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Abstract. A novel video object segmentation method is proposed which
aims at combining color and motion information. The model has a multi-
layer structure: Each feature has its own layer, called feature layer, where
a classical Markov random field (MRF) image segmentation model is de-
fined using only the corresponding feature. A special layer is assigned to
the combined MRF model, called combined layer, which interacts with
each feature layer and provides the segmentation based on the com-
bination of different features. Unlike previous methods, our approach
doesn’t assume motion boundaries being part of spatial ones. Therefore
a very important property of the proposed method is the ability to detect
boundaries that are visible only in the motion feature as well as those
visible only in the color one. The method is validated on synthetic and
real video sequences.

1 Introduction

Video object segmentation consists of labeling pixels which are associated with
different moving objects or parts. Most of the existing approaches tackle the
problem by assigning a label to each pixel based on its estimated motion vector.
This can be achieved in different frameworks like MRF modeling [1], mixture
modeling [2], etc. . . The evaluation of segmentation results depends on many
factors and is inherently subjective. However, many applications like MPEG-4
encoding, require that detected boundaries align with actual object boundaries.
Due to the aperture problem and occlusions, motion information alone may not
provide such high quality contours.

There has been some attempt to combine different features (like color and
motion) in order to improve segmentation quality. In [3], color, motion and
spatial information is used in a joint probabilistic model. Since features are
assumed to be independent, the joint probability is split into a weighted product
of the corresponding three terms. The weights assigned to the color and motion
part are computed as a confidence measure, which is basically derived from
the probability of the motion part. The optimal segmentation is then obtained
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via Maximum A Posteriori (MAP) estimation. In [4], a region based approach is
proposed which relies on the assumption that motion edges are a subset of spatial
edges. Therefore the method first detects regions using color and then motion
segmentation is based on these regions. However, the human visual system is
not treating different features sequentially. Instead, as pointed out by Kersten
etal. [5], multiple cues are perceived simultaneously and then they are integrated
by our visual system in order to explain the observations. Therefore different
image features has to be handled in a parallel fashion. In this paper, we attempt
to develop such a model in a Markovian framework. A very important property
of our approach is that it doesn’t assume motion boundaries being part of spatial
ones. Therefore it is able to detect boundaries that are visible only in the motion
feature as well as those visible only in the color one.

2 Multi-layer Segmentation Model

Our model consists of 3 layers. At each layer, we use a first order neighborhood
system and extra inter-layer cliques (Fig. 1). Let us denote the color layer by
Sc, the motion layer by Sm and the combined layer by Sx. All layers are of the
same size. Our MRF model is defined over the lattice S = Sc ∪ Sx ∪ Sm. For
each site s, the region-type (or class) that the site belongs to is specified by a
class label, ωs, which is modeled as a discrete random variable taking values in
Λ = {1, 2, . . . , L}. The set of these labels ω = {ωs, s ∈ S} is a random field, called
the label process. Furthermore, the observed image features (color and motion)
are supposed to be a realization F = {�fs|s ∈ Sc ∪ Sm} from another random
field, which is a function of the label process ω. Basically, the image process
F represents the deviation from the underlying label process. Thus, the overall
segmentation model is composed of the hidden label process ω and the observable
noisy image process F . Our goal is to find an optimal labeling ω̂ which maximizes
the a posteriori probability P (ω | F), that is the maximum a posteriori (MAP)
estimate [6]: arg maxω∈Ω P (ω | F) = argmaxω∈Ω

∏
s∈S P (�fs | ωs)P (ω), where Ω

denotes the set of all possible labellings. According to the Hammersley-Clifford
theorem [6], P (ω | F) follows a Gibbs distribution:
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Fig. 1. Multi-layer MRF model
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P (ω | F) =
exp(−U(ω))

Z(β)
=

∏
C∈C exp(−VC(ωC))

Z(β)
(1)

where U(ω) is called the energy function, Z(β) =
∑

ω∈Ω exp(−U(ω)) is the nor-
malizing constant and VC denotes the clique potential of clique C ∈ C having
the label configuration ωC . In our model, the energy function can be further
decomposed into the sum of the layer energies: U c + Um + Ux. Note that the
energies of singletons (ie. cliques of single sites s ∈ S) directly reflect the proba-
bilistic modeling of labels without context, while higher order clique potentials
express relationship between neighboring pixel labels. It is clear from Eq. (1)
that the MAP estimation is equivalent to finding the global energy minimum
of U(ω) = U c + Um + Ux. Since U(ω) is a non-convex function, we have to
use Simulated Annealing [6] or the ICM algorithm [7] for the minimization. In
the remaining part of this section, we will define these energy functions for each
layer (see Eq. (2), Eq. (5), Eq. (6)).

