
Peer-to-Peer Systems and
Gossip Protocols

Márk Jelasity

Hungarian Academy of Sciences and
University of Szeged, Hungary

2SASO 2007 Tutorial2007/07/08

Motivation and Introduction

3SASO 2007 Tutorial2007/07/08

P2P as bandwidth heavyweight

● CacheLogic's
2004
measurements:
majority of Internet
traffic is P2P

● Currently
streaming video
(YouTube, etc) is
gaining weight,
but P2P still leads

4SASO 2007 Tutorial2007/07/08

P2P as social/economic/security
heavyweight

● User base
– Tens of millions of users in various P2P networks at

any point in time

– much more log in every now and then

● Social Aspects
– free flow of information bypasses censorship and

content filters

– anonymous access to services through P2P
networks

5SASO 2007 Tutorial2007/07/08

P2P as social/economic/security
heavyweight

● Economic Aspects
– Gradually puts traditional telecommunication (land

line, and soon also mobile) companies out of
business

– Major impact on music and movie industry: hurts
sales through traditional channels, bypasses major
labels in both distribution and promotion

– About to change the economics of Internet access

● Major security threat
– P2P botnets are emerging in the hands of

organized crime

6SASO 2007 Tutorial2007/07/08

Conclusion
● P2P is one of the most interesting and far-

reaching phenomena of today's information
technology: would be nice to know
– how it works

– how it can be made work better

– how it can be made work worse (!)

● Lots of food for thought for everyone from
computer science, sociology, economics, etc

● Here we will look at abstract algorithms not
actual systems

7SASO 2007 Tutorial2007/07/08

From the pre-P2P era:
centralized vs decentralized

● Internet itself was/is P2P

● Other services such as news (NTTP) and DNS involve a
decentralized approach at some level, email, telnet, etc are also
decentralized

● Early 90-s: emphasis on centralized (client/server) applications
(web, etc)

● P2P: from around 2000 the people take the Internet back

● currently centralized services are making a strong comeback
(WEB 2.0)

● centralized/decentralized seems to swing in other areas as well
(eg mainframe vs PC, GRID vs datacenter, network computers,
etc)

8SASO 2007 Tutorial2007/07/08

Evolution of P2P applications

P2P

GRID

Seti@Home
distributed.net
etc

BOINC

file sharing

Napster

Gnutella

FastTrack

various hybrid
technologies
and networks

content
distribution

Akamai

Bittorrent
Skype

worms, botnets

IRC based botnets

P2P botnets

9SASO 2007 Tutorial2007/07/08

So, what is P2P in academic
research?

● We focus on algorithmic and systems research
aspects, so we need to define the scope

● A checklist of p2p systems
– fully decentralized

– dynamic and unreliable network links

– asynchronous message passing model

– very large scale (millions or more)

– unreliable, selfish and perhaps byzantine nodes

10SASO 2007 Tutorial2007/07/08

So, what is P2P in academic
research?

● Not all features need to be present

● Most important is decentralization (no server)
– Some systems (Napster, seti@home, IRC based botnets)

have a server: not realy P2P

● Decentralization might have different reasons
– legal or political pressure: avoid to have a single point of

failure (Napster vs FastTrack, anonymous networks, and P2P
botnets)

– efficiency: (BitTorrent, esp serverless versions, media
streaming, application layer IP routing)

– cost: not having to maintain a server is cheap

11SASO 2007 Tutorial2007/07/08

Basic concepts

● Due to decentralization, we always work with
an overlay network (the structure)
– defines who can pass messages to whom

– structure is given, or needs to be built and
maintained appropriately (self-organizing)

● We implement functions on a given network
● Algorithms and networks go hand-in-hand, like

in the case of data structures
● In the following we look at various functions and

structures and their relationships

12SASO 2007 Tutorial2007/07/08

Outline (P2P)

● function
– search

– content distribution

● structure
– “unstructured”

– “structured”

● selected issues
– incentives, security,

research methodology

search

structured

unstructured

content
distribution

13SASO 2007 Tutorial2007/07/08

Outline (gossip)

● function
– main function: application level multicast

– data aggregation

– overlay topology maintenance

● structure
– fully connected and random (unstructured)

– structured

14SASO 2007 Tutorial2007/07/08

References

– Nelson Minar and Marc Hedlund. A network of peers: Peer-to-peer models through
the history of the internet. In Andy Oram, editor, Peer-to-Peer: Harnessing the Power
of Disruptive Technologies, chapter 1. O'Reilly, 2001.

– CacheLogic Inc. P2P in 2005.
http://www.cachelogic.com/home/pages/studies/2005_01.php , a survey on the
volume and composition of P2P traffic on the Internet.

– Thomas Mennecke. P2P Remains Dominant Protocol.
http://www.slyck.com/story1502.html Slyck. 2007

http://www.cachelogic.com/home/pages/studies/2005_01.php
http://www.slyck.com/story1502.html

15SASO 2007 Tutorial2007/07/08

Search in Unstructured Networks

16SASO 2007 Tutorial2007/07/08

Outline
● Motivation for decentralized networks
● The Gnutella network: how it worked and

looked like
– Some surprises about the emergent network

structure

● Search algorithms in unstructured networks
– Random walk search in power law networks

– Random walk search in random networks

– Replication strategies

– GIA: a prominent algorithm

17SASO 2007 Tutorial2007/07/08

Central index
● Index is stored on central servers:

search is centralized
● Download is P2P
● For example, Napster

– Works well, but not scalable
● Major investments needed if networks

grows
● Eg Google: 100,000+ servers already

– Not robust to attacks (legal and
malicious)

● Incentive to go decentralized

18SASO 2007 Tutorial2007/07/08

First attempt to go decentralized:
Gnutella

● Nullsoft (Justin Frankel)
● First client is spread via gossip...

– AOL shuts down Nullsoft servers the day after the
release

● Initially no explicit attempt to control overlay
topology

● Naive approach to search: flooding
● All communication (queries) are via flooding too

19SASO 2007 Tutorial2007/07/08

How does Gnutella work?

● Gnutella protocol: flooding of queries
– Ping, pong

● peer discovery at join and also continuously

– Query, query hit:
● Search hits are propagated back on the path of the

search query

● Join procedure
– Find any member

– Send ping message and collect pong messages

20SASO 2007 Tutorial2007/07/08

What was the Gnutella overlay
supposed to look like?

● We don't know for sure but probably designers
had random networks in mind (if anything)

● What properties does a random network have?
– Is it good for search, is it robust, connected, etc?

● Mathematics has some answers for a number
of special models of random networks. We
briefly overview one: The Erdős-Rényi model.

21SASO 2007 Tutorial2007/07/08

● Simple undirected graph GN,p

● Parameters
– N: number of nodes
– p: probability of connecting any pairs of nodes

● Algorithm
– Start with empty graph of N nodes
– Draw all N(N-1)/2 possible edges with probability p

● Stats of degree of a fixed node i
– <ki>=p(N-1), ki has binomial distr, approx Poisson

The model

22SASO 2007 Tutorial2007/07/08

● Usual question: P(Q) over a probability space
of graphs
– Q can be eg “connected”, or “contains a triangle”,

etc
● Usually P(Q) depends on N and p
● We are interested in “almost always” Q:

PN , pQ 1 N ∞

Probabilistic properties

23SASO 2007 Tutorial2007/07/08

● Often there is a critical probability pc such that

lim
N ∞

PN , pQ ={0
p N

pc N
0

1
p N

pc N
∞

Probabilistic properties

● We are interested in pc for different Q-s

● Example: GN,p has a subgraph

24SASO 2007 Tutorial2007/07/08

● Note the case p~1/N where cycles of all order
appear

● Note that this is understood as N tends to

Critical pr. for small subgraphs

25SASO 2007 Tutorial2007/07/08

● Let’s look at connectivity as a function of p
– AKA “graph evolution”: when we keep adding

edges
● Note that if p grows slower than 1/N, the graph

is a disconnected collection of small (constant
size) components

● If p~1/N, avg node degree <k> is constant,
cycles of all order have finite probability
– What’s going on if <k> is constant?

Connectivity

26SASO 2007 Tutorial2007/07/08

● 0< <k> <1
– One cycle, otherwise trees, the larges being O(ln N) size
– The number of clusters is N-n (ie each new edge connects

two clusters)
● <k>=1

– Critical value: largest cluster is suddenly O(N2/3), with
complex structure

● <k> >1
– The largest cluster is of size (1-f(<k>))N nodes where f

decreases exponentially
● [If <k> >= ln N, completely connected (but here the avg

degree grows with N)]

The case when p~1/N

27SASO 2007 Tutorial2007/07/08

● ki the degree of fixed node
– ki is binomial (Bin(N-1,p))

● Degree distribution: the degree of a random
node from a random graph
– xk: number of nodes with degree k
– <xk>=NP(ki=k)
– Distribution of xk has very low variance
– So it is a reasonable assumption to say that a

random graph GN,p has very close to binomial
degree distribution

Degree distribution

28SASO 2007 Tutorial2007/07/08

● The longest shortest path
● L = ln N/ln <k> = log<k> N
● Intuitively, the reason is that these graphs are

locally like trees
● The average path length (l) grows also as

log<k> N

Diameter

29SASO 2007 Tutorial2007/07/08

● Gr-reg: probability space is the set of r-regular
graphs with equal probability
– G3-reg is Hamiltonian
– Note that G3/(N-1),N is not even connected

● Gr-out: we generate a random graph by adding
3 edges from all nodes
– G4-out is Hamiltonian
– It is believed that G3-out is also Hamiltonian

● So we need to be careful! When there is
guarantee that all nodes have some edges,
things are radically different

Some other similar models

30SASO 2007 Tutorial2007/07/08

What did the Gnutella overlay
actually look like?

