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Abstract. We propose a multi-layer binary Markov random field (MRF) model
that assigns high probability to object configurations in the image domain con-
sisting of an unknown number of possibly touching or overlapping near-circular
objects of approximately a given size. Each layer has an associated binary field
that specifies a region corresponding to objects. Overlapping objects are repre-
sented by regions in different layers. Within each layer, long-range interactions
favor connected components of approximately circular shape, while regions in
different layers that overlap are penalized. Used as a prior coupled with a suit-
able data likelihood, the model can be used for object extraction from images,
e.g. cells in biological images or densely-packed tree crowns in remote sensing
images. We present a theoretical and experimental analysis of the model, and
demonstrate its performance on various synthetic and biomedical images.

1 Introduction

Object extraction remains one of the key problems of computer vision and image pro-
cessing. The problem is easily stated: find the regions in the image domain occupied
by a specified object or objects. The solution of this problem often requires high-level
knowledge about the shape of the objects sought in order to deal with high noise, clut-
tered backgrounds, or occlusions [4,11,8,1]. As a result, most approaches to extraction
have, to differing degrees and in different ways, incorporated prior knowledge about the
shape of the objects sought. Early approaches were quite generic, essentially encourag-
ing smoothness of object boundaries [6,9,3,2,10]. For example, [10] uses a Markovian
smoothness prior (basically a Potts model, i.e. boundary length is penalized); [6] uses a
line process to control the formation of region boundaries and control curvature; while
classical active contour models [9] use boundary length and curvature, and region area
in order to favor smooth closed curves [3,2].
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Subsequently there has been a great deal of work on the inclusion of more specific
prior shape knowledge in a variational [4,13] or probabilistic [5,15] framework. Many
of these methods rely on a kind of template matching: shape variability is modeled as
deformations of a reference shape or shapes. Although these methods are useful for
many applications, the major drawback of using a reference shape (or shapes) is that
handling an unknown number of instances of an object in the same image is difficult.

An alternative approach, known as ‘higher-order active contours’ (HOACs), was pre-
sented and developed in [11,7,8]. HOAC models integrate shape knowledge without
using reference shapes via the inclusion of explicit long-range dependencies between
region boundary points. The lack of reference shapes means that they can be used to ex-
tract multiple instances of the same object. In [8], Horvath et al. showed how to set the
parameters of the model introduced in [11] to favor regions consisting of any number of
approximately circular connected components, each component having approximately
the same, specified radius. This ‘gas of circles’ (GOC) model was successfully used for
the extraction of tree crowns from aerial images.

A subsequent reformulation of HOAC models (and active contour models in general)
as equivalent phase field models [12,7] brings a number of theoretical and algorithmic
advantages. One of the most important of these is that phase field models can be inter-
preted as real-valued Markov random fields (MRFs), thereby allowing the theoretical
and algorithmic toolbox of random field theory to be brought to bear. In [1], this was
carried out, and an MRF GOC model equivalent to the phase field GOC model was
developed.

For many important applications, for example the extraction of cells from light mi-
croscope images in biology, or the extraction of densely packed tree crowns in remote
sensing images, these methods have limitations. The first is due to the representation:
distinct overlapping objects cannot be represented. This is because the representation
used is of a region, i.e. a subset of the image domain, and not of objects as such. Thus
if the regions corresponding to two objects overlap, they form the single region that is
their union. This cannot be distinguished from a single object occupying the same re-
gion. The second is due to the model: the same long-range interactions that favor near-
circular shapes also introduce a repulsive energy between nearby objects that means
that configurations containing nearby objects have low probability, even if they do not
overlap.

In this paper, we propose a generalization of the MRF GOC model that overcomes
these limitations: the multi-layer MRF GOC model. This consists of multiple copies
of the MRF GOC model in [1], each copy being known as a layer. Now overlapping
objects can be represented, as subsets of two different layers. The layers interact via
a penalty for the overlap of regions in different layers, and this inter-layer interaction
is crucial, particularly when a likelihood term is added. In its absence, the maximum
probability configuration would simply be the same in all layers and equal to that found
using the model in [1]. The result is that rather than the regions corresponding to two
overlapping objects necessarily merging into a single region, it may be energetically
favourable for the two regions corresponding to the two separate objects to appear in
different layers.

