Using Epidemics and Diffusion for Decentralized Monitoring and Control of Fully Distributed Systems

Márk Jelasity
Department of Computer Science
University of Bologna
Italy

Project funded by the Future and Emerging Technologies arm of the IST Programme
Outline

- System Model
- Epidemics
- Diffusion
- Applications
System Model
Components

- Nodes
- Random Communication

Topology

- Neighbors ("knows about" relation)
- Maintained by specific protocols
Push-Pull Protocol Skeleton

// active thread
do forever
 wait(T time units)
 peer = selectRandomNeighbor()
 send state to peer
 receive peer.state from peer
 state = updateState(state, peer.state)

// passive thread
do forever
 (peer, peer.state) = waitMessage()
 send state to peer
 state = updateState(state, peer.state)
Some comments

- A cellular automaton-like model
 - cycles (each T time units interval)
 - state updates based on neighborhood state
- But: topology is
 - random (not regular, low diameter)
 - can be dynamically changing over time
 - maintained by protocols that can deal with
 - node failure
 - new nodes joining the network
Epidemics
Basic operation
Basic operation

A new node gets infected
Basic operation
Basic operation

And so on...
Some Examples

- Epidemics for database updates
 - state: infected or not. Infected state means knowing a new piece of information
 - updateState(s1, s2): if any of s1 or s2 is infected, new state is infected

- Epidemics for finding a maximal value
 - state: the maximal value seen so far
 - updateState(s1,s2):= max(s1,s2)
Convergence speed

In the push pull model the following is a good approximation of the superexponential convergence speed

\[p_{i+1} = p_i p_i \left(1 - \frac{1}{N}\right)^{N(1-p_i)} < p_i^2 < p_0^{2^{i+1}} = \left(1 - \frac{1}{N}\right)^{2^{i+1}} \]
Diffusion
Basic operation
Basic operation

\[(10+2)/2=6\]
Basic operation
Basic operation

\[(16+4)/2=10\]
Some Examples

- Diffusion for calculating the average
 - state: current approximation of average in the whole system
 - updateState(s1, s2):= (s1+s2)/2
- Diffusion has lots of other applications including
 - network size estimation
 - calculating variance (or any moments)
Some Comments

- Different from load balancing due to lack of constraints
- Diffusion is normally studied on regular topologies (grid)
- We are interested in realistic topologies: random, small-world, scale-free, etc.
- Diffusion is often the basis of biological self-organization like aggregation (2nd sense) and regeneration
Some Observations

- The procedure is convergent if the graph is connected
- Each node converges to the average of the original values
Summary of Our Theoretical Results

- On the fully connected topology convergence speed is exponential.
- On a random topology it is practically exponential.
- Node failure can destroy convergence above a theoretically described threshold.
- Dropping messages is not critical.
The rate of convergence is given by the formula

$$E(\sigma_{i+1}^2) \approx \frac{E(\sigma_i^2)}{2\sqrt{e}}$$

Where σ_i^2 is the empirical variance of the set of the approximations at the nodes in cycle i.
Conclusions

- Scalability: results independent of N
- Efficiency: convergence is very fast
- Robustness: the algorithm is highly robust to both node and message failure (not discussed in the present talk)
Applications
Epidemics: some examples

- Critical Event Monitoring
 - All nodes monitor their environment (temperature, amount of communication, available storage, etc)
 - Critical events are treated as
 - database updates (when all are interesting)
 - maximization problem (when the most critical is important)

- Control
 - All nodes forward commands
 - Commands are treated as database updates
Diffusion: some examples

- Calculating variance
 - calculate the average of the squares of the values and use it along with the average to approximate variance

- Calculating sum of values
 - calculate the average and multiply it by the size of the network

- Calculating network size
 - we will focus on this example in the following
Diffusion: a case study

- Network size estimation
 - one node is assigned value 1, all the others are assigned 0
 - the average is calculated which is $a=1/N$.
 - the estimation of the size is $1/a$

- Practical Extensions
 - restarting in regular intervals (epochs): to make the protocol adaptive
 - initial value assignment
We need to make sure exactly one node starts with 1, the rest with 0. Solution: parallel execution of approximations.

- With a probability P each node can start an approximation process. P is a previous approximation of $1/N$.
- The initiator node starts with 1 and assigns a unique ID to the approximation process. The other (passive) nodes will assume 0 initial value for all IDs not initiated by themselves.