● Measurements by Ripeanu et al.
● Distributed Gnutella crawler collecting

snapshots of size in the order of 50,000 for a
year

● They discover complex network structure and
highly dynamical composition: churn
– 40% spend less than 4 hours in the network

– 25% spend more than 24 hours

31SASO 2007 Tutorial2007/07/08

Growth of the network

32SASO 2007 Tutorial2007/07/08

Path lengths

33SASO 2007 Tutorial2007/07/08

Degree distribution 2000 November

34SASO 2007 Tutorial2007/07/08

Degree distribution 2001 May

35SASO 2007 Tutorial2007/07/08

Underlying topology

● We have seen the that Internet is also power
law

● Is there correlation between the overlay and the
Internet?

● Ripeanu et al find that there is none

36SASO 2007 Tutorial2007/07/08

● Path length is as in the ER model, but degree
distribution is heavy tail
– P(k)~k- (maybe with some cutoff, eg P(k)~k-e-

● Without cutoff

– No expectation value (ie <k if <=2

– No variance (ie Var(k if <=3, etc

● Called scale-free because of fractals
● How do such networks form and why?

What's going on?

37SASO 2007 Tutorial2007/07/08

Observed scale free networks

38SASO 2007 Tutorial2007/07/08

● The rich get richer principle: growth models
● Preferential attachment rule

– Start with a small number (m0) of nodes

– Repeat adding a new node with m<=m0 links,
where each linked is linked to node i according to

Π k i =
k i

∑
j

k j

Barabási-Albert model

● T time step, t+m0 nodes, mt edges
● Converges to exponent γ=3

● Average path length
– L~ln N/ ln ln N (somewhat smaller than ER model)

39SASO 2007 Tutorial2007/07/08

Empirical results with BA model

40SASO 2007 Tutorial2007/07/08

Search: flooding

● The default search model is flooding
– Query is sent with a TTL, typically TTL=7

– Query hits are propagated back on the path of the
query

● Serious problems
– Extremely wasteful with bandwidth

● A large (linear) part of the network is covered
irrespective of hits found

● Enormous number of redundant messages
● All users do this in parallel: local load grows linearly

with size

41SASO 2007 Tutorial2007/07/08

Questions

● Does the scale-free topology has an effect on
search protocols
– Can we exploit it, or is it a disadvantage

– What is the optimal search protocol for it

● In general, what search protocols can we come
up with in an unstructured network

● What other techniques can we apply
– Controlling topology to allow for better search

– Controlling placement of objects (replication)

42SASO 2007 Tutorial2007/07/08

Search in scale-free networks
● Basic observations

– In certain models if degree distribution is pk then the
distribution of the degree of a neighbor is
proportional to kpk (very important observation)

– Nodes can easily store index of objects stored by
their neighbors

● So in scale-free: high degree nodes are easy to find by
(biased) random walk

● And high degree nodes can store the index about a
large portion of the network

● Hint: a bit like the star topology

43SASO 2007 Tutorial2007/07/08

Search in scale-free networks
● Proposed algorithm variants

– Random walk (RW)
● avoiding the visit of last visited node

– Degree-biased random walk (DS)
● Select highest degree node, that has not been visited
● This first climbs to highest degree node, then climbs

down on the degree sequence
● Provably optimal coverage

● Examined networks

– Scale-free network with γ=2.1, abrupt cutoff

– ER graphs

– Different sizes, but N=10,000 if not specified

44SASO 2007 Tutorial2007/07/08

Climbing up the degree sequence

45SASO 2007 Tutorial2007/07/08

Speed of coverage

46SASO 2007 Tutorial2007/07/08

Half graph cover time

Scale free graph ER graph

47SASO 2007 Tutorial2007/07/08

Visited node degrees

48SASO 2007 Tutorial2007/07/08

Conclusions

● Advantages
– Takes advantage of scale-free distribution and

speeds up search relative to ER graphs

– Search time complexity is sublinear

● Disadvantages
– Difficulty with rare objects (but this is a common

problem of unstructured search)

– Places very high load on high degree nodes

● Keeping this in mind, let's look at other
topologies and see if they are better

49SASO 2007 Tutorial2007/07/08

More search algorithms

● Expanding ring
– Flooding with increasing TTL until result is found

– The point is to avoid a fixed TTL

● K-walker
– K independent random walks, to avoid message

duplication in flooding and expanded ring
● With checking: in every 4 steps all walks check back if

they need to go on or not
● With state keeping: to implement self-avoiding walks

50SASO 2007 Tutorial2007/07/08

Evaluation of search algorithms
● So far simplified model

– ignored query and replication distribution, focused
on coverage

● Three main components
– Overlay network, Query modeling, Replication

strategies

● Overlay networks
– ER graph, avg. degree 4, N=10000

– Power law (scale-free) graph, N=10000

– Gnutella snapshot 2000 Oct, N=4000

– 2-dim 100x100 grid

51SASO 2007 Tutorial2007/07/08

Problems with flooding

52SASO 2007 Tutorial2007/07/08

Evaluation of search algorithms

● Query distributions

– qi: the proportion of queries for object i

– Uniform: all objects receive the same amount of
queries

– Power law: a few objects are very popular, many
objects are not so much (heavy tail)

● Replication plays a role too
– Spread copies of objects to peers: more popular

objects can be found easier

– File-sharing networks show an emergent replication
behavior

53SASO 2007 Tutorial2007/07/08

Evaluation of search algorithms

● Object replication

– Replication of object i typically proportional to qi

– Uniform: all objects receive the same amount of
copies

– Proportional: proportional to qi

– Square-root: proportional to square-root qi

● Can be proven to be optimal in certain cases (see
later)

● Meaningful combinations of query/replication
– uniform/uniform, power-law/proportional, power-

law/square-root

54SASO 2007 Tutorial2007/07/08

Some results

ER
graph

power-law
graph

55SASO 2007 Tutorial2007/07/08

Notes for the experiments

● Parameters
– 100 objects, avg replication ratio 1%

– ER graph: TTL for flooding is 8, “check” and “state”
are 32-walkers, γ=1.2 for query distribution

– Power-law graph: same, but TTL=5

● Algorithms
– Check: 32-walker with checking for termination

– State: same as 32-walker, but also self-avoiding

56SASO 2007 Tutorial2007/07/08

Conclusions

● Fixed TTL must be avoided, be adaptive
instead

● Avoid exponential spreading of queries
– Note that this assumes that each object is

replicated enough, otherwise search takes too long

● Message duplication must be avoided
– ER random graph is best for this

– So now: is scale-free good or bad?

● Square-root replication is optimal
– How about dynamic methods for achieving that?

57SASO 2007 Tutorial2007/07/08

Replication strategies

● Average search size
– The uniform and proportional strategies result in the

same avg search size (avg number of random
probes to find an object)

– Avg search sizes for individual objects differ with
the proportional strategy

– Square-root can reduce avg search size

● Utilization ratio
– Avg utilization ratio is 1 if we run each search until

success

– Variance is quite different with different strategies

58SASO 2007 Tutorial2007/07/08

Achieving good replication

● Owner replication
– Results in proportional replication

● Path replication
– Results in square root replication

● Random replication
– Same as path replication, only using the given

number of random nodes, not the path

● Removal strategy
– Must be random or based on fixed time

59SASO 2007 Tutorial2007/07/08

Achieved replication distribution

60SASO 2007 Tutorial2007/07/08

Performance of different replications

61SASO 2007 Tutorial2007/07/08

GIA: motivation

● Unstructured networks are good
– Fault tolerant, robust

– Support arbitrary keyword queries

● Flooding is not good
● Random walks are better but not perfect

– They are too blind without some help, such as
biased walk (see scale-free nets)

– Load balancing can be a problem esp in
heterogeneous networks under high query load

62SASO 2007 Tutorial2007/07/08

GIA motivation
● Major problem seems to be poor load balancing
● So let us now make they query “throughput” of

the system the main evaluation criterion
– Load balancing is the major thing to optimize here

● We know networks are heterogeneous
● This means we must make sure nodes process

queries proportional to their bandwidth
– Topology: Let's adapt the topology so that all nodes

have the right amount of neighbors

– Flow control: Let's cleverly limit the number of
forwarded queries to neighbors

63SASO 2007 Tutorial2007/07/08

Components
● One hop replication

– Pointers to objects are replicated on neighbors

● Topology adaptation
– Put most nodes within short reach of high capacity

nodes

● Flow control
● Search protocol

– Random walk biased towards high capacity (not high
degree) nodes

– Note that without topology adaptation, capacity and
degree do not necessarily correlate

64SASO 2007 Tutorial2007/07/08

Topology adaptation

● All nodes keep trying to improve their neighbor
set until possible (satisfaction function)
– Candidates in “host cache”

– Using candidates, we continuously want to
● increase the capacity of our neighbors
● decrease the number of neighbors of our neighbors

● Topology is undirected: handshake mechanism
– We need to ask nodes to accept us as a neighbor

– They might need to drop neighbors

65SASO 2007 Tutorial2007/07/08

Flow control

● Nodes assign tokens to their neighbors
proportional to their capacity

● More tokens are assigned to higher capacity
nodes (incentive to be honest when reporting
capacity)

● Search protocol
– Picks highest capacity neighbor to forward query,

for which there is a token available

66SASO 2007 Tutorial2007/07/08

Performance measures
● Main focus is system load, and metrics as a

function of that
● Behavior is captured by “collapse point”:

success rate passes 90%

67SASO 2007 Tutorial2007/07/08

Results: collapse points

68SASO 2007 Tutorial2007/07/08

Results: hop count before collapse

69SASO 2007 Tutorial2007/07/08

Factor analysis of components

● 10,000 nodes, 0.1%
replication

● Only all components
together achieve the
desired effect

70SASO 2007 Tutorial2007/07/08

Summary
● Major components are

– Search algorithm

– Overlay topology

– Replication strategies (pointer and object)

– Flow control
● All of these can (and should) be adapted cleverly!

