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Introduction
● Gossip-like phenomena are commonplace

– human gossip

– epidemics (virus spreading, etc)

– computer epidemics (malicious agents: worms, viruses)

– phenomena such as forest fires, branching processes 
and diffusion are all similar mathematically

● extremely simple locally, powerful and robust globally 

● In computer science, epidemics are relevant

– for security (against worms and viruses)

– for designing useful protocols (we look at this here)
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Outline
● Information dissemination

– Seminal work by Demers et al (1987), that first 
coined the term gossip and epidemic protocols

– A few words on random and complex networks

● Generalizations of gossip protocols for
– peer sampling

– topology maintenance

– data aggregation

– modular architectures

● Problems, directions
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● Problem
– Xerox corporate Internet, replicated databases
– Each database has a set of keys that have values (along with a 

time stamp)
– Goal: all databases are the same, in the face of key updates, 

removals and additions
– Updates are made locally and have to be replicated at all sites 

(300 sites)
● Solution in 1986: emailing updates

– problems with detecting and correcting errors (done by hand!)
– bottleneck with the originating (updated) site
– not scalable (slow if very large number of nodes)
– (message complexity quite good though!)

Epidemic Database Updates
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Gossip to the rescue
● Main components are replaced by gossip

– update spreading: rumor mongering (no bottleneck)

– error correction: anti-entropy gossip (reliable)
● anti-entropy

– uses “simple epidemics” with two states: infective and 
susceptible (a.k.a. SI model)

– guarantees perfect dissemination
● rumor mongering

– uses “complex epidemics” with an additional state: 
removed (a.k.a. SIR model)

– certain (quite small) probability of error
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Some Properties of the SI model
● the push model

– N nodes communicate in rounds (cycles)

– in each cycle, a node that has the update (infected) 
sends it to a random other node, that becomes infected 
too

● In anti-entropy
– nodes send the (hash of) the entire database (not only 

a single update)
● as a side effect, all new updates are spread 

according to the SI model
– receiving nodes update their own database via merging 

the unseen updates
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Mean-field model of push SI

● Let pi be the proportion of not infected nodes 
in cycle i

● 1-p
0
=1/N

● Pittel (1987) shows that the model below is 
quite accurate for predicting p

i

E p i1=pi 1− 1
N 

N 1−p i

≈p i e
−1−p i
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Speed and cost of push SI

● Let S
N
 be the first cycle where p

i
=0

● Pittel (1987) shows that in probability

SN=log N ln N O 1

● This is quite fast...
● But the number of overall messages sent is

O N logN 



9RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Pull and push-pull SI

● With pull, we have

● This is very fast when p
i
 is small (end phase)...

● Karp et al (2000) show that the number of 
overall messages sent with push-pull is

O N loglogN 

E p i1=pi
2

● But termination is trickier when no updates are 
available  (for anti-entropy does not matter)
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SIR for spreading single updates
● For anti-entropy, use a pull or push-pull SI modell

● For the spreading of updates, the termination problem 
needs to be addressed: rumor mongering with SIR 
model

● Push approach

– when a rumor (update) becomes “cold”, stop 
pushing

● Pull approach

– same as push, only stop offering update when 
pulled when it becomes cold
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● Stop spreading info with 
probability 1/k if 
unsuccessful infection 
attempt (become removed)

● s: susceptible, i: infective, r: 
removed

● Eg if k=1, 20% miss the 
gossip, if k=2, 6% miss it
– In general, with push, the prob 

to miss the update is approx e­m 

(m is the overall messages)

ds
dt

=−si

di
dt

=si−
1
k
1−s  i

 s=e−k11−s 

Rumor mongering with push
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Some other rumor mongering 
algorithms

● Removal algorithms
– Counter: removed after exactly k 

unsuccessful attempts
– Random: removed with pr. 1/k after each 

unsuccessful attempt
● Blind: removal algorithm is run in each cycle 

irrespective of contacted node
● Feedback: removal algorithm runs if contacted 

node was not susceptible
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Some empirical results 
(1000 nodes)

Feedback+
Counter+
pull

Blind+
Random+
push

Feedback+
Counter+
push
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Summary
● Spreading updates: email or rumor mongering?

– both focus on a single update that eventually stops 
spreading

– both have a certain probability of error

– gossip has no bottleneck but it generates more 
messages in total

– gossip is much cheaper to restart (dies out quickly if 
update is already known by most nodes)

● Anti-entropy gossip
– very expensive because looks at entire database

– but fixes any distribution errors with prob. 1
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Combining anti-entropy and rumor 
mongering

● Rumor mongering is used to spread updates
● Anti-entropy is run infrequently to make sure 

all updates are spread with pr. 1
● When anti-entropy finds an undelivered 

update: redistribution
– Redistribution is done via rumor mongering too

● Various additional tricks to deal with removals 
(death certificates), etc.
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Random networks

● Note that gossiping nodes pick another node in 
each cycle: they do not need to know all the 
nodes

● The actual communication pattern defines a 
random graph
– by looking at these graphs, we can understand the 

properties of the communication better

– we can design better gossip protocols if we 
understand the implications of our design decisions 
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● Often used to reason about gossip protocols
● Simple undirected graph GN,p

● Parameters
– N: number of nodes
– p: probability of connecting any pairs of nodes

● Algorithm
– Start with empty graph of N nodes
– Draw all N(N-1)/2 possible edges with probability p

● Stats of degree of a fixed node i
– <ki>=p(N-1), ki has binomial distr, approx Poisson 

The Erdős-Rényi model
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● For gossip this is critical: can we reach all 
nodes using a given communication pattern?

