrecen

Some comments on self-
organization

Not a universal solution, probably appropriate in very
large scale, highly dynamic, highly distributed systems

Potentially robust and scalable
Much easier to implement

Therefore computer architectures do not become orders
of magnitude more complex (like in autonomic
computing)

Potentially more efficient and effective
Has its open problems too:
- predictability and controllability
- new design philosophy: not a gradual transition

0R/09/05 DAPSYS 2008. Debrecen

The trust problem

End users and administrators can hardly trust
emergent systems because

» often there is no hard guarantee they do what they
supposed to

« even when there is scientifically established guarantee,
there is no sense of understanding: human cognitive
gap between microscopic and macroscopic behavior

» there is no sense of control (due to cognitive gap): what
action is necessary to achieve X?

0R/09/05 DAPSYS 2008. Debrecen

Combining components

* Let us make the grassroots protocols managable
through modularity

- simple components (building blocks, services) for a
specific simple function

— due to simplicity they can be understood scientifically
with a larger chance of success

- they can be thoroughly understood, described and
explained to non-researchers

- they can be combined (now in a non-emergent
manner) to form new, more complex functions
keeping the benefits of simplicity, robustness and
scalability

0OKR/09/05 DAPSYS 2008 Debrecen

A Gossip Skeleton

 Originally for information dissemination in a very
simple but efficient and reliable way

« Later the gossip approach has been generalized
resulting in many local probabilistic and periodic
protocols

« we will introduce a simple common skeleton and
look at

- information dissemination
- topology construction
- aggregation

0K/09/05 DAPSYS 2008. Debhrecen 10

A Gossip Skeleton

e the push-pull model doonce in each T time units at

IS sown

e the active thread
Initiates
communication

a random time
p = selectPeer()
send state to p
receive stateID from p

state = update(statep)
active thread

(push) and receives 4, forever

peer state (pull)

receive statep from p
send state to p

e the passive thread state = update(state)

mirrors this behavior

0KR/09/05

passive thread

DAPSYS 2008. Debrecen

11

Rumor mongering as an
iInstance
» state: set of active updates

» selectPeer: a random peer from the
network

- very important component, we get back to this soon

* update: add the received updates to the
local set of updates

* propagation of one given update can be
limited (max k times or with some
probability, as we have seen, etc)

0R/09/05 DAPSYS 2008. Debrecen

12

Peer Sampling

* A key method is selectPeer in all gossip
protocols (influences performance and
reliability)

* |n earliest works all nodes had a global
view to select a random peer from

- scalability and dynamism problems

0R/09/05 DAPSYS 2008. Debrecen

13

Gossip based peer sampling

basic idea: random peer samples are provided
by a gossip algorithm: the peer sampling service

The peer sampling service uses itself as peer
sampling service (bootstrapping)

- no need for fixed (external) network
state: a set of random overlay links to peers

selectPeer: select a peer from the known set of
random peers

update: for example, keep a random subset of
the union of the received and the old link set

0R/09/05 DAPSYS 2008. Debrecen

14

Overlay Networks

e Most problems boil down to building and maintaining
overlay networks: the protocols then are simple
- peer sampling: random overlay

— bootstrapping: arbitrary overlay

e overlay networks
- Nodes are computing devices connected to a
computer network

- Neighbours are defined by the "knows-about” relation
(NOT physical neighbors in the network).

e Can be easily adapted (unlike physical networks)
by simply exchanging information

0KR/09/05 DAPSYS 200K. Debrecen 15

An overlay network

Overlay NEIWOrK oo

=
=8

N
S
N
N\
N
N
S
S
N
N
N
N
N
S

0KR/09/05 DAPSYS 2008. Debhrecen 16

View of B:

Descriptor of A

Descriptor of C

Descriptor of E

Gossip protocols for topology

management

0 N 7 - N
A / E

D

= //

X

S

W s
N /\ N /

0KR/09/05 DAPSYS 2008. Debhrecen

Gossip protocols for topology

managemen "
£ v) i
A . / :

D B

f(| SelectPeer

S

W s
\ /\ i :