● At least topology and replication can be emergent as
well (that is, influenced by aggregate user behavior)

● Problem of poor performance on rare files still exists

71SASO 2007 Tutorial2007/07/08

References
– Yatin Chawathe, Sylvia Ratnasamy, Lee Breslau, Nick Lanham, and Scott

Shenker. Making gnutella-like p2p systems scalable. In Proceedings of ACM
SIGCOMM 2003, pages 407–418, 2003.

– Qin Lv, Pei Cao, Edith Cohen, Kai Li, and Scott Shenker. Search and
replication in unstructured peer-to-peer networks. In Proceedings of the 16th
ACM International Conference on Supercomputing (ICS'02), 2002.

– Matei Ripeanu, Adriana Iamnitchi, and Ian Foster. Mapping the gnutella
network. IEEE Internet Computing, 6(1):50–57, 2002.
(doi:10.1109/4236.978369)

– Lada A. Adamic, Rajan M. Lukose, Amit R. Puniyani, and Bernardo A.
Huberman. Search in power-law networks. Physical Review E, 64:046135,
2001.

– Réka Albert and Albert-László Barabási. Statistical mechanics of complex networks.
Reviews of Modern Physics, 74(1):47-97, January 2002.

– Mark E. J. Newman. Random graphs as models of networks. In Stefan Bornholdt and
Heinz G. Schuster, editors, Handbook of Graphs and Networks: From the Genome to
the Internet, chapter 2. John Wiley, New York, NY, 2002.

http://arxiv.org/abs/cond-mat/0106096
http://arxiv.org/abs/cond-mat/0202208

72SASO 2007 Tutorial2007/07/08

Search in Structured Networks

73SASO 2007 Tutorial2007/07/08

Outline

● Hash tables and distributed hash tables (DHT):
the abstraction

● An example implementation: Chord
● Implementing keyword search on a DHT
● Some other other DHTs: Pastry and CAN
● Summary of DHT complexity results
● Hybrid (structured/unstructured) approaches to

search

74SASO 2007 Tutorial2007/07/08

Motivation
● We have seen search does well in unstructured

networks except when items are rare
● Can we come up with a technique that provides

efficient search (lookup) for rare items?
– Yes: distributed hash tables (DHT)

● What is the ultimate solution that is robust,
cheap and works for popular and rare items
too?
– Hybrid solutions?

– Something not yet invented?

● DHTs are good for other things too

75SASO 2007 Tutorial2007/07/08

Hash tables
● Store arbitrary keys

and satellite data
(value)

● put(key,value)
● value = get(key)

● Lookup must be fast
● Calculate hash

function h() on key
that returns a storage
cell

● Chained hash table:
Store key (and
optional value) there

5

5=h(k
5
)

4

3=h(k
3
)=h(k

4
)

2

1=h(k
1
)=h(k

2
)

k
5
 v

5

k
4
 v

4
k

3
 v

3

k
2
 v

2
k

1
 v

1

Allocated array:
indexed by hash
values Stored entriesStored entries

76SASO 2007 Tutorial2007/07/08

Why a hash table?
● Most often the point of a hash table is fast and

cheap lookup of data indexed by a key
● When used for search, the issue of query

richness comes up
– In random walk/flooding, a query can be arbitrarily

complex (even full text search with regular
expressions).

– If we use only key based lookup, we must be creative
and work more to allow for non-trivial queries

● Inverse indexing, etc

● The idea is trading some flexibility and simplicity
off for efficiency and effectiveness

77SASO 2007 Tutorial2007/07/08

Distributed hash table
● We want hash table functionality in a p2p

network: lookup of data indexed by keys
● Assume the storage space is a distributed set

of nodes (not an array)
– Note that in all cases we will have an overlay

network that connects these nodes in tricky ways

– The exact set of nodes is not known locally and can
change all the time

– We work with an idealized storage space,
● Hash function maps to this ideal space
● We assign parts of the space to nodes in a distributed

way dynamically: extra complications

78SASO 2007 Tutorial2007/07/08

Distributed hash tables
Abstract “allocated array”
called ID space, indexed by
hash values

Actual nodes in the
network (dynamic) Stored entries

consistent hashing of keys to nodes
typically two step, as shown above

7
5=h(k

5
)

4=h(k
4
)

3=h(k
3
)

2

1=h(k
1
)=h(k

2
)

k
5
 v

5

k
4
 v

4
k

3
 v

3

k
2
 v

2
k

1
 v

1

6

4

2

7

79SASO 2007 Tutorial2007/07/08

Distributed has tables:
main functions

● Key-hash ↔ node mapping

– Assign a unique live node to a key

– Find this node in the overlay network quickly and
cheaply (routing)

● Maintenance, optimizations
– Implement DHT API on top of routing

– Load balancing: maybe even change the key-hash
↔node mapping on the fly

– Replicate entries on more nodes to increase
robustness

– etc

80SASO 2007 Tutorial2007/07/08

Chord

● Most cited DHT implementation (3000+
citations to date!!!)

● Advantages
– Simple

– Good storage and message complexity

● Consistent hashing based on an ordered ring
overlay
– This is why it is “structured”

81SASO 2007 Tutorial2007/07/08

Hashing in the Chord ring
● Identifier circle

– 10 nodes

– 5 keys

● Both keys and
nodes are hashed to
160 bit IDs (SHA-1)

● Then keys are
assigned to nodes
using consistent
hashing
– Successor in ID

space

82SASO 2007 Tutorial2007/07/08

Chord hashing properties

● Consistent hashing
– randomized

● All nodes receive roughly equal share of load

– Local
● Adding or removing a node involves an O(1/N) fraction

of the keys getting new locations

● Actual lookup
– Chord needs to know only O(log N) nodes in

addition to successor and predecessor to achieve
O(log N) message complexity for lookup

83SASO 2007 Tutorial2007/07/08

A primitive lookup algorithm

// ask node n to find the successor of id
n.find_successor(id)
 if (id ∈ (n, successor])
 return successor;
 else
 // forward the query
 // around the circle
 return successor.find_successor(id);

84SASO 2007 Tutorial2007/07/08

A scalable lookup algorithm

85SASO 2007 Tutorial2007/07/08

A scalable lookup algorithm

// ask node n to find the successor of id
n.find_successor(id)
 n' = find_predecessor(id);
 return n'.successor;

// ask node n to find the predecessor of id
n.find_predecessor(id)
 n' = n;
 while (id ∉ (n', n'.successor])
 n' = n'.closest_preceeding_finger(id);
 return n'

● Jump to the closest
preceeding finger

● O(logN) jumps
● O(logN) neighbors

stored at each node
● This formulation

assumes one node
coordinates the
lookup (not
recursive) but could
be

86SASO 2007 Tutorial2007/07/08

Join: an expensive approach

● A new node has to
– Fill its own successor, predecessor and fingers

– Notify other nodes for which it can be a successor,
predecessor of finger

● With several optimizations this can be done in
O(logN) time

● But the resulting protocol is complex
● Can be done simpler, using a relaxed and

simple stabilization protocol, used also for error
correction

87SASO 2007 Tutorial2007/07/08

Join: a relaxed approach
● If the ring is correct, then

routing is correct, fingers are
needed for the speed only

● Stabilization
– Each node periodically runs the

stabilization rutine

– Each node refreshes all fingers
by periodically calling
find_successor(n+2i-1) for a
random i

– Periodic cost is O(logN) per node
due to finger refresh

n.stabilize()
 x = sucessor.predecessor;
 if (x ∈ (n, successor))

successor = x;
 successor.notify(n);

n.join(n')
 predecessor = nil;
 sucessor =
 n'.find_successor(n);

88SASO 2007 Tutorial2007/07/08

Join: a relaxed approach

● Node join: find successor and then stabilize
– Ring is immediately joined: routing works

– Routing also fast enough if not too many nodes join
concurrently, but eventually fingers will be ok too

89SASO 2007 Tutorial2007/07/08

Failure and replication

● Failed nodes are handled by
– Replication: instead of one successor, we keep r

successors
● More robust to node failure (we can find our new

successor if the old one failed)

– Alternate paths while routing
● If a finger does not respond, take the previous finger,

or the replicas, if close enough

● At the DHT level, we can replicate keys on the r
successor nodes
– The stored data becomes equally more robust

90SASO 2007 Tutorial2007/07/08

Virtual nodes
– A physical node

acts as if it was
many nodes

● The Chord network
appears to be
larger

● One phisical node
gets a much more
balanced number
of keys

● Maintenance cost
grows

● Path length does
not grow
significantly

91SASO 2007 Tutorial2007/07/08

Path length in simulations

92SASO 2007 Tutorial2007/07/08

Conclusions

● The DHT abstraction can be implemented in a
fairly simple and efficient way

● All implementations are based on a distributed
data structure, a so called “structured overlay”
– Chord used an ordered ring, with fingers (shortcuts)

● Some remaining issues to consider
– Can more complex and more flexible applications be

implemented such as keyword search (yes)

– Can the storage or message complexity improved (yes)

– So, what is the best way to implement a file sharing
system?