We begin by recalling the single-layer ‘gas of circles’ model.
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2 The Single-Layer ‘Gas of Circles’ Model

The ‘gas of circles’ model assigns high probability to regions in the image domain
consisting of some number of approximately circular connected components, each of
which has approximately the same, specified radius, and that are more than a certain
distance apart. There are three equivalent formulations of the model: higher-order active
contours (HOACs) [8], phase fields [7], and Markov random fields [1]. In the next three
subsections, we explain the three formulations, since each provides some insight into
the model, and the equivalences between them.

2.1 Contour Representation

In the contour formulation, a region R is represented by its boundary ∂R, which is
an equivalence class (under diffeomorphisms of their domain) of zero or more closed
parameterized curves. The HOAC energy for the GOC model is [8]:

E(γ) = λcL(γ) + αcA(γ) − βc

2

∫
n · n′G(γ(t) − γ(t′)) dt dt′, (1)

where the contour γ of length L(γ) represents the boundary ∂R of extracted foreground
regions with a total area A(γ). The last term of Eq. (1) is responsible for the geometry of
extracted regions, where n, n′ corresponds to the normal vectors at t and t′ respectively,
while G is the so called interaction function

G(z) =

{
1
2

(
2 − ‖z‖

d − 1
π sin

(
π(‖z‖−d)

d

))
if ‖z‖ < 2d,

1 − H(‖z‖ − d) otherwise.
(2)

where d controls the range of interaction and H is the Heaviside step function. Horvath
et al. showed in [8], that parameter triples (λc, αc, βc) satisfying certain stability con-
ditions will produce circular regions of a given radius r, yielding the first definition of
the ’gas of circles’ HOAC model.
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Fig. 1. The interaction function G(z) for d = 2 and corresponding geometric kernel G
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2.2 Phase Field Representation

The phase field framework represents a region R by a function Φ � φ : D → � defined
on the image domain D ⊂ �

2, and a threshold t: R = ζt(φ) = {x ∈ D : φ(x) ≥ t}.
The phase field formulation E(φ) of the contour energy Eq. (1) was described in [12]:

E(φ) =
∫
D

Df

2
|∇φ|2 + λf

(φ4

4
− φ2

2

)
+ αf

(
φ − φ3

3

)
− βf

2

∫
D×D′

∇φ · ∇′φ′ G(x − x′) . (3)

It is convenient to integrate the non-local term by parts:

−βf

2

∫
D×D′

∇φ · ∇′φ′ G(x − x′) =
βf

2

∫
D×D′

φ φ′ ∇2G(x − x′))︸ ︷︷ ︸
G(x−x′)

.

The value φR that minimizes E(φ) for a fixed region R takes the values +1 inside R
and −1 outside, away from the boundary ∂R, while changing smoothly from −1 to +1
in a narrow interface region around ∂R. Basically, the linear operator G directly acts on
the phase field φ as a geometric kernel (see Fig. 1). In the ‘gas of circles’ model, the
parameters of E(φ) are adjusted using the contour stability analysis and the equivalence
between the formulations so that a circle of the desired radius is stable [7,8].
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Fig. 2. MRF neighbourhoods

2.3 Binary MRF Representation

Discretizing the field energy Eq. (3) leads to a Markovian interpretation of the phase
field model, where φ becomes a random field ω taking the discrete values of ±1 [1].
The resulting energy of the prior distribution P (ω) is given by

U(ω) = α
∑

s

ωs +
D

2

∑
s

∑
s′∼s

(ωs − ωs′)2 +
β

2

∑
s,s′

Fss′ ωs ωs′ , (4)

where s denotes lattice sites (or pixels) of the discrete image domain S and ∼ is the
nearest neighbour relation. The model parameters are related to the phase field model by
α = 2αf

3 ; β = βf ; while D = 0.82Df

4 incorporates the integral over pairs of boundary
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lattice cells. Fss′ is a discrete approximation of G [1], which also determines the size of
the neighborhood: {s′ ∈ S : |s − s′| < 2d} as shown in Fig. 2. The singleton potential
αωs of the prior energy corresponds to an area term: a lower α favors more foreground
pixels and vice versa, while the doubleton potential D(ωs −ωs′)2 acting over a nearest
neighborhood of s ensures smoothness by penalizing boundary formation. Finally, the
long-range potentials enforce the geometric constraints, thereby forming circles:

βFss′ ωs ωs′ =

{
−βFss′ if ωs 
= ωs′ ,

+βFss′ otherwise.
(5)

From Fig. 2, it is clear that long-range potentials favour the same label when |s− s′| <
d′ (attractive case) and different labels when d′ < |s− s′| < 2d (repulsive case), where
d′ � d is the zero of G.

