
Márk Jelasity

University of Szeged and
Hungarian Academy of Sciences

How to build large scale
distributed systems on self-

organization?

Motivation

● Massively large scale distributed systems
are now common
– clouds, (desktop) Grid, P2P

● We want them to be cheap, available,
reliable, robust

● bottom-up self-organization (emergence) is
a promising mindset to try here (cheap,
robust, etc)

● But how to build systems out of it?

Outline

● What is a self-organizing service? Why
self-organization?

● Examples of such services
– gossip based overlays and monitoring

● How to combine such services?
● An example application

– heuristic global optimization

● Toward a general purpose architecture

4DAPSYS 2008, Debrecen08/09/05

``The autonomic
computing
architecture starts
from the premise that
implementing self
managing attributes
involves an intelligent
control loop’’

An architectural
blueprint for
autonomic computing,
IBM

Decide

Resource

co
nt

ro
l

m
ea

su
re

selfmanaging resource

non-self-organizing
self-management

5DAPSYS 2008, Debrecen08/09/05

selforganizing resource

Resource

Self-organization

Decide

Resource

co
nt

ro
l

m
ea

su
re

control loop

6DAPSYS 2008, Debrecen08/09/05

comparison of bottom-up and
top-down self-management

● emergence
● extreme simplicity
● no explicit knowledge

(representation)
● no explicit decisions
● no separation of

manager/managed at
any level

● low predictability (?)

● ML, AI (even GOFAI):
● symbolic approach
● high (extreme?)

complexity
● knowledge based, often

explicit conceptual, rule
based knowledge
representation (policy)

● separation of managed
entity and manager
(homunculus)

● predictability (?)

7DAPSYS 2008, Debrecen08/09/05

Some comments on self-
organization

● Potentially robust and scalable
● Much easier to implement
● Therefore computer architectures do not become orders

of magnitude more complex (like in autonomic
computing)

● Potentially more efficient and effective
● Has its open problems too:

– predictability and controllability
– new design philosophy: not a gradual transition

Not a universal solution, probably appropriate in very
large scale, highly dynamic, highly distributed systems

8DAPSYS 2008, Debrecen08/09/05

● often there is no hard guarantee they do what they
supposed to

● even when there is scientifically established guarantee,
there is no sense of understanding: human cognitive
gap between microscopic and macroscopic behavior

● there is no sense of control (due to cognitive gap): what
action is necessary to achieve X?

End users and administrators can hardly trust
emergent systems because

The trust problem

9DAPSYS 2008, Debrecen08/09/05

● Let us make the grassroots protocols managable
through modularity
– simple components (building blocks, services) for a

specific simple function
– due to simplicity they can be understood scientifically

with a larger chance of success
– they can be thoroughly understood, described and

explained to non-researchers
– they can be combined (now in a non-emergent

manner) to form new, more complex functions
keeping the benefits of simplicity, robustness and
scalability

Combining components

10DAPSYS 2008, Debrecen08/09/05

A Gossip Skeleton
● Originally for information dissemination in a very

simple but efficient and reliable way

● Later the gossip approach has been generalized
resulting in many local probabilistic and periodic
protocols

● we will introduce a simple common skeleton and
look at

– information dissemination

– topology construction

– aggregation

11DAPSYS 2008, Debrecen08/09/05

A Gossip Skeleton

● the push-pull model
is sown

● the active thread
initiates
communication
(push) and receives
peer state (pull)

● the passive thread
mirrors this behavior

do once in each T time units at
a random time

p = selectPeer()
send state to p
receive state

p
 from p

state = update(state
p
)

do forever
receive state

p
 from p

send state to p
state = update(state

p
)

active thread

passive thread

12DAPSYS 2008, Debrecen08/09/05

Rumor mongering as an
instance

● state: set of active updates
● selectPeer: a random peer from the

network
– very important component, we get back to this soon

● update: add the received updates to the
local set of updates

● propagation of one given update can be
limited (max k times or with some
probability, as we have seen, etc)

13DAPSYS 2008, Debrecen08/09/05

Peer Sampling

● A key method is selectPeer in all gossip
protocols (influences performance and
reliability)

● In earliest works all nodes had a global
view to select a random peer from
– scalability and dynamism problems

14DAPSYS 2008, Debrecen08/09/05

Gossip based peer sampling

● basic idea: random peer samples are provided
by a gossip algorithm: the peer sampling service

● The peer sampling service uses itself as peer
sampling service (bootstrapping)

– no need for fixed (external) network
● state: a set of random overlay links to peers

● selectPeer: select a peer from the known set of
random peers

● update: for example, keep a random subset of
the union of the received and the old link set

15DAPSYS 2008, Debrecen08/09/05

● Most problems boil down to building and maintaining
overlay networks: the protocols then are simple
– peer sampling: random overlay

– bootstrapping: arbitrary overlay

● overlay networks
– Nodes are computing devices connected to a

computer network

– Neighbours are defined by the “knows-about” relation
(NOT physical neighbors in the network).