93SASO 2007 Tutorial2007/07/08

Keyword search in DHTs

● DHTs support only key lookup by default
● We need to perform complex queries as in

unstructured networks
● We need to be creative: here we discuss an

inverted index-based approach
– Document identifiers are stored in a DHT with all

contained keywords as keys

– All keywords are looked up and the intersection of
matches is calculated

– A few techniques to optimize the cost of all this

94SASO 2007 Tutorial2007/07/08

Inverted index approach

● Inverted index usual
in search engines
– For all keywords

collect the documents
that contain that
keyword

– Create intersection,
union, etc, base on
keyword based query

● Do that P2P style

95SASO 2007 Tutorial2007/07/08

Distributing the inverted indices

Mainly centralized services
cheap update, expensive lookup

Better if update is rare but
communication is expensive

96SASO 2007 Tutorial2007/07/08

DHT for storing documents sets
● A DHT is used to map

keywords to nodes
– A node is assigned a set of

keywords, and stores sets
of pointers to documents
that contain the given
keyword

● The retreival procedure
needs to AND sets
– Naive procedure shown

● Set A on server s
A
 contains

documents that have
keyword k

A

Request is “k
A
 & k

B
”

97SASO 2007 Tutorial2007/07/08

Optimizations: Bloom filters
● Bloom filter of A is sent to s

B
 (2)

● s
A
 removes false positives (“6” in

this example)

● It saves bandwidth if set is large
enough

– We use filters for more than
300 elements only

● Smaller set should be visited first
(natural thing)

● Works for more keywords too

– All servers need to see the
final result to remove false
positives

98SASO 2007 Tutorial2007/07/08

Optimizations: Caches

● Bloom filters or unencoded keyword match sets
can be cached
– Some measurements indicate there are very

popular keywords (power law distr) so hit rate can
be good

● Utilization of caches
– A server checks if it has cached info on a next

keyword to be intersected

– If yes, performs intersection locally, skips the
corresponing server

99SASO 2007 Tutorial2007/07/08

Optimizations: virtual nodes

● Same idea as in Chord
● Assign virtual nodes proportional to capacity

– Number of keywords proportional to capacity

– Variance due to random hashing is reduced (as in
Chord)

● Load balancing still a problem
– Keyword popularity is not equal

● Number of keywords is not a good measure,
popularity needs to be considered too

100SASO 2007 Tutorial2007/07/08

Experiments
● Network types

– All backbone, all
modem, and gnutella
trace

● Search trace:
IRCache log file

● Parameters
– Bloom filter threshold:

300, Bloom filter size:
18/24 with cache
on/off

101SASO 2007 Tutorial2007/07/08

Other DHT designs

● A DHT is an abstraction
– Eg previous keyword search technique used a

generic DHT

● A DHT has many popular implementations, we
review two briefly: CAN and Pastry

● Different implementations have different
tradeoffs and complexity properties, we review
these

102SASO 2007 Tutorial2007/07/08

Content addressable network (CAN)
● CAN became the name of a specific algorithm,

although it is in fact a synonim to DHT
● Logical space to which keys are mapped by a

hash function
– D-dimensional real space [0,1]d

● All nodes are assigned a partition of this space
– At any point in time the set of current nodes cover

the space

● Compare with Chord!
– Logical space is different; partitioning of this space

is implicit (but nevertheless well defined)

103SASO 2007 Tutorial2007/07/08

CAN logical space

104SASO 2007 Tutorial2007/07/08

Routing and node join

● Greedy routing to neighbor that is closest to
destination
– Hop count is O(dN1/d)

– Number of neighbors is O(d)

– If d=O(logN), then roughly same as Chord

● Join
– Create random point in virtual space

– Find the node that is responsible for that point

– Split the block of that node and update neighbors
appropriately

105SASO 2007 Tutorial2007/07/08

Node join in CAN

106SASO 2007 Tutorial2007/07/08

Node departure and recovery

● Failure detection through missing heartbeat
● Neighbors of failed node independently try to

take over the zone of the failed node
● The winning node merges the failed zone if

possible, or simply holds it if not possible
● Background repair mechanism reassigns zones

to prevent fractioning
● Perhaps this is the weakest point of CAN

– Possibility for incosistency, complex repair and
failure handling procedure

107SASO 2007 Tutorial2007/07/08

Optimizations
● Increasing d

– Shorter path length, more fault tolerance (more
paths) but more neighbors

● More realities
– Maintain many virtual spaces (CANs) in parallel

– Replicate stored data on all realities

– Improves path lengths (jumps inside a node) and
fault tolerance (replication, more paths)

● Uniform partitioning: more balanced zone sizes
– When joining, the selected random node replaces

itself with the neighbor with the largest zone

108SASO 2007 Tutorial2007/07/08

Optimizations

● Improved routing taking proximity into account
– When selecting a neighbor, use network latency also

● Overloading zones: more nodes in the same zone
– When joining, zones are not split, only if enough nodes

are in the zone

– Reduces path length (fewer zones)

– Reduces latency (possibility to select neighbor that has
smallest latency)

– Improved fault tolerance due to redundancy

109SASO 2007 Tutorial2007/07/08

Pastry: another DHT

● Applies a sorted ring in ID space like Chord
● Virtual space: same as Chord

– We interpret IDs as sequeces of digits with base 2b

● Applies Finger-like shortcuts to speed up
routing

● The node that is reponsible for a key is the
numerically closest (not the successor)
– Pastry is bidirectional and uses numeric distance

110SASO 2007 Tutorial2007/07/08

Pastry routing
● If destination is among the

leafs, stop

● Otherwise Pastry either
forwards the message to a
node which

– has a longer common
prefix with the
destination or

– has an equally long
prefix but is numerically
closer

● Routing is succesful if no
L/2 consequtive nodes fail
(ring is intact)

111SASO 2007 Tutorial2007/07/08

Pastry maintenance

● Join
– Use routing to find numerically closest node already

in network

– Ask state from all nodes on the route and initialize
own state

● Error correction
– Failed leaf node: contact a leaf node on the side of

the failed node and add appropriate new neighbor

– Failed table entry: contact a live entry with same
prefix as failed entry until new live entry found, if
none found, keep trying with longer prefix table
entries

112SASO 2007 Tutorial2007/07/08

Proximity in Pastry

● All routing table entries are drawn from rather
large sets (unlike with Chord)
– Pastry puts emphasis on optimizing the actual entry

based on proximity

– Entries can be selected based on other criteria as
well (semantic proximity, capacity, etc)

● The shorter the common prefix, the larger the
set of potential entries (exponentially)

● Original Pastry approach for actually
implementing the proximity bias can be
improved (not discussed here)

113SASO 2007 Tutorial2007/07/08

Are Pastry and Chord a different
protocol?

● Chord and Pastry are variations of the same idea
and can be transformed into each other smoothly

● What is not different
– Basic idea: ring + shortcuts to exponentially

increasing distance

– Leaf set/successor list: Chord also uses r
successors/predecessors

– Chord can also use more fingers to achieve the same
hop count and model a b letter alphabet ID space

– Same lazy repair protocol for leafs/successors

114SASO 2007 Tutorial2007/07/08

Are Pastry and Chord a different
protocol?

● What is different?
– A Chord finger is a unique node, whereas with Pastry

a routing table entry can come from a large set
● Chord could define fingers more loosely, but that needs

a different update protocol for fingers

– Chord routing is unidirectional, Pastry is direction
independent

● Chord could easily be bidirectional too with fingers into
two directions

115SASO 2007 Tutorial2007/07/08

A final note on complexity

● Chord and Pastry have O(logN) storage and
hop count complexity

● CAN has O(dN1/d) hop count complexity and
O(d) storage

● It is possible to have O(1) storage complexity
with O(logN) hop count (Viceroy) or with
O(log2N) hop count (Symphony)
– Sounds good but more complex protocols, less

reliability and logN is small enough: is it worth it?

116SASO 2007 Tutorial2007/07/08

So, how to implement filesharing?

● Get the best of both worlds: hybrid approaches
● Use DHT for rare items, random walk for

popular items
● What about the topology of the overlay

network?
– Unstructured networks are easy to build and

maintain, and robust to churn

– Are DHT-s realy more complicated or expensive or
less robust? Not necessarily

● We overview two hybrid approaches along the
lines above

117SASO 2007 Tutorial2007/07/08

Gnutella: observing the long tail

● Gnutella (latest version with ultrapeers and
dynamic query) is excellent for locating popular
items (reliable, fast)

● Gnutella is not so good at locating rare items
– 41% of queries receive <10 results, 18% none at all

– Queries that return a single result take 73s on
average, and for <10 results, first is 50s on average

– Very often results are not found that actually exist
(eg the 18% failure can be reduced to 6%)

● Lots of room (we knew that) and need (this is
new info) for improvement for rare items

118SASO 2007 Tutorial2007/07/08

Hybrid approach
● Inverted index for popular keywords is

– expensive to compute (many messages to the
responsible node)

– Expensive to use (the distributed join (ie intersection of
matches for keywords in query) is expensive)

● For rare keywords all that is cheap
– We need to identify rare files and rare keywords and

publish those to the DHT

– When a query has no result for some tome (~30s), we
ask the DHT

– Rarity can be determined by seeing a file in a small
result set, and by other heuristics

119SASO 2007 Tutorial2007/07/08

Another kind of hybrid

● Common wisdom
– Structured overlays are more expensive and less

robust to churn and failures

● Is this true?
– Comparison is very difficult: too many factors, not

clear how to be fair

– But there are indications it is NOT necessarily true

● If it is indeed not true, they are actually (much)
better to support “unstructured” search
algorithms, such as flooding and random walks

120SASO 2007 Tutorial2007/07/08

Busting a myth?
● On some real traces maintenance cost of MS

Pastry appears to be better than that of
Gnutella
– Heartbeat messages only to one node: the left

neighbor in ring (as opposed to gnutella)

● Heterogeneity can also be captured
– Super Pastry: similar to Gnutella, but ultrapeers

form a Pastry network

– Hetero Pastry: similar to GIA: routing table entries
are optimized to prefer high capacity nodes, and a
bound on the in-degree can also be set

– Maintenance overhead is still fine here

121SASO 2007 Tutorial2007/07/08

Flooding and random walk in
structured networks

● Exploiting the structure of the overlay,
broadcast can be optimized to have almost no
wasted traffic

● Restricted flooding: a given number of nodes
can be visited effectively in parallel
– Same mechanism for random walk: sequential

instead of parallel traversial

● Compare some algorithms
– using an eDonkey trace

– max 128 node random walk, one hop replication in
all cases (in Pastry, on routing table entries)

122SASO 2007 Tutorial2007/07/08

Experimental results

123SASO 2007 Tutorial2007/07/08

Experimental results

124SASO 2007 Tutorial2007/07/08

Conclusions
● DHTs are an alternative to support search

– They are very efficient

– They support key based lookup but

– They can be adapted to support more complex
queries as well

● Restricted flooding and random walk is still
better for not-so-rare items

● Hybrid approcahes
– Use DHT for rare items only

– Use structured network to support flooding-style
queries instead of random network

125SASO 2007 Tutorial2007/07/08

References
– Miguel Castro, Manuel Costa, and Antony Rowstron. Peer-to-peer overlays: structured,

unstructured, or both?. Technical Report MSR-TR-2004-73, Microsoft Research,
Cambridge, UK, 2004.

