
Gossip Protocols

Márk Jelasity

Hungarian Academy of Sciences and
University of Szeged, Hungary

2RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Introduction
● Gossip-like phenomena are commonplace

– human gossip

– epidemics (virus spreading, etc)

– computer epidemics (malicious agents: worms, viruses)

– phenomena such as forest fires, branching processes
and diffusion are all similar mathematically

● extremely simple locally, powerful and robust globally

● In computer science, epidemics are relevant

– for security (against worms and viruses)

– for designing useful protocols (we look at this here)

3RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Outline
● Information dissemination

– Seminal work by Demers et al (1987), that first
coined the term gossip and epidemic protocols

– A few words on random and complex networks

● Generalizations of gossip protocols for
– peer sampling

– topology maintenance

– data aggregation

– modular architectures

● Problems, directions

4RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

● Problem
– Xerox corporate Internet, replicated databases
– Each database has a set of keys that have values (along with a

time stamp)
– Goal: all databases are the same, in the face of key updates,

removals and additions
– Updates are made locally and have to be replicated at all sites

(300 sites)
● Solution in 1986: emailing updates

– problems with detecting and correcting errors (done by hand!)
– bottleneck with the originating (updated) site
– not scalable (slow if very large number of nodes)
– (message complexity quite good though!)

Epidemic Database Updates

5RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Gossip to the rescue
● Main components are replaced by gossip

– update spreading: rumor mongering (no bottleneck)

– error correction: anti-entropy gossip (reliable)
● anti-entropy

– uses “simple epidemics” with two states: infective and
susceptible (a.k.a. SI model)

– guarantees perfect dissemination
● rumor mongering

– uses “complex epidemics” with an additional state:
removed (a.k.a. SIR model)

– certain (quite small) probability of error

6RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Some Properties of the SI model
● the push model

– N nodes communicate in rounds (cycles)

– in each cycle, a node that has the update (infected)
sends it to a random other node, that becomes infected
too

● In anti-entropy
– nodes send the (hash of) the entire database (not only

a single update)
● as a side effect, all new updates are spread

according to the SI model
– receiving nodes update their own database via merging

the unseen updates

7RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Mean-field model of push SI

● Let pi be the proportion of not infected nodes
in cycle i

● 1-p
0
=1/N

● Pittel (1987) shows that the model below is
quite accurate for predicting p

i

E p i1=pi 1− 1
N 

N 1−p i

≈p i e
−1−p i

8RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Speed and cost of push SI

● Let S
N
 be the first cycle where p

i
=0

● Pittel (1987) shows that in probability

SN=log N ln N O 1

● This is quite fast...
● But the number of overall messages sent is

O N logN 

9RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Pull and push-pull SI

● With pull, we have

● This is very fast when p
i
 is small (end phase)...

● Karp et al (2000) show that the number of
overall messages sent with push-pull is

O N loglogN 

E p i1=pi
2

● But termination is trickier when no updates are
available (for anti-entropy does not matter)

10RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

SIR for spreading single updates
● For anti-entropy, use a pull or push-pull SI modell

● For the spreading of updates, the termination problem
needs to be addressed: rumor mongering with SIR
model

● Push approach

– when a rumor (update) becomes “cold”, stop
pushing

● Pull approach

– same as push, only stop offering update when
pulled when it becomes cold

11RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

● Stop spreading info with
probability 1/k if
unsuccessful infection
attempt (become removed)

● s: susceptible, i: infective, r:
removed

● Eg if k=1, 20% miss the
gossip, if k=2, 6% miss it
– In general, with push, the prob

to miss the update is approx e­m

(m is the overall messages)

ds
dt

=−si

di
dt

=si−
1
k
1−s  i

 s=e−k11−s 

Rumor mongering with push

12RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Some other rumor mongering
algorithms

● Removal algorithms
– Counter: removed after exactly k

unsuccessful attempts
– Random: removed with pr. 1/k after each

unsuccessful attempt
● Blind: removal algorithm is run in each cycle

irrespective of contacted node
● Feedback: removal algorithm runs if contacted

node was not susceptible

13RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Some empirical results
(1000 nodes)

Feedback+
Counter+
pull

Blind+
Random+
push

Feedback+
Counter+
push

14RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Summary
● Spreading updates: email or rumor mongering?