2.1 Color Layer

On the color layer, we use perceptually uniform CIE-L∗u∗v∗ color values where
color differences can be measured by Euclidean distance. The observed image
Fc = {�fc

s |s ∈ Sc} consists of the three spectral component values (L∗,u∗,v∗)
at each pixel s denoted by the vector �fc

s . We assume that P (�fc
s | ωs) follows a

Gaussian distribution, the classes λ ∈ Λc = {1, 2, . . . , Lc} are represented by the
mean vectors �µc

λ and the covariance matrices Σc
λ. The class label assigned to a

site s on the color layer is denoted by ψs. The energy function of the so defined
MRF layer has the following form:

U c = U(ψ, Fc) =
∑

s∈Sc

Gc(�fc
s , ψs) + β

∑

{s,r}∈C
δ(ψs, ψr) + ρc

∑

s∈Sc

V c(ψs, η
c
. ) (2)

where Gc(�fc
s , ψs) denotes the following log Gaussian:

ln(
√

(2π)3 | Σc
ψs

|) +
1
2
(�fc

s − �µc
ψs

)Σc
ψs

−1(�fc
s − �µc

ψs
)T (3)

δ(ψs, ψr) = 1 if ψs and ψr are different and −1 otherwise. β > 0 is a parameter
controlling the homogeneity of the regions. As β increases, the resulting regions
become more homogeneous. The last term (V c(ψs, η

c
. )) is the inter-layer clique

potential which will be defined later in Section 2.4.

2.2 Motion Layer

Herein, we will present both an optic flow based model as well as a motion
compensated color matching method.

Flow-Based Model. For this segmentation model, we use optical flow data
at the motion layer. The flowfield is obtained via the algorithm proposed in [8],
which provides smooth optic flow fields necessary for our MRF model. We then
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model each motion label by a Gaussian pdf which indicates a normally dis-
tributed noise around the mean flow. Therefore the MRF model itself is quite
similar to the one outlined in the previous section. Note that this kind of mod-
elization implicitly assumes translational motion. It is not too difficult, however,
to extend our model to use parametric motion models instead of Gaussians. One
such model is presented next.

Motion Compensated Model. Each region’s motion is modeled by an affine
model given by:

vx(i, j) = ax0 + axxi + axyj

vy(i, j) = ay0 + ayxi + ayyj (4)

where vx(i, j) (resp. vy(i, j)) denotes the X (resp. Y ) component of the flow
vector at pixel (i, j). If we know the flow �v at each pixel then we can warp the
reference frame into the second view. When the flows are correct then the color
differences between the warped and real second view must be low. Assuming
n different motions in a frame, we can assign a motion label to each pixel by
minimizing the warped (or motion compensated) color difference. However, we
also have to deal with occlusions. Clearly, occluded pixels would have a high color
difference as the warped pixel is not visible in the second frame. Therefore we
allocate an additional label λo at the motion layer for occlusions. Putting these
considerations together, we get the following energy function at the motion layer:

Um = U(φ, I, I ′) =
∑

s∈Sm,φs �=λo

||I(s) − I′(�v(s))||2 +
∑

s∈Sm,φs=λo

V (λo)

+ β′ ∑

{s,r}∈C
δ(φs, φr) + ρm

∑

s∈Sm

V m(φs, η
m
. ) (5)

where I and I′ are the reference and second frames respectively, and V (λo)
denotes the constant penalty for occlusion. The second and third terms are the
intra- and inter-layer potentials similar to the color layer. In our experiments,
we have estimated affine motion parameters using the method from [9].