3 The Multi-Layer MRF ‘Gas of Circles’ Model

We are now in a position to describe the multi-layer generalization of the MRF GOC
model just described. The MRF GOC model has two limitations that render it inap-
propriate for many applications. First, touching or overlapping objects cannot be repre-
sented as separate entities in this model. This is because the representation used is of a
region, not of objects as such. If the regions R1 and R2 corresponding to two objects
overlap, the result is a single region R = R1∪R2 that cannot be distinguished from the
representation of a single object occupying the whole of R. Second, the model energy
has a sometimes undesirable effect: it discourages connected components from being
too close to one another. This is because the same interactions that favor stable circles
also produce a repulsive interaction that raises the energy when two circles are closer
than 2d. Thus while this model is able to separate, for example, tree crowns in regular
plantations, it cannot represent, nor does it model well, configurations in which objects
are touching or overlapping (cf. Fig. 8).

The multi-layer MRF GOC model removes both these limitations by using multiple
copies of the MRF GOC model, as follows. The domain of the binary random field
becomes S̃ = � × S, or alternatively, the field is a map from S to ��, where � denotes
either � ∈ �+ or the set {1, . . . , �}. Hence ω = {ω(i)} for i ∈ �, where ω(i) : S → �.
In principle, we would like � = �

+,i.e. an infinite number of layers, as this would place
no restrictions on the possible configurations. In practice, there is always a maximum
number of mutual overlaps, and � need be no larger than this.

Sites that only differ in the value of i correspond to the same spatial point. Thus
S̃ can be thought of as a series of layers, each of which is isomorphic to S, hence
the name ‘multi-layer’. It is clear that the multi-layer field can represent overlapping
objects, simply by placing the regions corresponding to them on different layers.

The Gibbs energy Ũ of the multi-layer model is the sum of the MRF GOC energies
of each layer, plus an inter-layer interaction term that penalizes overlaps (see Fig. 2):

Ũ(ω) =
�∑

i=1

U(ω(i)) +
κ

4

∑
i�=j

∑
s

(1 + ω(i)
s )(1 + ω(j)

s ) , (6)



176 J. Nemeth, Z. Kato, and I. Jermyn

θ2

r r

w > 0

θ1

Fig. 3. Configurations of two overlapping circles and corresponding plots of E(M)(r, w) and
E(S)(r,w) vs. w for two circles of radius r = 10

where κ is a new parameter controlling the strength of the overlap penalty.1 Note that
the inter-layer energy is ultralocal: only corresponding sites on different layers interact.
Thus two regions in different layers experience no interaction at all unless they over-
lap. This eliminates the repulsive energy that exists in the single-layer model, because
nearby but non-overlapping regions in different layers always have lower energy than
the same regions in the same layer, assuming the intra-layer interactions are repulsive.

3.1 Energy of Two Interacting Circles

In order better to understand the behaviour of the model, in this section we analyze
the energy of two circles, on the same layer and on different layers. We consider the
configurations shown in Fig. 3, where w stands for the size of the intersection: w < 0
means the circles do not intersect, while w > 0 represents a non-empty intersection
of width w. We want to express the energy of these configurations as a function of w.
We take advantage of the equivalence of the ‘gas of circles’ MRF and HOAC models
to use the higher-order active contour energy Eq. (1) to compute the energy of the two
circles. The parameters of this energy come from the equivalences between the three
formulations: βc = 4β; the unit weight of a boundary point is 4D

0.82 ; while the difference
in energy between an interior and exterior point is 2α. Thus the MRF energy of a single
circle with radius r can be written as

E(r) =
4D

0.82
2πr + 2απr2 − 2β

∫∫ 2π

0

dθ dθ′ r2 cos(θ − θ′) G(γ(θ) − γ(θ′)) , (7)

where γ is an embedding corresponding to the circle, parameterized, as shown in Fig. 3,
by polar angle θ.