0KR/09/05 DAPSYS 2008. Debhrecen

Gossip protocols for topology

‘A

\

~

~

management
B
Exchang
e of
views
\

0KR/09/05

DAPSYS 2008. Debrecen

19

Gossip protocols for topology
management

a8 N - N
& Both sides E
apply
update

thereby
redefining
topology

- / - /

0KR/09/05 DAPSYS 2008. Debhrecen

Gossip based peer sampling

* in reality a huge number of variations exist

- timestamps on the overlay links can be taken into
account: we can select peers with newer links, or
in update we can prefer links that are newer

« these variations represent important differences
w.r.t. fault tolerance and the quality of samples

- the links at all nodes define a random-like overlay
that can have different properties (degree
distribution, clustering, diameter, etc)

— turns out actually not really random, but still good
for gossip

0KR/09/05 DAPSYS 200K. Debrecen 21

Gossip based topology
management

* \WWe saw we can build random networks.
Can we build any network with gossip?

* Yes, many examples

— proximity networks

- DHT-s (Bamboo DHT: maintains Pastry
structure with gossip inspired protocols)

- semantic proximity networks
- etc

0KR/09/05 DAPSYS 200K. Debrecen 27

T-Man

 T-MAN is a protocol that captures many of
these in a common framework, with the

help of the ranking method:

- ranking is able to order any set of nodes
according to their desirability to be a neighbor

of some given node

- for example, based on hop count in a target
structure (ring, tree, etc)

- or based on more complicated criteria not
expressible by any distance measure

0KR/09/05 DAPSYS 200K. Debrecen 23

Gossip based topology
management

e basic idea: random peer samples are provided
by a gossip algorithm: the peer sampling service

» state: a set of overlay links to peers

» selectPeer: select the peer from the known set of
peers that ranks highest according to the ranking
method

« update: keep those links that point to nodes that
rank highest

0KR/09/05 DAPSYS 2008. Debhrecen 24

26

DAPSYS 2008. Debrecen

0KR/09/05

What can be bootstrapped?

Oy O
e

Sorting Clustering

lllustration of clustering and sorting

T TP e

Lt e | | i

)]

WA
]
ANAR,

y

A

Af
[1]
VWA

A

S LT Ly T T 1

P et B

I/
11/

A

TS T T o T TR o e el 1]

I o = L Iy

Aggregation

« Calculate a global function over distributed data

- eg average, but more complex examples include
variance, network size, model fitting, etc

e usual structured/unstructured approaches exist

- structured: create an overlay (eg a tree) and use
that to calculate the function hierarchically

— unstructured: design a stochastic iteration
algorithm that converges to what you want

(gossip)
* we look at gossip here

0KR/09/05 DAPSYS 200K. Debrecen 29

Implementation of aggregation

» state: current approximation of the average
— Initially the local value held by the node
» selectPeer: a random peer (based on peer
sampling service)
. updateState(s_,s)

- (s,*s,)/2: result in averaging

- (s,s,)": results in geometric mean

- max(s,,s,): results in maximum, etc

0KR/09/05 DAPSYS 2008. Debhrecen 30

0KR/09/05

lllustration of averaging

@\ /@\@

b
.

DAPSYS 2008. Debrecen

31

0KR/09/05

lllustration of averaging

(12+6)/2=9

DAPSYS 2008. Debrecen

3?2

0K/09/05

lllustration of averaging

@\ /@\@

b
.

DAPSYS 2008. Debrecen

33

lllustration of averaging

Initial state

Cycle 1

Cycle 2

Cycle 3

Cycle 5

0K/09/05

DAPSYS 2008. Debrecen

34

Dependency of gossip based
components

structured topology .
[T-Man] [data aggregation }

\

unstructured topology
newscast

0KR/09/05 DAPSYS 2008. Debhrecen

35

An example application

» Parallel heuristic optimization (eg genetic
algorithms) on large grid

 Many possibilities for our approach eg

- base selection on global statistics (calculated
using aggregation)

- implement a competition mechanism for
alternative algorithms to automatically find the
best algorithm for a given problem

0KR/09/05 DAPSYS 200K. Debrecen 36

Competition of algorithms

| 1 1
S = ; j\/fi? Pz' = (){S]\/ji | (1 — O/)E

- M is a performance measure of alg. i; alpha is to
avoid an unbalanced distr.