– both focus on a single update that eventually stops
spreading

– both have a certain probability of error

– gossip has no bottleneck but it generates more
messages in total

– gossip is much cheaper to restart (dies out quickly if
update is already known by most nodes)

● Anti-entropy gossip
– very expensive because looks at entire database

– but fixes any distribution errors with prob. 1

15RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Combining anti-entropy and rumor
mongering

● Rumor mongering is used to spread updates
● Anti-entropy is run infrequently to make sure

all updates are spread with pr. 1
● When anti-entropy finds an undelivered

update: redistribution
– Redistribution is done via rumor mongering too

● Various additional tricks to deal with removals
(death certificates), etc.

16RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Random networks

● Note that gossiping nodes pick another node in
each cycle: they do not need to know all the
nodes

● The actual communication pattern defines a
random graph
– by looking at these graphs, we can understand the

properties of the communication better

– we can design better gossip protocols if we
understand the implications of our design decisions

17RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

● Often used to reason about gossip protocols
● Simple undirected graph GN,p

● Parameters
– N: number of nodes
– p: probability of connecting any pairs of nodes

● Algorithm
– Start with empty graph of N nodes
– Draw all N(N-1)/2 possible edges with probability p

● Stats of degree of a fixed node i
– <ki>=p(N-1), ki has binomial distr, approx Poisson

The Erdős-Rényi model

18RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

● For gossip this is critical: can we reach all
nodes using a given communication pattern?

● Let’s look at connectivity as a function of p
– AKA “graph evolution”: when we keep adding

edges
● Note that if p grows slower than 1/N, the graph

is a disconnected collection of small (constant
size) components

● If p~1/N, avg node degree <k> is constant,
cycles of all order have finite probability
– What’s going on if <k> is constant?

Connectivity

19RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

● 0< <k> <1
– One cycle, otherwise trees, the larges being O(ln N) size
– The number of clusters is N-n (ie each new edge connects

two clusters)
● <k>=1

– Critical value: largest cluster is suddenly O(N2/3), with
complex structure

● <k> >1
– The largest cluster is of size (1-f(<k>))N nodes where f

decreases exponentially
● If <k> >= ln N, completely connected (but here the avg

degree grows with N)
– Does this mean we need O(log N) neighbors to gossip

to? In other words, is this a good model?

The case when p~1/N

20RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

● ki the degree of fixed node
– ki is binomial (Bin(N-1,p))

● Degree distribution: the degree of a random
node from a random graph
– xk: number of nodes with degree k
– <xk>=NP(ki=k)
– Distribution of xk has very low variance
– So it is a reasonable assumption to say that a

random graph GN,p has very close to binomial
degree distribution

Degree distribution

21RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

● Directly related to gossip dissemination speed
(ie, it is a lower bound)

● The longest shortest path
● L = ln N/ln <k> = log<k> N

● The intuitive reason is that these graphs are
locally like trees

● The average path length (l) grows also as
log<k> N

Diameter

22RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

● Gr-reg: probability space is the set of r-regular graphs with
equal probability
– G3-reg is Hamiltonian

– Note that G3/(N-1),N is not even connected

● Gr-out: we generate a random graph by adding 3 edges
from all nodes
– G4-out is Hamiltonian

– It is believed that G3-out is also Hamiltonian

● Diameter is still O(log N)

Other interesting models

23RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

● The ER model is often used to reason about gossip
protocol design. This is problematic for a number of
reasons
– In the ER model nodes can get stuck without

neighbors. This is the main reason for disconnectivity.
In push or push-pull this is impossible

– If we guarantee that all nodes communicate to at least
4 other nodes after receiving the update, we have a
radically different model

● Message and node failure pushes the underlying network
toward the ER model, but not completely

Conclusions for gossiping?

24RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

● So far: random contacts
– This is not optimal for underlying network traffic
– Need to take proximity into account

● Spacial gossip: peer selection is biased according to
distance of the peer: selecting node i is proportional
to d-a where d is the distance of i

● If the underlying topology is linear, then the expected
traffic per link per cycle:

Spacial Gossip

25RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

● a=2 is the best
– Best tradeoff between speed and traffic

– Probability is proportional to 1/d2

● Generalize to non-linear case
– Q(d): cumulative number of sites at most at distance d

– Probability proportional to 1/Q(d)2

● Smoothing out pathological topologies
– Order all sites according to distance

– Treat it as a linear structure

Spatial Gossip

26RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

References
– Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott

Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic
algorithms for replicated database maintenance. In Proceedings of the 6th
Annual ACM Symposium on Principles of Distributed Computing (PODC'87),
pages 1–12, Vancouver, British Columbia, Canada, August 1987. ACM
Press.

– Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., and Massoulie, L. 2004.
Epidemic information dissemination in distributed systems. IEEE Computer
37, 5 (May), 60–67.

– A.-M. Kermarrec and M. van Steen, editors, Special issue of ACM SIGOPS
Operating Systems Review on Gossip Protocols, 41(5), 2007.