– Boon Thau Loo, Ryan Huebsch, Ion Stoica, and Joseph M. Hellerstein. The case for a
hybrid P2P search infrastructure. In Proceedings of the 3rd International Workshop on
Peer-to-Peer Systems (IPTPS'04), San Diego, CA, USA, 2004.

– Patrick Reynolds and Amin Vahdat. Efficient peer-to-peer keyword searching. In
Middleware 2003, volume 2672 of Lecture Notes in Computer Science, pages 21–40.
Springer-Verlag, 2003.

– Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott Schenker. A
scalable content-addressable network. In Proceedings of the 2001 Conference on
Applications, Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM), pages 161–172, San Diego, CA, 2001. ACM, ACM Press.

– Antony Rowstron and Peter Druschel. Pastry: Scalable, decentralized object location and
routing for large-scale peer-to-peer systems. In Rachid Guerraoui, editor, Middleware
2001, LNCS 2218, pages 329–350. Springer-Verlag, 2001.

– Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek, and Hari Balakrishnan.
Chord: A scalable peer-to-peer lookup service for internet applications. In Proceedings of
the 2001 SIGCOMM, pages 149–160, San Diego, CA, 2001. ACM, ACM Press.

126SASO 2007 Tutorial2007/07/08

Cooperative End-to-End Content
Distribution

127SASO 2007 Tutorial2007/07/08

Content distribution

● So far we looked at search
● Content distribution is about allowing clients

(peers) to actually get a file or other data after it
has been located

● Different types of content require different
techniques
– Downloading huge files (dvd-s, linux distributions,

etc)

– Streaming media

128SASO 2007 Tutorial2007/07/08

Content distribution networks

● System organization
– Centralized

● Server farms behind single domain name, load
balancing

– Dedicated CDN
● CDN is an independent system for typically many

providers, that clients only download from (use it as a
service); typically http

– End-to-end (p2p)
● special client is needed and clients self-organize to

form the system themselves (as usual in p2p)

129SASO 2007 Tutorial2007/07/08

Outline

● Large file distribution
– Dedicated CDN

● Akamai: privately owned CDN
● CoralCDN: similar idea to Akamai, only cooperative

p2p technology is used

– End-to-end p2p CDN
● Bittorrent
● The network coding approach

● Media streaming
– SplitStream, bullet

130SASO 2007 Tutorial2007/07/08

Akamai

● Provider (eg CNN, BBC, etc) allows Akamai to handle a
subset of its domains (authoritive DNS)

● Http requests for these domains are redirected to nearby
proxies using DNS

– Akamai DNS servers use extensive monitoring info to
specify best proxy: adaptive to actual load, outages, etc

● Currently 20,000+ servers worldwide, claimed 10-20% of
overall Internet traffic is Akamai

● Wide area of services based on this architecture

– availability, load balancing, web based applications,
etc

131SASO 2007 Tutorial2007/07/08

CoralCDN: motivation

● Commercial CDN-s are good but expensive:
small sites with low bandwidth can't afford them

● Small sites are more vulnerable to flash crowds
and any fluctuation of traffic in general

● P2P filesharing has shown willingness to
provide bandwidth for popular content

● Let's build a P2P CDN to support (popular but)
small, underprovisioned websites

● [motivation is shaky, but interesting technology
anyway]

132SASO 2007 Tutorial2007/07/08

CoralCDN

● Participating peers form
– an indexing infrastucture (DHT-like)

– a network of HTTP proxies

– a network of DNS servers

● How to use the system?
– Publishers can “coralize” urls by appending the

domain “.nyud.net:8090” to the name of the server,
eg http://www.inf.u-szeged.hu.nyud.net:8090/

– In email, usenet, etc messages any url-s can be
coralized the same way (thereby preventing the
“slashdotting” of the site in question)

http://www.inf.u-szeged.hu.nyud.net:8090/

133SASO 2007 Tutorial2007/07/08

How it works

● Clients tries to resolve
www.inf.u-szeged.hu.nyud.net

● Coral DNS server probes
the client for RTT and looks
for coral DNS and HTTP
servers nearby

● Coral DNS returns DNS
and HTTP servers for
www.inf.u-szeged.hu.nyud.net

● Clients send HTTP request
to
http://www.inf.u-szeged.hu.nyud.net:8090/

● If given coral serever has
the page, sends it.

● Otherwise looks up the
URL in Coral, and if it is
available, caches it from
within Coral, and sends it

● Otherwise it fetches the
page from original location
http://www.inf.u-szeged.hu/

● The coral server notifies the
system that it now caches
the URL

http://www.inf.u-szeged.hu.nyud.net/
http://www.inf.u-szeged.hu.nyud.net/
http://www.inf.u-szeged.hu.nyud.net:8090/
http://www.inf.u-szeged.hu/

134SASO 2007 Tutorial2007/07/08

Overview of CoralCDN

135SASO 2007 Tutorial2007/07/08

Distributed sloppy hash table

● Sloppy: keys can be stored not only on nodes
that are the closest, but also in nodes that are
close enough: better load balancing

● Inserting a key
– Approach the reposnsible node through routing as

in DHT, but stop sooner, if nodes that are close are
“full” and “loaded” (load balancing technique)

● Retrieval
– Approach the responsible node for the key, and

stop when finding the first node storing the key

136SASO 2007 Tutorial2007/07/08

Clustering

● Many DSHT-s in parallel: hierarchical clustering
– 3 levels: according to RTT among cluster members

– All nodes have same ID in all clusters, level 0
cluster covers full network

● Implementation of clustering
– Storing hints in the DSHT: key: IP address of router

and subnet prefix: value: node
● Joining nodes quickly find other nodes in the same

subnets

– Collect RTT info in all contacts: if other cluster
seems closer, change cluster

137SASO 2007 Tutorial2007/07/08

Exploiting clustering

● Retrieval is biased towards lower levels, so
nearby HTTP and DNS servers can be located
– Start routing protocol at level 2 (closest nodes)

– If no key found, go to level 1 and simply continue
the routing (the nodes level 2 cluster is subset of its
level 1 cluster)

– Go until reaching level 0

● Clusters do not increase lookup time (roughly
the same as a simple routing at level 0)

138SASO 2007 Tutorial2007/07/08

Some notes
● CoralCDN is deployed on PlanetLab

– 750 nodes

– 1,500 Gbytes for 700,000 IP addresses a day

● It is only a proof of concept, but wide scale
deployment is a question
– If it is single administrative domain, why not more

control, why the p2p approach?

– If it is voluntary, multiple admin domain, who would
want to join voluntarily without restricting content?
What kind of content? Etc

– DNS and other overhead makes it rather slow

139SASO 2007 Tutorial2007/07/08

End-to-end P2P CDN: BitTorrent

● Invented by Bram Cohen
● Currently 20-50% of Internet traffic is BitTorrent
● Special client software is needed
● Basic idea

– Clients that download a file at the same time help
each other (ie, also upload chunks to each other)

– BitTorrent clients form a swarm: a random overlay
network

140SASO 2007 Tutorial2007/07/08

BitTorrent
● Publishing a file

– Put a “.torrent” file on the web: it contains the
address of the tracker, and information about the
published file: eg chunk hashes (256M chunks)

– Start a tracker, a server that
● Gives joining downloaders random peers to download

from and to
● Collects statistics about the swarm

– [Note that there are “trackerless” implementations
already]

● Download a file
– Install a bittorrent client and click on a “.torrent” file

141SASO 2007 Tutorial2007/07/08

BitTorrent overview

142SASO 2007 Tutorial2007/07/08

BitTorrent client
● Client first asks 50 random peers from tracker

– Also learns about what chunks they have
● Picks a chunk and tries to download its pieces (16K) from

the neighbors that have them

– Download does not work if neighbor is disconnected or
denies download (choking)

● Allows only 4 neighbors to download (unchoked neighbors)

– Periodically (30s) does optimistic unchoke: allows
download to random peer (important for bootstrapping
and optimization (exploration))

– Otherwise unchokes peer that allows the most download
(each 10s)

143SASO 2007 Tutorial2007/07/08

tit-for-tat
● Tit-for-tat in iterated prisoners dilemma

– Cooperate first, then do what the opponent did in
the previous game

– Very good strategy (Axelrod)

● BitTorrent is a kind of tit-for-tat
– We unchoke peers (allow them to download) that

allowed us to download from them

– Optimistic unchoking is the initial cooperation step
to bootstrap the thing

● How about hacked clients? Why don't they
spread and kill BitTorrent?