Ns

 all nodes calculate this distribution locally using
aggregation (on top of peer sampling) and switch
algorithms locally

« other applications where competition needs to be
Implemented

0KR/09/05 DAPSYS 2008. Debhrecen 37

Toward a generic infrastructure

« P2P * Grid
- ad hoc group - more control over
» independent resources
 uncontrolled - general purpose
- fixed purpose (middleware)
- very large-scale - not as large-scale
~ dynamic - not as dynamic

0OKR/09/05 DAPSYS 2008 Debrecen

38

Crossover

. P2P

- ad hoc group

e independent
e uncontrolled

- fixed purpose

- very large-scale

- dynamic
— unreliable

0KR/09/05

e Grid
— more control over
resources

- general purpose
(middleware)

- not as large-scale
- not as dynamic
- not as unreliable

DAPSYS 2008 Debrecen

39

Scenario from a user's point of
view
« User prepares application against an API

 API contains calls to services such as search,
multicast, aggregation, monitoring, etc

« User is assigned a P2P network which supports the
services needed by the application

» assigned network is a real P2P network:
dynamic, unreliable, maybe very large-scale,
etc

e but with the required services and contracts
« User executes the application

 The P2P network that was assigned is recycled

0OKR/09/05 DAPSYS 2008 Debrecen

How to support this?

* A global pool needs to be maintained

e Partitions of this pool need to be separated
and assigned

* The infrastructure that implements the
services over the given partition needs to
be built

* The application of the user needs to be
executed

e Cleanup needs to be performed

0KR/09/05 DAPSYS 2008. Debhrecen 41

The global pool

* requirements

— provide a group abstraction
- minimal functionality but
- extremely reliable and robust

e solution

- peer sampling service abstraction

0OKR/09/05 DAPSYS 2008 Debrecen

47

The creation of partitions

* partitions also
Implement peer
sampling service 1 | i1

- recursive structure m
i O
e partitions are
abstract and
maintained (filled L)

in) dynamically by
actual set of nodes

user user user user

O ® Oe
80000 O

0KR/09/05 DAPSYS 200K. Debrecen 43

The creation of partitions

* in a self-organizing way using gossip-
based slicing (not discussed here)

e Partitions can be

- constantly created and dissolved on demand

— even when the set of partitions is constant,
they can change due to

e churn
» changing properties of nodes

- The main challenge is this dynamism

0OKR/09/05 DAPSYS 2008 Debrecen

44

Building the architecture

* the applications will user user User user
need services, T 1t 11
such as a DHT or

proximity overlay B

* we need to build ®
those on top of the ®
respective
partitions (ie, the L] ®
peer sampling S0%0e Oy ®

service)

0KR/09/05 DAPSYS 200K. Debrecen 45

Building the architecture

* achieved through the bootstraping service

- P2P services are based on overlay networks

- the bootstrapping service must build arbitrary
overlay networks (semantic, proximity, several
DHT-s, etc) quickly, reliably and cheaply

- should rely only on the peer sampling service

 we implement it based on a gossiping
scheme as well, very similarly to the peer
sampling service (T-Man)

0KR/09/05 DAPSYS 200K. Debrecen 46

Executing the application

 just vague ideas

— gossip-based content distribution to spread
the clients

- start them all in a reasonable interval (self-
organizing synchronization)

- monitoring, administration, etc...

0OKR/09/05 DAPSYS 2008 Debrecen

47

Cleaning up

* The easiest: do nothing

— all constructs are disposable, the nodes
involved in the partition will automatically join
other partitions when their partition is removed

0KR/09/05 DAPSYS 200K. Debrecen 4K

Summary

 Massively large scale systems need innovative
techniques to cope with scale and other
requirements

- Eg Amazon already uses gossip algorithms, etc

 We have outlined some ideas on how to build
relatively complex, but still self-organizing (and
therefore robust, cheap) applications out of
components

* \We suggested some ideas for a generic infrastucture
as well

0K/09/05 DAPSYS 2008. Debhrecen 49