2.3 Combined Layer

The combined layer only uses the motion and color features indirectly, through
inter-layer cliques. A label consists of a pair of color and motion labels such
that η = 〈ηc, ηm〉, where ηc ∈ Λc and ηm ∈ Λm. The set of labels is denoted
by Λx = Λc × Λm and the number of classes Lx = LcLm. Obviously, not all
of these labels are valid for a given image. Therefore the combined layer model
also estimates the number of classes and chooses those pairs of motion and color
labels which are actually present in a given image. The energy function of the
combined layer is of the following form:

Ux = U(η) =
∑

s∈Sx

(Vs(ηs) + γcV c(ψ., η
c
s) + γmV m(φ., η

m
s )) + α

∑

{s,r}∈C
δ(ηs, ηr)

(6)
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where Vs(ηs) denotes singleton energies defined as

Vs(ηs) = R((10Nηs)
−3 + P(L)) (7)

The singleton potential controls the number of classes at the combined layer:
(10Nηs)−3 penalizes small classes (Nηs is the percentage of the sites assigned to
class ηs), while P(L) includes some prior knowledge about the number of classes.
Currently P(L) is expressed by a log Gaussian term (similar to the one in Eq. (3))
with mean value L̂ (basically an initial guess) and variance σ (confidence in the
initial guess). R is simply a weight of this term, we set it to 0.5 in our tests.

The last term of Eq. (6) corresponds to second order intra-layer cliques which
ensures homogeneity of the combined layer. α has the same role as β in the color
layer model and δ(ηs, ηr) = −1 if ηs = ηr, 0 if ηs �= ηr and 1 if ηc

s = ηc
r and

ηm
s �= ηm

r or ηc
s �= ηc

r and ηm
s = ηm

r . The idea is that region boundaries present
at both color and motion layers are preferred over edges that are found only at
one of the feature layers.

2.4 Inter-layer Interactions

At any site s, we have an inter-layer clique C5 consisting of five interactions
between two layers: Site s interacts with the corresponding site on the other layer
as well as with the 4 neighboring sites two steps away (see Fig. 1). Depending on
where is the site s, V c(ψ., η

c
s) (s is on the combined layer) and V c(ψs, η

c
. ) (s is

on the color layer) denote the inter-layer clique potential of the following form:

V c(ψ., η
c
s) =

∑

{s,r}∈C5

WrD
c(ψr, η

c
s); V c(ψs, η

c
. ) =

∑

{s,r}∈C5

WrD
c(ψs, η

c
r) (8)

where Dc(ψr, η
c
s) =| Gc(�fc

r , ψr) − Gc(�fc
s , ηc

s) | (see Eq. (3)). V m(φ., η
m
s ),

V m(φs, η
m
. ) and Dm(φr , η

m
s ) are defined in a similar way using motion fea-

tures and corresponding singleton energies. Wr is the weight of the interaction
{s, r} ∈ C5. We assign higher weight (0.6) to the corresponding site whereas
smaller weights (0.1 each) to the other 4 neighboring sites. The latter 4 sites
help to ensure homogeneity on the combined layer (see Fig. 1). Note that Dc

and Dm equals to the difference of the first order potentials at the correspond-
ing feature layer. Clearly, the difference is 0 if and only if both the feature layer
and the combined layer has the same label. Otherwise it is proportional to the
energy difference between the two labels. γc (resp. γm) in Eq. (6) controls the
influence of the inter-layer cliques. A higher value will increase the importance
of the information coming from the feature layers. Furthermore, ρc in Eq. (2)
and ρm in Eq. (5) controls the influence of the combined layer to the color and
motion layers respectively. Therefore, depending on the ratios γc/ρc and γm/ρm,
one can balance the flow of information between the combined and feature layers.

3 Experiments

The proposed algorithm has been tested on real and synthetic video sequences.
The computing time was around 20 sec on a Pentium4 3GHz on 170 × 140
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Original frame Optic flow Color coded optic flow

Multilayer Color only Motion only

Fig. 2. Results of color only, motion only, and combined models using the flow-based
motion model. Segmented regions are sown as a cartoon image (region pixels are dis-
played using the average color of their region) in the second row while boundaries are
overlayed on the original image in the third row.

frames. Much of this CPU time is spent by the iterative optimization process
(Simulated Annealing [6] or ICM [7]). However, such algorithms are known to
be highly parallelizable allowing a near real time implementation on special
hardware (see [10] for an example). We also compare the results to motion only
and color only segmentation (basically a monogrid model similar to the one
defined for the feature layers but without inter-layer cliques).