– Boris Pittel. On spreading a rumor. SIAM Journal on Applied Mathematics,
Vol. 47, No. 1 (Feb., 1987), pp. 213-223

– R Karp, C Schindelhauer, S Shenker, B Vocking. Randomized Rumor
Spreading. FOCS 2000.

27RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

A Gossip Skeleton
● Originally for information dissemination in a

very simple but efficient and reliable way
● Later the gossip approach has been

generalized resulting in many local probabilistic
and periodic protocols

● we will introduce a simple common skeleton
and look at
– information dissemination

– topology construction

– aggregation

28RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

A Gossip Skeleton

● the push-pull model is
sown

● the active thread
initiates communication
(push) and receives
peer state (pull)

● the passive thread
mirrors this behavior

do once in each T time units at
a random time

p = selectPeer()
send state to p
receive state

p
 from p

state = update(state
p
)

do forever
receive state

p
 from p

send state to p
state = update(state

p
)

active thread

passive thread

29RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Rumor mongering as an instance

● state: set of active updates
● selectPeer: a random peer from the network

– very important component, we get back to this soon

● update: add the received updates to the local
set of updates

● propagation of one given update can be limited
(max k times or with some probability, as we
have seen, etc)

30RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Peer Sampling

● A key method is selectPeer in all gossip
protocols (influences performance and
reliability)

● In earliest works all nodes had a global view to
select a random peer from
– scalability and dynamism problems

● Scalable solutions are available to deal with this
– random walks on fixed overlay networks

– dynamic random networks

31RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Random walks on networks

● if we are given any fixed network, we can
sample the nodes with any arbitrary distribution
with the Metropolis algorithm:

● This Markov chain has stationary distribution 
where d

i
 is the degree of node i (undirected

graph)

32RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Gossip based peer sampling

● basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

● The peer sampling service uses itself as peer
sampling service (bootstrapping)

– no need for fixed (external) network
● state: a set of random overlay links to peers

● selectPeer: select a peer from the known set of
random peers

● update: for example, keep a random subset of the
union of the received and the old link set

33RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Gossip protocols for topology
management

A
D
E

S
X

W

A E

34RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Gossip protocols for topology
management

A
D
E

S
X

W

A E

SelectPeer

35RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Gossip protocols for topology
management

A E

Exchange
of views

36RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Gossip protocols for topology
management

A E
Both sides
apply update

thereby
redefining
topology

37RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Gossip based peer sampling

● in reality a huge number of variations exist
– timestamps on the overlay links can be taken into

account: we can select peers with newer links, or in
update we can prefer links that are newer

● these variations represent important differences
w.r.t. fault tolerance and the quality of samples
– the links at all nodes define a random-like overlay

that can have different properties (degree
distribution, clustering, diameter, etc)

– turns out actually not really random, but still good
for gossip

38RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

References
– Allavena, A., Demers, A., and Hopcroft, J. E. 2005. Correctness of a

gossip based membership protocol. In Proceedings of the 24th annual
ACM symposium on principles of distributed computing (PODC 05).
ACM Press, Las Vegas, Nevada, USA.

– Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and
Maarten van Steen. The peer sampling service: Experimental
evaluation of unstructured gossip-based implementations. In Hans-
Arno Jacobsen, editor, Middleware 2004, volume 3231 of Lecture
Notes in Computer Science, pages 79–98. Springer-Verlag, 2004.
(journal version: ACM TOCS 2007 aug)

– Zhong, M., Shen, K., and Seiferas, J. 2005. Non-uniform random
membership management in peer-to-peer networks. In Proc. of the
IEEE INFOCOM. Miami, FL.

39RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Gossip based topology
management

● We saw we can build random networks. Can
we build any network with gossip?

● Yes, many examples

– proximity networks
– DHT-s (Bamboo DHT: maintains Pastry

structure with gossip inspired protocols)
– semantic proximity networks
– etc

40RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

T-Man

● T-MAN is a protocol that captures many of
these in a common framework, with the help of
the ranking method:
– ranking is able to order any set of nodes according

to their desirability to be a neighbor of some given
node

– for example, based on hop count in a target
structure (ring, tree, etc)

– or based on more complicated criteria not
expressible by any distance measure

41RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Gossip based topology
management

● basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

● state: a set of overlay links to peers

● selectPeer: select the peer from the known set of
peers that ranks highest according to the ranking
method

● update: keep those links that point to nodes that rank
highest

42RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Initial state Cycle 3 Cycle 5

Cycle 15Cycle 12Cycle 8

43RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

44RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

References
– Márk Jelasity and Ozalp Babaoglu. T-Man: Gossip-based overlay topology

management. In Sven A. Brueckner, Giovanna Di Marzo Serugendo, David
Hales, and Franco Zambonelli, editors, Engineering Self-Organising
Systems: Third International Workshop (ESOA 2005), Revised Selected
Papers, volume 3910 of Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 2006.

– Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz.
Handling Churn in a DHT. Proceedings of the USENIX Annual Technical
Conference, June 2004.

– Laurent Massoulie, Anne-Marie Kermarrec, and Ayalvadi J. Ganesh.
Network awareness and failure resilience in self-organising overlay
networks. In Proceedings of the 22nd Symposium on Reliable Distributed
Systems (SRDS 2003), pages 47–55, Florence, Italy, 2003.

– Spyros Voulgaris and Maarten van Steen. Epidemic-style management of
semantic overlays for content-based searching. In Jose C. Cunha and Pedro
D.Medeiros, editors, Proceedings of Euro-Par, number 3648 in Lecture
Notes in Computer Science, pages 1143–1152. Springer, 2005.

http://srhea.net/papers/bamboo-usenix.pdf

45RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Aggregation

● Calculate a global function over distributed data
– eg average, but more complex examples include

variance, network size, model fitting, etc

● usual structured/unstructured approaches exist
– structured: create an overlay (eg a tree) and use

that to calculate the function hierarchically

– unstructured: design a stochastic iteration algorithm
that converges to what you want (gossip)

● we look at gossip here

46RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Implementation of aggregation

● state: current approximation of the average
– initially the local value held by the node

● selectPeer: a random peer (based on peer
sampling service)

● updateState(s
1
,s

2
)

– (s
1
+s

2
)/2: result in averaging

– (s
1
s

2
)1/2: results in geometric mean

– max(s
1
,s

2
): results in maximum, etc

47RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Illustration of averaging

12

8

7

2

6

3

48RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Illustration of averaging

12

8

7

2

6

3

(12+6)/2=9

49RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Illustration of averaging

9

8

7

2

9

3

50RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Improvements

● Tolerates asymmetric message loss (only push
or pull) badly

● Tolerates overlaps in pairwise exchanges badly
● [Kempe et al 2003] propose a slightly different

version
– all nodes maintain s (sum estimate) and w (weight)

– estimate is s/w

– only push: send (s/2,w/2), and keep s=s/2, w=w/2

● several other variations exist

51RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Initial state Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5

Illustration of averaging

52RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

References
– Kempe, D., Dobra, A., and Gehrke, J. 2003. Gossip-based

computation of aggregate information. In Proceedings of the 44th
Annual IEEE Symposium on Foundations of Computer Science
(FOCS’03). IEEE Computer Society, 482–491.

– Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Transactions on
Computer Systems, 23(3):219–252, August 2005.

– Robbert van Renesse, Kenneth P. Birman, and Werner Vogels.
Astrolabe: A robust and scalable technology for distributed system
monitoring, management, and data mining. ACM Transactions on
Computer Systems, 21(2):164–206, May 2003.

53RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Some other examples

● firefly-inspired synchronization
● partitioning (slicing) and sorting in P2P

networks
● asynchronous implementation of matrix

iterations
– ranking (PageRank)

– reputation systems

● emergent cooperation

54RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Modular design

● We have seen that all gossip protocols use the
peer sampling service that is itself a gossip
protocol

● Can be generalized: gossip protocols can be
stacked or arbitrarily combined
– actual local communication is the same (all

protocols can often piggyback the same message)

– conceptual structure is modular

55RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Example modular architecture

56RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Outlook

● Gossip is similar to many other fields of
research that also have some of the following
features:
– periodic, local, probabilistic, symmetric

● examples include
– swarm systems, cellular automata, parallel

asynchronous numeric iterations, self-stabilizing
protocols, etc

57RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

A slide on viruses and worms

● We focused on “good” epidemics but malicious
applications are known
– viruses and worms replicate themselves via similar

algorithms using some underlying network such as
email contacts or the Internet itself

● The dynamics is described by SIS model
● Underlying networks are typically scale free

(power law degree distribution)
– can be proven: no threshold: it is nearly impossible

to completely eliminate a “disease”

58RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Some open problems

● gossip in mobile contact networks and its
potential applications (also malware...)

● security
– gossip is robust to benign failure but very sensitive

to malicious attacks

– current “secure” gossip protocols sacrifice simplicity
and light-weight

● interdisciplinary connections: toward a deeper
understanding of self-organization and gossip
protocols as a special case