● Can be easily adapted (unlike physical networks)
by simply exchanging information

Overlay Networks

16DAPSYS 2008, Debrecen08/09/05

A

F

C

D E

B

Overlay network

Descriptor of C

Descriptor of E

Descriptor of A

View of B:

An overlay network

17DAPSYS 2008, Debrecen08/09/05

Gossip protocols for topology
management

A
D
E

S
X

W

A E

18DAPSYS 2008, Debrecen08/09/05

Gossip protocols for topology
management

A
D
E

S
X

W

A E

SelectPeer

19DAPSYS 2008, Debrecen08/09/05

Gossip protocols for topology
management

A E

Exchang
e of
views

20DAPSYS 2008, Debrecen08/09/05

Gossip protocols for topology
management

A E
Both sides
apply
update

thereby
redefining
topology

21DAPSYS 2008, Debrecen08/09/05

Gossip based peer sampling

● in reality a huge number of variations exist

– timestamps on the overlay links can be taken into
account: we can select peers with newer links, or
in update we can prefer links that are newer

● these variations represent important differences
w.r.t. fault tolerance and the quality of samples

– the links at all nodes define a random-like overlay
that can have different properties (degree
distribution, clustering, diameter, etc)

– turns out actually not really random, but still good
for gossip

22DAPSYS 2008, Debrecen08/09/05

Gossip based topology
management

● We saw we can build random networks.
Can we build any network with gossip?

● Yes, many examples

– proximity networks
– DHT-s (Bamboo DHT: maintains Pastry

structure with gossip inspired protocols)
– semantic proximity networks
– etc

23DAPSYS 2008, Debrecen08/09/05

T-Man

● T-MAN is a protocol that captures many of
these in a common framework, with the
help of the ranking method:
– ranking is able to order any set of nodes

according to their desirability to be a neighbor
of some given node

– for example, based on hop count in a target
structure (ring, tree, etc)

– or based on more complicated criteria not
expressible by any distance measure

24DAPSYS 2008, Debrecen08/09/05

Gossip based topology
management

● basic idea: random peer samples are provided
by a gossip algorithm: the peer sampling service

● state: a set of overlay links to peers

● selectPeer: select the peer from the known set of
peers that ranks highest according to the ranking
method

● update: keep those links that point to nodes that
rank highest

25DAPSYS 2008, Debrecen08/09/05

Initial state Cycle 3 Cycle 5

Cycle 15Cycle 12Cycle 8

26DAPSYS 2008, Debrecen08/09/05

27DAPSYS 2008, Debrecen08/09/05

1

11

12

6
23

3

Sorting Clustering

What can be bootstrapped?

28DAPSYS 2008, Debrecen08/09/05

Illustration of clustering and sorting

29DAPSYS 2008, Debrecen08/09/05

Aggregation

● Calculate a global function over distributed data

– eg average, but more complex examples include
variance, network size, model fitting, etc

● usual structured/unstructured approaches exist

– structured: create an overlay (eg a tree) and use
that to calculate the function hierarchically

– unstructured: design a stochastic iteration
algorithm that converges to what you want
(gossip)

● we look at gossip here

30DAPSYS 2008, Debrecen08/09/05

Implementation of aggregation

● state: current approximation of the average
– initially the local value held by the node

● selectPeer: a random peer (based on peer
sampling service)

● updateState(s
1
,s

2
)

– (s
1
+s

2
)/2: result in averaging

– (s
1
s

2
)1/2: results in geometric mean

– max(s
1
,s

2
): results in maximum, etc

31DAPSYS 2008, Debrecen08/09/05

Illustration of averaging

12

8

7

2

6

3

32DAPSYS 2008, Debrecen08/09/05

Illustration of averaging

12

8

7

2

6

3

(12+6)/2=9

33DAPSYS 2008, Debrecen08/09/05

Illustration of averaging

9

8

7

2

9

3

34DAPSYS 2008, Debrecen08/09/05

Initial state Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5

Illustration of averaging

35DAPSYS 2008, Debrecen08/09/05

Dependency of gossip based
components

structured topology
TMan

data aggregation

load balancing
unstructured topology

newscast

monitoring

control

clustering

sortingsearch

36DAPSYS 2008, Debrecen08/09/05

An example application

● Parallel heuristic optimization (eg genetic
algorithms) on large grid

● Many possibilities for our approach eg
– base selection on global statistics (calculated

using aggregation)