144SASO 2007 Tutorial2007/07/08

Chunk selection

● Another very important question is what chunk
to select to download?

● Clients select the chunk that is rarest among
the neighbors (local decision)
– Keeps all chunks equally represented

– This is good because no chunks get lost, and it is
likely that peers find chunks they don't have

● Exception is first chunk
– Select a random one (to make it fast: many

neighbors must have it)

145SASO 2007 Tutorial2007/07/08

Measurements

● 5 month trace of the 1.77GB RedHat ISO
image

● Two sources of data
– Tracker statistics

– Modified client participating in the swarm

● 180,000 clients total
● 50,000 clients in the first five days

– Flash crowd

146SASO 2007 Tutorial2007/07/08

Initial flash crowd

147SASO 2007 Tutorial2007/07/08

Seeds and leechers: altruism

148SASO 2007 Tutorial2007/07/08

Some statistics

● Average download rate is 500kb/s, during flash
crowd, active clients averged at 800kb/s

● 5% of sessions is “seed session”
– Joining peer already has to complete file, joins only

to share it

● About 50% of sessions (peer joins) belong to
peers that spend little time in the network and
down/upload little data
– Maybe disappointed users behind slow links

149SASO 2007 Tutorial2007/07/08

Summary

● BitTorrent: simple (by design and also to use),
almost optimal and works → it is popular

● The devil is in the details too (good efficient
client)

● Only slight problem: endgame
– Last chunks in endgame mode: aggressive parallel

downloads to maximize speed

– Does not result in very significant overhead

150SASO 2007 Tutorial2007/07/08

Network coding

● In bittorrent: chunk selection and peer selection
are important to make sure that
– All chunks are represented equally

– We have a random network

● We can get rid of these using coding theory
– Works even if overlay has bottlenecks

– No need to worry about chunk selection

151SASO 2007 Tutorial2007/07/08

Coding theory for CDNs

● Erasure codes
– Data is divided into k packets

– Transformed into n>k packets such that any k
packets can reconstruct the original data (erasure
codes)

– Reed-Solomon or Tornado codes

● Implementing a digital fountain
– “fountain” keeps transmitting these n packets

– Downloaders can join at any time, can catch any k
of the packets (perhaps from neighbors) and leave

152SASO 2007 Tutorial2007/07/08

Network coding
● Not only server does encoding but also the clients

● A huge, practically unlimited number of different
packets are floating around, generated by clients
concurrently

● Any k of these packets is enough for decoding

● Possible coding approach: linear combination over
finite fields

– All codes are linear combinations of the original packets

– Clients create new linear combinations when they offer
content

– Decoding is solving a linear system of equations

153SASO 2007 Tutorial2007/07/08

Advantage of network coding

Only
the
number
of
packets
counts,
no
worries
about
which
packet
to fetch

154SASO 2007 Tutorial2007/07/08

A possible protocol
● Same as BitTorrent, only

– Clients offer new random linear combinations for
download and transfer the coefficients as well (low
overhead)

– There is no chunk selection problem
● No rare chunks can occur
● No endgame problem
● No topology bottleneck problem
● No data loss problem due to catastrophic failure

● Same incentive mechanisms too (tit-for-tat), but
with explicit accounting (no more upload than
download)

155SASO 2007 Tutorial2007/07/08

Experimental results
● Three algorithms

– Local rarest chunk selection (LR) (similar to
BitTorrent)

– Local rarest combined with server encoding

– Network encoding

● Network size is 200 (small!)
● Neighbors is max 6 (small!)
● Different scenarios

– Clustered topology, heterogeneity, dynamism (If
random network and homogeneous static peers,
then the strategies are very similar)

156SASO 2007 Tutorial2007/07/08

Clustering and heterogeneity
Two clusters: 100 nodes each 10 fast nodes (4x faster) 190 slow nodes

157SASO 2007 Tutorial2007/07/08

Server availability

Server leaves
after serving
all chunks
plus 5% extra
chunks, nodes
immediately
leave when
finished

server coding
needs 10-15%,
no coding 20-
30% extra
chunks to
achieve full
coverage

158SASO 2007 Tutorial2007/07/08

Final note

● BitTorrent is in fact quite good in practice
– No network bottlenecks occur because a random

network is maintained

– Rarest chunk policy is very good (combined with
initial random chunk and end-game strategies)

– Heterogeneity might be an issue (in practice low
capacity nodes simply go away, as we saw...)

● A convincing study is still to be written with
larger scale systems and a more complete BT
implementation

159SASO 2007 Tutorial2007/07/08

Media streaming

● Similar to distribution of large files but time is
important
– Packets must have low delay

– If we do not get a packet for some time, we forget
about it

● Classification as before
– Dedicated router infrastructure (Cisco, etc)

– Dedicated application layer overlay (Akamai, etc)

– P2P cooperative approaches

● We look at SplitStream and Bullet (both P2P)

160SASO 2007 Tutorial2007/07/08

Multiple description coding
● We have seen erasure codes for large file

distribution
– Here any k packets were enough for decoding, but

k-1 packets is of not much help

● Multiple description code (MDC) is similar
– k packets are enough for decoding

– Less than k packets can be used to approximate
content

● Similar to progressive encoding, only order of packets
is insignificant

● Useful for multimedia (video, audio) but not for other
data

161SASO 2007 Tutorial2007/07/08

Multiple description coding
● Media streaming

applications often use
MDC in some form
because
– Loosing a packet results in

no interruption, only quality
degradation

– Lower bandwidth nodes
simply ask for < k packets

● Streams can be sliced into
parallel “stripes” that are
MDC encoded

tim
e

stripes

162SASO 2007 Tutorial2007/07/08

Trees: not optimal

● The most natural way of cooperative media
streaming is through broadcast trees

● Trees have problems though, esp in end-to-end
approaches
– Vulnerable to failure (no cycles)

– Bandwidth strictly decreases towards leaves

– Difficult to create optimal tree (and it is important to
do so)

– Leaves do not contribute in a cooperative setting

163SASO 2007 Tutorial2007/07/08

Solving the problems with trees

● Use multiple trees
● Use a tree but also use a mesh for cooperation
● Axe them (Chainsaw, IPTPS 2005)

– We do not discuss this here, although remarkable

● In the following we look at
– SplitStream that uses multiple trees

– Bullet that uses the union of a mesh and a tree

164SASO 2007 Tutorial2007/07/08

SplitStream

● Basic idea
– Split the stream into k stripes (perhaps with MDC

encoding)

– For each stripe create a multicast tree such that the
forrest

● Contains interior-node-disjoint trees
● Respects nodes' individual bandwidth constraints

● Approach
– Use Scribe (and some hacks) to create the forrest

– Scribe is on top of Pastry

165SASO 2007 Tutorial2007/07/08

Illustration of SplitStream

166SASO 2007 Tutorial2007/07/08

The forrest construction problem
● A constraint satisfaction problem

– All nodes have incoming capacity requirements (number
of stripes they need) and outgoing capacity limits

– There is one or more source for each stripe

– We have to construct a weighted directed acyclic
distribution graph (forrest) that respects these constraints

● An observation: such a forrest exists if

– Sum of incoming capacity is less then or equal to the
sum of outgoing capacity over the nodes and

– All nodes that have large outgoing than incoming
capacities must posess (receive or originate) all stripes

167SASO 2007 Tutorial2007/07/08

Constructing the forrest: scribe

● Scribe works over Pastry
– Mutlicast groups are identified by an ID

– Tree is definied by the route towards the ID in the
Pastry network

– Join: route towards the ID, connect to first member
as child

● Basic idea
– All k stripes are assigned a group ID, and Scribe is

used to create mutlicast trees

– This does not necessarily satisfy constraints

168SASO 2007 Tutorial2007/07/08

Constructing the forrest

● Additional tricks for constraint satisfaction

– Group IDs start with a different letter: interior-node-
disjoint forrest

– If a node has too many children
● “Push-down” approach: joining node looks for a

parent further down the tree, or if not found, in the
“spare capacity group”

– Spare capacity group
● Scribe group that contains nodes that can take more

children
● Algorithm always succeeds if all nodes want to receive all

stripes or suceeds with a high probability as a function of
spare capacity and minimal incoming capacity

169SASO 2007 Tutorial2007/07/08

Bullet

● Basic idea
– Use a multicast tree as a basis

– In addition each node continuously looks for peers
to download from

– In effect, the overlay is a tree combined with a
random network

● Approach
– A service (ranSub) that provides random peers

– A mechanism to select “good” peers

– Low level transfer protocol (to replace TCP)

170SASO 2007 Tutorial2007/07/08

Bullet: RanSub

● Two phases
– Collect phase: using the tree, membership info is

propagated upwards (random sample and subtree
size)

– Distribution phase: moving down the tree, all nodes
are provided with a random sample from the entire
tree, or from the non-descendant part of the tree,
etc.

● Nodes in the network receive random peers this
way end select those that seem to be most
useful

171SASO 2007 Tutorial2007/07/08

Bullet
● When selecting a peer, first a similarity measure is

calculated

– Based on “summary-sketches”
● Before exchange missing packets need to be identified

– Bloom filter of available packets is exchanged
(usual false positive issue)

– Old packets are removed from the filter (to keep the
size of the set constant)

● Periodically re-evaluate senders (how useful they are)

– If needed, senders are dropped and new ones are
requested

172SASO 2007 Tutorial2007/07/08

Some comments

● Tree is needed
– Because of RanSub: but other sampling services

can be used that do not rely on trees

– To maximize diversity of packets in the network: but
rarest first chunk selection in BT does the same,
besides, with encoding techniques, it is irrelevant

● So is the tree needed?
● Isn't the protocol unnecessarily complex trying

to explicitly control things that are “for free” in
simpler approaches?
– Eg in BT through the local-rarest-first strategy

173SASO 2007 Tutorial2007/07/08

References
– C Gkantsidis and P R Rodriguez. Network coding for large scale content

distribution. In INFOCOM 2005, pp 2235–2245, 2005.