● Let’s look at connectivity as a function of p
– AKA “graph evolution”: when we keep adding 

edges
● Note that if p grows slower than 1/N, the graph 

is a disconnected collection of small (constant 
size) components

● If p~1/N, avg node degree <k> is constant, 
cycles of all order have finite probability
– What’s going on if <k> is constant?

Connectivity
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● 0< <k> <1
– One cycle, otherwise trees, the larges being O(ln N) size
– The number of clusters is N-n (ie each new edge connects 

two clusters)
● <k>=1

– Critical value: largest cluster is suddenly O(N2/3), with 
complex structure

● <k> >1
– The largest cluster is of size (1-f(<k>))N nodes where f 

decreases exponentially
● If <k> >= ln N, completely connected (but here the avg 

degree grows with N)
– Does this mean we need O(log N) neighbors to gossip 

to? In other words, is this a good model?

The case when p~1/N
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● ki the degree of fixed node
– ki is binomial (Bin(N-1,p))

● Degree distribution: the degree of a random 
node from a random graph
– xk: number of nodes with degree k
– <xk>=NP(ki=k)
– Distribution of xk has very low variance
– So it is a reasonable assumption to say that a 

random graph GN,p has very close to binomial 
degree distribution

Degree distribution
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● Directly related to gossip dissemination speed 
(ie, it is a lower bound)

● The longest shortest path
● L = ln N/ln <k> = log<k> N

● The intuitive reason is that these graphs are 
locally like trees

● The average path length (l) grows also as 
log<k> N

Diameter
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● Gr-reg: probability space is the set of r-regular graphs with 
equal probability
– G3-reg is Hamiltonian

– Note that G3/(N-1),N is not even connected

● Gr-out: we generate a random graph by adding 3 edges 
from all nodes
– G4-out is Hamiltonian

– It is believed that G3-out is also Hamiltonian

● Diameter is still O(log N)

Other interesting models
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● The ER model is often used to reason about gossip 
protocol design. This is problematic for a number of 
reasons
– In the ER model nodes can get stuck without 

neighbors. This is the main reason for disconnectivity. 
In push or push-pull this is impossible

–  If we guarantee that all nodes communicate to at least 
4 other nodes after receiving the update, we have a 
radically different model

● Message and node failure pushes the underlying network 
toward the ER model, but not completely

Conclusions for gossiping?
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● So far: random contacts
– This is not optimal for underlying network traffic
– Need to take proximity into account

● Spacial gossip: peer selection is biased according to 
distance of the peer: selecting node i is proportional 
to d-a where d is the distance of i

● If the underlying topology is linear, then the expected 
traffic per link per cycle:

Spacial Gossip
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● a=2 is the best
– Best tradeoff between speed and traffic

– Probability is proportional to 1/d2

● Generalize to non-linear case
– Q(d): cumulative number of sites at most at distance d

– Probability proportional to 1/Q(d)2

● Smoothing out pathological topologies
– Order all sites according to distance

– Treat it as a linear structure

Spatial Gossip
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A Gossip Skeleton
● Originally for information dissemination in a 

very simple but efficient and reliable way
● Later the gossip approach has been 

generalized resulting in many local probabilistic 
and periodic protocols

● we will introduce a simple common skeleton 
and look at
– information dissemination

– topology construction

– aggregation
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A Gossip Skeleton

● the push-pull model is 
sown

● the active thread 
initiates communication 
(push) and receives 
peer state (pull)

● the passive thread 
mirrors this behavior

do once in each T time units at
a random time

p = selectPeer()
send state to p
receive state

p
 from p

state = update(state
p
)

do forever
receive state

p
 from p

send state to p
state = update(state

p
)

active thread

passive thread
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Rumor mongering as an instance

● state: set of active updates
● selectPeer: a random peer from the network

– very important component, we get back to this soon

● update: add the received updates to the local 
set of updates

● propagation of one given update can be limited 
(max k times or with some probability, as we 
have seen, etc)
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Peer Sampling

● A key method is selectPeer in all gossip 
protocols (influences performance and 
reliability)

● In earliest works all nodes had a global view to 
select a random peer from
– scalability and dynamism problems

● Scalable solutions are available to deal with this
– random walks on fixed overlay networks

– dynamic random networks
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Random walks on networks

● if we are given any fixed network, we can 
sample the nodes with any arbitrary distribution 
with the Metropolis algorithm:

● This Markov chain has stationary distribution 
where d

i
 is the degree of node i (undirected 

graph)
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Gossip based peer sampling