Different layers: When the two circles are in different layers, the only interaction en-
ergy is the inter-layer overlap penalty. Thus the energy is constant until the circles start
to overlap. It then starts to increase:

1 Notice that Ũ is invariant to permutations of the layers. This will remain true even after we
add a likelihood energy. Thus all configurations, and in particular minimum energy configu-
rations, are �! times degenerate. In practice, this degeneracy will be spontaneously broken by
the optimization algorithm.
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E(M)(r, w) = 2E(r) + κA(r, w) , (8)

where A(r, w) is the area of the overlap given by

A(r, w) =

⎧⎨
⎩2

(
r2 arccos

(
1 − w

2r

) − (
r − w

2

)√
2rw − w2

4

)
if w > 0,

0 otherwise.
(9)

Same layer: When the two circles are in the same layer, they interact if w > −2d for
the particular form of interaction function in Eq. (2). (Note that we need only consider
w ≤ 2r, where r is the radius of the circles, due to symmetry.) Thus if w ≤ −2d, the
energy is simply 2E(r). For w > −2d, the energy increases with w until w ∼= 0. As the
circles start to overlap (and thus no longer form two circles, but a combined ‘dumbbell’
shape), there is effectively an attractive energy that causes an energy decrease with
increasing w until the combined shape, and thus the energy, becomes that of a single
circle (w = 2r). More precisely, the energy of two circles is

E(S)(r, w) =
4D

0.82
2(2rπ − L(r, w)) + 2α(2r2π − A(r, w))

− 4β

∫∫ θf

θs

dθ1 dθ′1 r2 cos(θ1 − θ′1) G(γ1(θ1) − γ1(θ′1))

− 2β

∫∫ θf

θs

dθ1 dθ2 r2 cos(θ1 − (π − θ2)) G(Δ(θ1, θ2, w)) , (10)

where γ1,2 are two embeddings corresponding to the two circles, parameterized by
angles θ1,2 respectively, as shown in Fig. 3. We have taken advantage of symmetry to
write the second line in terms of γ1 only. L(r, w) is the arc length of the intersection
segment, while

Δ(θ1, θ2, w) =
√

(r(sin(θ1) − sin(θ2)))2 + (2r − w − r(cos(θ1) − cos(θ2)))2
(11)

is the distance between the points γ1(θ1) and γ2(θ2). The limits θs = cos−1(min(1,
1−w
2d )) and θf = 2π − θs are the radial angles of the two intersection points.

The righthand side of Fig. 3 shows plots of E(M)(r, w) and E(S)(r, w) against w for
circles with r = 10. When the overlap is greater than a certain threshold, controlled
by κ, the energy of two circles in different layers becomes greater than two partially
merged circles in one layer. Below this threshold, the two layer configuration has a
lower energy. The stable configuration energy of two circles is given by the lower enve-
lope of the curves in Fig. 3, and thus the repulsive energy that exists in the single-layer
MRF GOC model is eliminated in the multi-layer MRF GOC model.

4 Experimental Results

In this section, we report on the quantitative evaluation of the behavior and perfor-
mance of the multi-layer MRF GOC model in object extraction problems involving
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simulated data and microscope images. Results were obtained as MAP estimates, using
the multi-layer MRF GOC model as a prior, combined with a likelihood energy UL

to be described shortly: ω̂ = argmaxω P (I|ω)P (ω) = argminω UL(I, ω) + Ũ(ω),
where I : S → � is the image data. Optimization was performed using Gibbs sampling
coupled with simulated annealing [6]. The annealing schedule was exponential, with
half-life at least 70 iterations, and a starting temperature of 3.0 for the parameter values
used in the experiments.

4.1 Data Likelihood

The data likelihood models the image in the interior and exterior regions using Gaussian
distributions with constant means, and covariances equal to different multiples of the
identity. In addition, we add an image gradient term connecting neighboring pixels, as
follows. For each pair of neighboring sites, s and s′, let (s, s′) be the unit vector pointing
from s to s′. Let ŝ = argmaxt∈{s,s′}(|∇I(t)|). Let h(s, s′) = |(s, s′) · ∇I(ŝ)|. Then
define

gi(s, s′) =

{
h(s, s′) ω

(i)
s = ω

(i)
s′ ,

|∇I(ŝ)| − h(s, s′) otherwise.
(12)

The likelihood energy then becomes

UL(I, ω) =
∑

i

γ

{∑
s

[
ln

(
(2π)1/2σ

ω
(i)
s

)
+

(
Is − μ

ω
(i)
s

)2

2σ2

ω
(i)
s

]
+

γ2

2

∑
s

∑
s′∼s

gi(s, s′)

}
,

(13)
where γ and γ2 are positive weights. In practice, the parameters μ±1 and σ±1 of the
Gaussian distributions were learned from representative samples.