– implement a competition mechanism for
alternative algorithms to automatically find the
best algorithm for a given problem

37DAPSYS 2008, Debrecen08/09/05

Competition of algorithms

● M
i
 is a performance measure of alg. i; alpha is to

avoid an unbalanced distr.

● all nodes calculate this distribution locally using
aggregation (on top of peer sampling) and switch
algorithms locally

● other applications where competition needs to be
implemented

38DAPSYS 2008, Debrecen08/09/05

Toward a generic infrastructure

● P2P
– ad hoc group

● independent
● uncontrolled

– fixed purpose

– very large-scale

– dynamic

– unreliable

● Grid
– more control over

resources

– general purpose
(middleware)

– not as large-scale

– not as dynamic

– not as unreliable

39DAPSYS 2008, Debrecen08/09/05

Crossover

● P2P
– ad hoc group

● independent
● uncontrolled

– fixed purpose

– very large-scale

– dynamic

– unreliable

● Grid
– more control over

resources

– general purpose
(middleware)

– not as large-scale

– not as dynamic

– not as unreliable

40DAPSYS 2008, Debrecen08/09/05

Scenario from a user's point of
view

● User prepares application against an API

● API contains calls to services such as search,
multicast, aggregation, monitoring, etc

● User is assigned a P2P network which supports the
services needed by the application

● assigned network is a real P2P network:
dynamic, unreliable, maybe very large-scale,
etc

● but with the required services and contracts
● User executes the application

● The P2P network that was assigned is recycled

41DAPSYS 2008, Debrecen08/09/05

How to support this?

● A global pool needs to be maintained
● Partitions of this pool need to be separated

and assigned
● The infrastructure that implements the

services over the given partition needs to
be built

● The application of the user needs to be
executed

● Cleanup needs to be performed

42DAPSYS 2008, Debrecen08/09/05

The global pool

● requirements
– provide a group abstraction

– minimal functionality but

– extremely reliable and robust

● solution
– peer sampling service abstraction

43DAPSYS 2008, Debrecen08/09/05

The creation of partitions

● partitions also
implement peer
sampling service
– recursive structure

● partitions are
abstract and
maintained (filled
in) dynamically by
actual set of nodes

user useruseruser

44DAPSYS 2008, Debrecen08/09/05

The creation of partitions

● in a self-organizing way using gossip-
based slicing (not discussed here)

● Partitions can be
– constantly created and dissolved on demand

– even when the set of partitions is constant,
they can change due to

● churn
● changing properties of nodes

– The main challenge is this dynamism

45DAPSYS 2008, Debrecen08/09/05

Building the architecture

● the applications will
need services,
such as a DHT or
proximity overlay

● we need to build
those on top of the
respective
partitions (ie, the
peer sampling
service)

user useruseruser

46DAPSYS 2008, Debrecen08/09/05

Building the architecture

● achieved through the bootstraping service
– P2P services are based on overlay networks

– the bootstrapping service must build arbitrary
overlay networks (semantic, proximity, several
DHT-s, etc) quickly, reliably and cheaply

– should rely only on the peer sampling service

● we implement it based on a gossiping
scheme as well, very similarly to the peer
sampling service (T-Man)

47DAPSYS 2008, Debrecen08/09/05

Executing the application

● just vague ideas
– gossip-based content distribution to spread

the clients

– start them all in a reasonable interval (self-
organizing synchronization)

– monitoring, administration, etc...

48DAPSYS 2008, Debrecen08/09/05

Cleaning up

● The easiest: do nothing
– all constructs are disposable, the nodes

involved in the partition will automatically join
other partitions when their partition is removed

49DAPSYS 2008, Debrecen08/09/05

Summary

● Massively large scale systems need innovative
techniques to cope with scale and other
requirements

– Eg Amazon already uses gossip algorithms, etc
● We have outlined some ideas on how to build

relatively complex, but still self-organizing (and
therefore robust, cheap) applications out of
components

● We suggested some ideas for a generic infrastucture
as well