● basic idea: random peer samples are provided by a 
gossip algorithm: the peer sampling service

● The peer sampling service uses itself  as peer 
sampling service (bootstrapping)

– no need for fixed (external) network
● state: a set of random overlay links to peers

● selectPeer: select a peer from the known set of 
random peers

● update: for example, keep a random subset of the 
union of the received and the old link set
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Gossip protocols for topology 
management

A
D
E

S
X

W

A E
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Gossip protocols for topology 
management

A
D
E

S
X

W

A E

SelectPeer
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Gossip protocols for topology 
management

A E

Exchange 
of views
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Gossip protocols for topology 
management

A E
Both sides 
apply update

thereby 
redefining 
topology
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Gossip based peer sampling

● in reality a huge number of variations exist
– timestamps on the overlay links can be taken into 

account: we can select peers with newer links, or in 
update we can prefer links that are newer

● these variations represent important differences 
w.r.t. fault tolerance and the quality of samples
– the links at all nodes define a random-like overlay 

that can have different properties (degree 
distribution, clustering, diameter, etc)

– turns out actually not really random, but still good 
for gossip
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Gossip based topology 
management

● We saw we can build random networks. Can 
we build any network with gossip?

● Yes, many examples

– proximity networks
– DHT-s (Bamboo DHT: maintains Pastry 

structure with gossip inspired protocols)
– semantic proximity networks
– etc



40RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

T-Man

● T-MAN is a protocol that captures many of 
these in a common framework, with the help of 
the ranking method:
– ranking is able to order any set of nodes according 

to their desirability to be a neighbor of some given 
node

– for example, based on hop count in a target 
structure (ring, tree, etc)

– or based on more complicated criteria not 
expressible by any distance measure
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Gossip based topology 
management

● basic idea: random peer samples are provided by a 
gossip algorithm: the peer sampling service

● state: a set of overlay links to peers

● selectPeer: select the peer from the known set of 
peers that ranks highest according to the ranking 
method

● update: keep those links that point to nodes that rank 
highest
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Initial state Cycle 3 Cycle 5

Cycle 15Cycle 12Cycle 8
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Aggregation

● Calculate a global function over distributed data
– eg average, but more complex examples include 

variance, network size, model fitting, etc

● usual structured/unstructured approaches exist
– structured: create an overlay (eg a tree) and use 

that to calculate the function hierarchically

– unstructured: design a stochastic iteration algorithm 
that converges to what you want (gossip)

● we look at gossip here



46RESCOM, Saint-Jean-Cap-Ferrat, France2008/06/16

Implementation of aggregation

● state: current approximation of the average
– initially the local value held by the node

● selectPeer: a random peer (based on peer 
sampling service)

● updateState(s
1
,s

2
)

– (s
1
+s

2
)/2: result in averaging

– (s
1
s

2
)1/2: results in geometric mean

– max(s
1
,s

2
): results in maximum, etc
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Illustration of averaging

12

8

7

2

6

3
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Illustration of averaging

12

8

7

2

6

3

(12+6)/2=9
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Illustration of averaging

9

8
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Improvements

● Tolerates asymmetric message loss (only push 
or pull) badly

● Tolerates overlaps in pairwise exchanges badly
● [Kempe et al 2003] propose a slightly different 

version
– all nodes maintain s (sum estimate) and w (weight)

– estimate is s/w

– only push: send (s/2,w/2), and keep s=s/2, w=w/2

● several other variations exist
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Initial state Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5

Illustration of averaging
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Some other examples

● firefly-inspired synchronization
● partitioning (slicing) and sorting in P2P 

networks
● asynchronous implementation of matrix 

iterations
– ranking (PageRank)

– reputation systems

● emergent cooperation
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Modular design

● We have seen that all gossip protocols use the 
peer sampling service that is itself a gossip 
protocol

● Can be generalized: gossip protocols can be 
stacked or arbitrarily combined
– actual local communication is the same (all 

protocols can often piggyback the same message)

– conceptual structure is modular
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Example modular architecture
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Outlook

● Gossip is similar to many other fields of 
research that also have some of the following 
features:
– periodic, local, probabilistic, symmetric

● examples include
– swarm systems, cellular automata, parallel 

asynchronous numeric iterations, self-stabilizing 
protocols, etc
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A slide on viruses and worms

● We focused on “good” epidemics but malicious 
applications are known
– viruses and worms replicate themselves via similar 

algorithms using some underlying network such as 
email contacts or the Internet itself

● The dynamics is described by SIS model
● Underlying networks are typically scale free 

(power law degree distribution)
– can be proven: no threshold: it is nearly impossible 

to completely eliminate a “disease”
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Some open problems

● gossip in mobile contact networks and its 
potential applications (also malware...)

● security
– gossip is robust to benign failure but very sensitive 

to malicious attacks

– current “secure” gossip protocols sacrifice simplicity 
and light-weight

● interdisciplinary connections: toward a deeper 
understanding of self-organization and gossip 
protocols as a special case