– M Freedman, E Freudenthal, and D Mazières. Democratizing content
publication with Coral. In NSDI '04, 2004.

– M. Izal, G. Urvoy-Keller, E.W. Biersack, P.A. Felber, A. Al Hamra, and L.
Garcés-Erice. Dissecting bittorrent: Five months in a torrent's lifetime. In
Passive and Active Network Measurement, LNCS 3015, pages 1–11.
Springer, 2004.

– M Castro, P Druschel, A-M Kermarrec, A Nandi, A Rowstron, and A Singh.
Splitstream: high-bandwidth multicast in cooperative environments. In
SOSP'03, pages 298–313, New York, NY, USA, 2003

– B Cohen. Incentives build robustness in bittorrent. In P2PECON, 2003.

– D Kostic, A Rodriguez, J Albrecht, and A Vahdat. Bullet: high bandwidth data
dissemination using an overlay mesh. In SOSP'03, pages 282–297

174SASO 2007 Tutorial2007/07/08

Gossip Algorithms

175SASO 2007 Tutorial2007/07/08

Introduction

● Gossip-like phenomena are commonplace

– human gossip

– epidemics (virus spreading, etc)

– computer epidemics (malicious agents: worms, viruses,
etc)

– phenomena such as forest fires, branching processes
and diffusion are all similar mathematically

● In computer science, epidemics are relevant

– for security (against worms and viruses)

– for designing useful protocols (we look at this here)

176SASO 2007 Tutorial2007/07/08

Introduction

● originally for information dissemination in a very
simple but efficient and reliable way

● later the term has been extended to many local
probabilistic and periodic protocols

● we will introduce a simple common skeleton
and look at
– information dissemination

– topology construction

– aggregation

177SASO 2007 Tutorial2007/07/08

Introduction

● the push-pull model is
sown

● the active thread
initiates
communication
(push) and receives
peer state (pull)

● the passive thread
mirrors this behavior

do once in each T time units at
a random time

p = selectPeer()
send state to p
receive state

p
 from p

state = update(state
p
)

do forever
receive state

p
 from p

send state to p
state = update(state

p
)

active thread

passive thread

178SASO 2007 Tutorial2007/07/08

Information dissemination
(broadcast)

● state: set of updates
● selectPeer: a random peer from the network

– very important component, we get back to this soon

● update: add the received updates to the local
set of updates

● some notes
– implementations take care of details to optimize bandwidth

usage (check which updates are needed, etc)

– propagation of one given update can be limited (max k times
or with some probability, etc)

179SASO 2007 Tutorial2007/07/08

Performance of gossip

● various mathematical results are available
– epidemiological models (virus spreading)

– percolation theory, complex networks, etc

● underlying network (that is, the implementation
of selectPeer) plays a key role

● in a random network
– push-pull gossip spreads approximately exponentially

fast

– gossip (that is, random networks...) is extremely robust to
benign failure (node failure and link failure)

180SASO 2007 Tutorial2007/07/08

References
– Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott

Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic
algorithms for replicated database maintenance. In Proceedings of the
6th Annual ACM Symposium on Principles of Distributed Computing
(PODC'87), pages 1–12, Vancouver, British Columbia, Canada, August
1987. ACM Press.

– Eugster, P. T., Guerraoui, R., Kermarrec, A.-M., and Massoulie, L.
2004. Epidemic information dissemination in distributed systems. IEEE
Computer 37, 5 (May), 60–67.

– A.-M. Kermarrec and M. van Steen, editors, Special issue of ACM
SIGOPS Operating Systems Review on Gossip Protocols, (probably
2007, in press).

181SASO 2007 Tutorial2007/07/08

Peer Sampling

● A key method is selectPeer in all gossip
protocols (determines performance and
reliability)

● In earliest works all nodes had a global view to
select a random peer from
– scalability and dynamism problems

● Scalable solutions are available to deal with this
– random walks on fixed overlay networks

– dynamic random networks

182SASO 2007 Tutorial2007/07/08

Random walks on networks

● if we are given any fixed network, we can
sample the nodes with any arbitrary distribution
with the Metropolis algorithm:

● This Markov chain has stationary distribution
where d

i
 is the degree of node i (undirected

graph)

183SASO 2007 Tutorial2007/07/08

Gossip based peer sampling

● basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

● The peer sampling service uses itself as peer
sampling service (bootstrapping)

– no need for fixed (external) network
● state: a set of random overlay links to peers

● selectPeer: select a peer from the known set of
random peers

● update: for example, keep a random subset of the
union of the received and the old link set

184SASO 2007 Tutorial2007/07/08

Gossip protocols for topology
management

A
D
E

S
X

W

A E

185SASO 2007 Tutorial2007/07/08

Gossip protocols for topology
management

A
D
E

S
X

W

A E

SelectPeer

186SASO 2007 Tutorial2007/07/08

Gossip protocols for topology
management

A E

Exchange
of views

187SASO 2007 Tutorial2007/07/08

Gossip protocols for topology
management

A E
Both sides
apply update

thereby
redefining
topology

188SASO 2007 Tutorial2007/07/08

Gossip based peer sampling

● in reality a huge number of variations exist
– timestamps on the overlay links can be taken into

account: we can select peers with newer links, or in
update we can prefer links that are newer

● these variations represent important differences
w.r.t. fault tolerance and the quality of samples
– the links at all nodes define a random-like overlay

that can have different properties (degree
distribution, clustering, diameter, etc)

– turns out actually not really random, but still good
for gossip

189SASO 2007 Tutorial2007/07/08

References
– Márk Jelasity, Rachid Guerraoui, Anne-Marie Kermarrec, and Maarten

van Steen. The peer sampling service: Experimental evaluation of
unstructured gossip-based implementations. In Hans-Arno Jacobsen,
editor, Middleware 2004, volume 3231 of Lecture Notes in Computer
Science, pages 79–98. Springer-Verlag, 2004. (journal version: ACM
TOCS 2007 aug)

– Zhong, M., Shen, K., and Seiferas, J. 2005. Non-uniform random
membership management in peer-to-peer networks. In Proc. of the
IEEE INFOCOM. Miami, FL.

190SASO 2007 Tutorial2007/07/08

Gossip based topology
management

● We saw we can build random networks. Can
we build any network with gossip?

● Yes, many examples

– proximity networks
– DHT-s (Bamboo DHT: maintains Pastry

structure with gossip inspired protocols)
– semantic proximity networks
– etc

191SASO 2007 Tutorial2007/07/08

T-Man

● T-MAN is a protocol that captures many of
these in a common framework, with the help of
the ranking method:
– ranking is able to order any set of nodes according

to their desirability to be a neighbor of some given
node

– for example, based on hop count in a target
structure (ring, tree, etc)

– or based on more complicated criteria not
expressible by any distance measure

192SASO 2007 Tutorial2007/07/08

Gossip based topology
management

● basic idea: random peer samples are provided by a
gossip algorithm: the peer sampling service

● The peer sampling service uses itself as peer
sampling service (bootstrapping)

– no need for fixed (external) network
● state: a set of overlay links to peers

● selectPeer: select the peer from the known set of
peers that ranks highest according to the ranking
method

● update: keep those links that point to nodes that rank
highest

193SASO 2007 Tutorial2007/07/08

Initial state Cycle 3 Cycle 5

Cycle 15Cycle 12Cycle 8

194SASO 2007 Tutorial2007/07/08

195SASO 2007 Tutorial2007/07/08

References
– Márk Jelasity and Ozalp Babaoglu. T-Man: Gossip-based overlay topology

management. In Sven A. Brueckner, Giovanna Di Marzo Serugendo, David
Hales, and Franco Zambonelli, editors, Engineering Self-Organising
Systems: Third International Workshop (ESOA 2005), Revised Selected
Papers, volume 3910 of Lecture Notes in Computer Science, pages 1–15.
Springer-Verlag, 2006.

– Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatowicz.
Handling Churn in a DHT. Proceedings of the USENIX Annual Technical
Conference, June 2004.

– Laurent Massoulie, Anne-Marie Kermarrec, and Ayalvadi J. Ganesh.
Network awareness and failure resilience in self-organising overlay
networks. In Proceedings of the 22nd Symposium on Reliable Distributed
Systems (SRDS 2003), pages 47–55, Florence, Italy, 2003.