Parameter Settings. Although we do not consider parameter estimation in
this paper, it is relatively easy to extend our method to handle this issue. The
so called hyper parameters (the different weights of intra- and inter-layer clique-
potentials) are less sensitive to the input data. We have found that one setting
works for all tested sequence. Hence the only real problem is the estimation of the
number of regions and the region parameters (Gaussian mean and covariance or
the affine motion parameters). Since we are working on video sequences, one can
naturally reuse parameters from previous frames (with some slight adjustment).
As for an initial setting of the first frame, mean shift clustering has been adopted
with success by many researchers [11, 12]. Once initial clusters are available,
one can adopt an adaptive segmentation procedure where region parameters
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Original frame Optic flow Color coded optic flow

Multilayer Color only Motion only

Segmentation result ob-
tained by the algorithm
of Khan & Shah [3]. Note
that the cartoon image is
randomly colored.

Fig. 3. Results of color only, motion only, and combined models using the flow-based
motion model. Segmented regions are shown as a cartoon image (region pixels are
displayed using the average color of their region) in the second row while boundaries
are overlayed on the original image in the third row. The last row presents the results
of the method from [3].

are regularly updated during the segmentation process. We have successfully
applied such a technique for color textured image segmentation [12]. In the
following experiments, the mean vectors and covariance matrices as well as the
affine motion parameters were computed over representative regions selected by
the user. The number of motion and color classes is known a priori but classes
on the combined layer are estimated during the segmentation process.
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Original frame #1 Original frame #2 Multilayer

Color only Motion only

Fig. 4. Results of color only, motion only, and combined models using the motion
compensated motion model. Segmented regions are sown as a cartoon image (region
pixels are displayed using the average color of their region) in the first column while
boundaries are overlayed on the original image in the second column of the result
images.

Original frame #1 Original frame #2 Multilayer

Fig. 5. Results of color only, motion only, and combined models using the motion
compensated motion model. Segmented regions are sown as a cartoon image (region
pixels are displayed using the average color of their region) in the first column while
boundaries are overlayed on the original image in the second column of the result
images.

Flow-Based Model. Fig. 2 and Fig. 3 show some segmentation results using
optical flow data and Gaussian motion model. In Fig. 2, note that the head of the
men can only be separated from the background using motion features. Clearly,
the multi-layer model provides significantly better results compared to color only
and motion only segmentations. See Fig. 3 to compare the performance of the
proposed method with the one from [3] on the Mother and Daughter standard
sequence: Some of the contours are lost by [3] (the sofa, for example) while our
method successfully identifies region boundaries. In particular, our method is
able to separate the hand of the mother from the face of the daughter in spite of
their similar color. This demonstrates again that the proposed method is quite
powerful at combining motion and color features in order to detect boundaries
visible only in one of the features.
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Motion Compensated Model. In Fig. 4 we present the results of a synthetic
sequence using the motion compensated model. The image contains regions vis-
ible only in the color layer and boundaries visible only in the motion feature.
The two white regions (one with a small painted area) are moving: the upper
region is translating while the lower one is rotating around its center. Note that
the moving objects are touching hence separation without motion information
is not possible. Observe also that the method has detected the occluded areas
(these boundaries are drawn in black). In the final segmentation, these occluded
areas can be assigned to a neighboring region based on its color label. This way,
a perfect segmentation can be obtained. In Fig. 5, we have used the same model
on the foreman standard sequence. Note that the head of the men is moving
hence his face is correctly separated from his neck (which is not moving). On
this image, we can also see the weak point of the algorithm: when neither the
color nor the motion layer can distinguish an object then it cannot be segmented.
This is why the men’s hat has been merged with the background: the colors are
similar (white) and motion is almost impossible to detect because of the smooth
homogeneous color of the hat.

4 Conclusion

We have proposed a novel multi-layer MRF segmentation model which success-
fully combines color and motion features. Although the current implementation
doesn’t estimate model parameters (except number of classes on the combined
layer), it is possible to use an adaptive segmentation technique [12] to tackle
this problem. Further research will concentrate on this issue as well as on using
motion history in our data model.
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