� = 1 � = 2, κ = 0.4 � = 3, κ = 0.4 � = 4, κ = 0.4

� = 5, κ = 0.05 � = 5, κ = 0.4 � = 6, κ = 0.05 � = 6, κ = 0.4

Fig. 4. Stable configurations of the multi-layer MRF GOC model for different numbers of layers
and values of κ
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Fig. 5. Plots of the relative interior area (left) and shape error (right) of the stable configurations
against κ

4.2 Simulation Results with the Multi-Layer MRF GOC Model

In the first experiment, we study the global minima of Ũ . Choosing, wlog, d = 10,
with the intra-layer parameters α = 0.18634, D = 0.15451, and β = 0.091137 set
according to the stability constraints [8,1] and to ensure that stable circles have negative
energy, Ũ was then minimized for different numbers of layers � and values of κ. Fig. 4
shows representative examples of these optimal configurations. The top-left result has
� = 1: note the spacing of the circles due to the intra-layer repulsive energy. When there
are more layers, the intra-layer energies favour a similarly dense ‘gas of circles’ in each
layer. For � ≤ 3, every layer may contain such a configuration without the circles in
different layers overlapping. For � > 3, it is not possible to achieve both an optimal
configuration in each layer and zero overlap energy. For small κ, the model tries to
generate a dense configuration in each layer at the price of having overlaps. For large
κ, the situation is the opposite: the model tries to avoid overlaps at the price of having
fewer circles in each layer. Fig. 5 shows a plot of the relative interior area 1

�N

∑
H(ω)

against κ, where N = |S|. The value is almost constant for � ≤ 3, while for � > 3, the
value decreases with κ. The circularity of the regions was also evaluated. The righthand
plot in Fig. 5 shows the percentage of pixels outside the ideal desired circles. Although
for � > 3, these errors increase slightly, overall they remain low, meaning that the
connected components remain circles to good accuracy for all � and κ.

4.3 Quantitative Evaluation on Synthetic Images

In this experiment, we demonstrate the efficiency of our model in separating overlap-
ping circles. A series of noisy synthetic images were generated containing two circles
of radius 10 with different degrees of overlap. The weights in the likelihood energy
were set to γ = 0.1 and γ2 = 0, i.e. no gradient term was used. We used two layers
and differing κ values in the range [0.01, 1]. Segmentation error was evaluated as the
proportion of incorrectly segmented pixels. A plot of these errors versus the amount of
overlap w and κ is shown in Fig. 6. Note that there is a rather clear drop in the seg-
mentation error for κ ∼= 0.7. When w > 10 (corresponding to an overlap of greater
than 50%), a larger κ is required to get an accurate segmentation (κ = 0.88 was needed
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Noisy image Small κ Best κ Big κ

Fig. 6. Results on noisy synthetic images (SNR= 0dB) containing two circles of radius 10 with
different degrees of overlap. Left: typical extraction results. Right: plot of segmentation error as
a function of degree of overlap (w) and κ.

in the last case in Fig. 6), and for w > 15, it is hard to get good quality results. In
summary, the model performs well for reasonable overlaps and it is not sensitive to the
value of κ. On the other hand, there is a performance drop for very large overlaps.

4.4 Application in Biomedical Imaging

Biomedical image segmentation aims to find the boundaries of various biological struc-
tures, e.g. cells, chromosomes, genes, proteins and other sub-cellular components in
various image types [14]. Light microscope techniques are often used, but the resulting
images are frequently noisy, blurred, and of low contrast, making accurate segmenta-
tion difficult. In many cases, the geometric structures involved are near-circular with
many overlaps, so that our model seems well suited to extracting the desired structures.
The extraction results shown in Fig. 7 and Fig. 8 demonstrate the effectiveness of the
proposed multi-layer MRF GOC model for this type of task. Computation times vary
from ∼ 20s to ∼ 1000s for images of size N = 104. The key factor is the number of
layers, with the minimum time corresponding to � = 2, the maximum to � = 6.

Fig. 7. Extraction of cells from light microscope images using the multi-layer MRF GOC model
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Fig. 8. Extraction of lipid drops from light microscope images using the multi-layer MRF GOC
model

5 Conclusion

The multi-layer MRF GOC model enables the representation and modeling of object
configurations consisting of an a priori unknown number of approximately circular
objects of roughly the same size, which may touch or overlap. Such configurations
occur in a number of domains, notably biomedicine and biology (e.g. cell images), and
remote sensing (e.g. images of closely planted trees). Experiments show that the model
behaves as expected on theoretical grounds, and that, when coupled with an appropriate
likelihood model, can successfully extract such object configurations from synthetic
and real images. The multi-layer model should also enable the extraction of several sets
of approximately circular objects of different sizes, by setting the model parameters
differently on different layers of the model.
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