– Spyros Voulgaris and Maarten van Steen. Epidemic-style management of
semantic overlays for content-based searching. In Jose C. Cunha and Pedro
D.Medeiros, editors, Proceedings of Euro-Par, number 3648 in Lecture
Notes in Computer Science, pages 1143–1152. Springer, 2005.

http://srhea.net/papers/bamboo-usenix.pdf

196SASO 2007 Tutorial2007/07/08

Aggregation

● Calculate a global function over distributed data
– eg average, but more complex examples include

variance, network size, model fitting, etc

● usual structured/unstructured approaches exist
– structured: create an overlay (eg a tree) and use

that to calculate the function hierarchically

– unstructured: design a stochastic iteration algorithm
that converges to what you want (gossip)

● we look at gossip here

197SASO 2007 Tutorial2007/07/08

Implementation of aggregation

● state: current approximation of the average
– initially the local value held by the node

● selectPeer: a random peer (based on peer
sampling service)

● updateState(s
1
,s

2
)

– (s
1
+s

2
)/2: result in averaging

– (s
1
s

2
)1/2: results in geometric mean

– max(s
1
,s

2
): results in maximum, etc

198SASO 2007 Tutorial2007/07/08

Illustration of averaging

12

8

7

2

6

3

199SASO 2007 Tutorial2007/07/08

Illustration of averaging

12

8

7

2

6

3

(12+6)/2=9

200SASO 2007 Tutorial2007/07/08

Illustration of averaging

9

8

7

2

9

3

201SASO 2007 Tutorial2007/07/08

Improvements

● Tolerates asymmetric message loss (only push
or pull) badly

● Tolerates overlaps in pairwise exchanges badly
● [Kempe et al 2003] propose a slightly different

version
– all nodes maintain s (sum estimate) and w (weight)

– estimate is s/w

– only push: send (s/2,w/2), and keep s=s/2, w=w/2

● several other variations exist

202SASO 2007 Tutorial2007/07/08

Initial state Cycle 1 Cycle 2

Cycle 3 Cycle 4 Cycle 5

Illustration of averaging

203SASO 2007 Tutorial2007/07/08

References
– Kempe, D., Dobra, A., and Gehrke, J. 2003. Gossip-based computation

of aggregate information. In Proceedings of the 44th Annual IEEE
Symposium on Foundations of Computer Science (FOCS’03). IEEE
Computer Society, 482–491.

– Márk Jelasity, Alberto Montresor, and Ozalp Babaoglu. Gossip-based
aggregation in large dynamic networks. ACM Transactions on
Computer Systems, 23(3):219–252, August 2005.

– Robbert van Renesse, Kenneth P. Birman, and Werner Vogels.
Astrolabe: A robust and scalable technology for distributed system
monitoring, management, and data mining. ACM Transactions on
Computer Systems, 21(2):164–206, May 2003.

204SASO 2007 Tutorial2007/07/08

Outlook

● Gossip is similar to many other fields of
research that also have some of the following
features:
– periodic, local, probabilistic, symmetric

● examples include
– swarm systems, cellular automata, parallel

asynchronous numeric iterations, self-stabilizing
protocols, etc

205SASO 2007 Tutorial2007/07/08

This tutorial is available from

http://www.inf.u-szeged.hu/~jelasity/talks/saso07tutorial.pdf

http://www.inf.u-szeged.hu/~jelasity/talks/saso07tutorial.pdf

206SASO 2007 Tutorial2007/07/08

Backup Slides

● details on [Demers et al, 1989]
– propagation speeds

– rumor mongering

– spatial gossip

● Astrolabe

207SASO 2007 Tutorial2007/07/08

● Problem
– Xerox corporate Internet, replicated databases
– Each database has a set of keys that have values (along

with a time stamp)
– Goal: all databases are the same, in the face of key updates,

removals and additions
– Updates are made locally and have to be replicated at all

sites (300 sites)
● Solution in 1986

– Anti-entropy and remailing
– Didn’t work due to huge amount of traffic

Epidemic Database Updates

208SASO 2007 Tutorial2007/07/08

Anti-Entropy
● basic idea: pairwise exchange of new updates

● state: the local database

● selectPeer: select a random peer

● update: resolve differences between the two
databases

● some theoretical notes

– easy to see that eventually all databases get all
updates

– expected time to achieve that is logarithmic
(pushpull is fastest)

209SASO 2007 Tutorial2007/07/08

End-phase convergence of
anti-entropy

● Pull
– pi is the proportion of not infected nodes in cycle i

p i1=p i
2

p i1=p i 1− 1
N

N 1−pi

≈p i e
−1

● Push (slower in the end phase)

210SASO 2007 Tutorial2007/07/08

● Rumor spreading
– Push gossiping, but

stop spreading info
with probability 1/k if
unsuccessful infection
attempt (become
removed)

– s: susceptible, i:
infective, r: removed

● Eg if k=1, 20% miss the
gossip, if k=2, 6% miss
it

ds
dt

=−si

di
dt

=si−
1
k
1−s i

 s=e− k1 1−s

Rumor spreading

211SASO 2007 Tutorial2007/07/08

Some other rumor mongering
algorithms

● Some modifications
– Blind vs feedback: blind is removed with pr. 1/k irrespective

of success
– Counter vs random: counter counts k unsuccessful attempts,

random is removed with 1/k probability after each
unsuccessful attempt

– Push vs pull
● Push: always s=e-m where s is residue and m is avg number of

messages sent by a node (Nm messages are sent altogether,
to random targets)

● Pull: better residue, but generates traffic even when there are
no updates

212SASO 2007 Tutorial2007/07/08

Some empirical results
(1000 nodes)

Feedback+
Counter+
pull

Blind+
Random+
push

Feedback+
Counter+
push

213SASO 2007 Tutorial2007/07/08

Combining anti-entropy and rumor
mongering

● Rumor mongering is used to spread updates
● Anti-entropy is run infrequently to make sure

all updates are spread with pr. 1
● When anti-entropy finds an undelivered

update: redistribution
– Redistribution is done via rumor mongering

● [Originally, both primary spreading and
redistribution was by email, but costs are
prohibitive]

214SASO 2007 Tutorial2007/07/08

● So far: random contacts
– This is not good for underlying network traffic
– Need to take proximity into account

● Spacial gossip: getPeer is biased according to
distance of the peer: selecting node i is proportional
to d-a where d is the distance of i

● If underlying topology is linear, then expected traffic
per link:

Spacial Gossip

215SASO 2007 Tutorial2007/07/08

● a=2 is the best
– Best tradeoff between speed and traffic
– Probability is proportional to 1/d2

● Generalize to non-linear case
– Q(d): cumulative number of sites at most at distance d
– Probability proportional to 1/Q(d)2

● Smoothing out pathological topologies
– Order all sites according to distance
– Treat it as a linear structure

Spatial Gossip

216SASO 2007 Tutorial2007/07/08

● Organizes hosts into a domain hierarchy (like DNS)
● Provides online monitoring service based on

aggregation; a sort of data mining
● Fully decentralized through gossip
● Allows online configuration of monitoring capabilities

(new things to observe, etc)
● Provides an API to applications
● Actually implemented

– Security, firewalls, etc taken care of

Astrolabe (middleware)

217SASO 2007 Tutorial2007/07/08

● DNS
– Directory service based on hierarchical domains
– Lately more functionality

● Round robin DNS, server records, etc
– Updates are slow, and vulnerable

● Astrolabe also hierarchical but
– More efficient
– More robust
– More generic

● arbitrary info about a domain
● Collected online real time, in a configurable way

Analogy with DNS

218SASO 2007 Tutorial2007/07/08

● Aggregation is summarizing info
– Over the entire system or within domains
– It is of small size (not listing, only summary (O(1)))

● For example
– Average, maximum, count, etc of some values

● Info is stored in (small) databases: MIBs
– Management information base

● Aggregation is expressed by a simplified SQL
language

● Aggregates are proactively updated at each level

Aggregation as Key Abstraction

219SASO 2007 Tutorial2007/07/08

Schematic view of Astrolabe

220SASO 2007 Tutorial2007/07/08

● Can be accessed locally at an Astrolabe host or
remotely through RPC

● scope: well defined subset of the tree
● zone: subtree (or leaf)
● updates only on leaf (virtual child zone)

Astrolabe API

221SASO 2007 Tutorial2007/07/08

● P2P information diffusion: selectCast
– Multicast to multicast groups
– Each zone aggregates members of a group

● eg SELECT FIRST(2,game) AS game ORDER BY rate

– This way an overlay is superimposed that is used to
multicast

– Having two selected members at each zone allows for
redundancy

● Note that the underlying Astrolabe infrastructure
takes care of keeping all this up-to-date, scalable and
robust

Example Applications

222SASO 2007 Tutorial2007/07/08

Schematic view of SelectCast

223SASO 2007 Tutorial2007/07/08

● Each agent maintains
a copy of the chain
MIBs up to the root

● It also replicates the
MIBs of all child
zones of all the zones
in this chain

● So zones are purely
virtual and are
replicated over all
members

Implementation

224SASO 2007 Tutorial2007/07/08

● ID

– the local zone name within the parent zone

● Issued

– the timestamp of last update of this MIB

● Contacts

– Representatives for this zone (who will gossip)

● Nmembers

– Number of members in the zone

● Servers

– Small set of agents that implement the API

Compulsory Attributes

225SASO 2007 Tutorial2007/07/08

● This set of MIBs is replicated (refreshed) through
gossip

● For all zones separately
– There is a gossip rate (cycle length)
– Contacts for a zone pick a sibling zone at random
– Initiate gossip with a contact of the selected zone
– They run an anti-entropy step (regarding their own level and

up)
● Note that most communication is done between

sibling leaf nodes

Gossip

226SASO 2007 Tutorial2007/07/08

● Membership management
– If a given zone’s MIB is not refreshed for some time, it is

removed
– Joins are dealt with

● Setting a contact node explicitly
● Or doing IP broadcast, etc

● Communication
– Issues with firewalls

● Application level gateways (ALGs), etc
● Security

– Through certificates
● Each zone has a certificate authority (CA)

Other issues

227SASO 2007 Tutorial2007/07/08

References

– Robbert van Renesse, Kenneth P. Birman, and Werner Vogels.
Astrolabe: A robust and scalable technology for distributed system
monitoring, management, and data mining. ACM Transactions on
Computer Systems, 21(2):164–206, May 2003.
(doi:10.1145/762483.762485)

– Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson,
Scott Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry.
Epidemic algorithms for replicated database maintenance. In
Proceedings of the 6th Annual ACM Symposium on Principles of
Distributed Computing (PODC'87), pages 1–12, Vancouver, British
Columbia, Canada, August 1987. ACM Press.

