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Attila Tanács and Zoltan Kato
Department of Image Processing and Computer Graphics

University of Szeged, Hungary

Abstract—In this paper a linear registration framework is used
for medical image registration using segmented binary objects.
The method is best suited for problems where the segmentation
is available, but we also propose a general bone segmentation
approach for CT images. We focus on the case when the objects to
be registered differ considerably because of segmentation errors.
We check the applicability of the method to bone segmentation of
pelvic and thoracic CT images. Comparison is also made against
a classical mutual information-based registration method.

I. INTRODUCTION

3D imaging in medical and industrial applications is com-
mon nowadays. Taking 3D images of the same or similar
objects at different times raises the problem of registration,
i.e. establishing the geometric correspondence between these
images. Registration of medical images plays an important
role in e.g. diagnostics, tumor growth monitoring, treatment
planning and surgery execution. Many approaches have been
proposed for a wide range of problems in the past decades
[1], [2].

An important decision is the type of geometric transforma-
tion to consider. Non-linear transformations can be used to
e.g. model tissue movements and local changes of shapes [3],
[4]. These algorithms must take into account the deformation
parameters of different tissue types which can be hard, ap-
plication specific and time consuming task. In many scenarios
global linear transformations are sufficient, however, especially
if fast registration is necessary.

Intrapatient registrations of the brain [5] and bone structures
can be treated as rigid movements. In computer integrated
surgery applications computing complexity is usually an im-
portant factor; on-line registration may be required for regis-
tering pre-operative images to intra-operative ones [6], which
may be achievable using rigid deformations. When monitoring
tumor growth, rigid registration is usually required since
affine or non-linear transformations would make unwanted
changes in size. For such tasks, hybrid imaging modalities are
especially useful [7], [8]. They produce both morphological
(CT) and functional images (PET or SPECT) which are reg-
istered. The morphological images then can be used for rigid
registration of follow up studies. Affine transformations may
be considered for e.g. registration of prostate in Radiotherapy
Therapy Planning [9], interpatient registration tasks of e.g. the
brain, generating statistical atlas information from interpatient
data, or as a coarse registration step before a non-linear one.

Classical methods solve the registration problem by either

extracting geometric features or using the image intensities di-
rectly, and try to establish correspondences by usually applying
an iterative technique. Geometric features can be e.g. points,
surfaces [6] or skeletons [10]. Intensity similarity methods are
used mainly for non-binary single- and multi-modality medical
registration problems, but can also be applied for registration
of binary images [11].

Since the iterative search in these methods uses the fea-
tures/intensities in each step, they suffer from considerably
increased computational complexity in case of large amount
of data. Here we utilize a linear registration framework that
requires binary objects [12]. Such objects may be created
directly by the imaging process (e.g. discrete tomography),
generated from geometric descriptions (e.g. from CAD mod-
els), or by segmenting corresponding regions from non-binary
images. An easily and efficiently solvable polynomial system
of equations is generated by a single pass over the images.
No correspondences are required, thus the solution does not
depend on the size of the objects. This makes this method
especially suitable for registering large volume images.

The method assumes that by applying the optimal trans-
formation the objects become identical. This rarely happens
in real registration problems. In this paper we examine the
applicability of the method to bone structure registrations of
pelvic and thoracic studies.

II. REGISTRATION METHOD

Based on [12], here we briefly summarize the main points
of the applied registration framework. Let us denote the object
points of the template and the observation volume images by
x,y ∈ P3, respectively in the projective space. Let A denote
the unknown, non-singular 4 × 4 homogeneous matrix of
the affine transformation that we want to recover. It relates
the template and observation as Ax = y ⇔ x = A−1y. The
above equations still hold when a properly chosen function
ω : P3 → P3 is acting on both sides of the equations [13]:
ω(Ax) = ω(y) ⇔ ω(x) = ω(A−1y). In order to
avoid the need for point correspondences, we integrate over
the foreground domains Ft and Fo of the template and the
observation, respectively, yielding

|A|
∫
Ft

ω(x) dx =

∫
Fo

ω(A−1y) dy . (1)

The Jacobian of the transformation is |A| =
∫
Fo
dy/

∫
Ft
dx .
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We need at least 12 equations since a 3D affine transforma-
tion is determined by 12 parameters. Sufficiently many linearly
independent equations can be generated by making use of the
relation in Eq. (1). We select polynomial ω functions such that
their k-th coordinate is of the form ω(x)

(k)
f,g,h = xf1 · x

g
2 · xh3 ,

where f, g, h ∈ N, f + g + h = d, and d ∈ {1, 2, 3}. From
Eq. (1) these functions generate the following polynomial
equations:

|A|
∫
Ft

xa dx =

4∑
i=1

qai

∫
Fo

yi dy , (2)

|A|
∫
Ft

xaxb dx =

4∑
i=1

4∑
j=1

qaiqbj

∫
Fo

yiyj dy , (3)

|A|
∫
Ft

xaxbxc dx =

4∑
i=1

4∑
j=1

4∑
k=1

qaiqbjqck

∫
Fo

yiyjyk dy (4)

where 1 ≤ a, b, c ≤ 3, a ≤ b ≤ c, and qij denote the
unknown elements of the inverse transformation A−1, yielding
19 equations. In order to increase numerical stability, we add
another 19 similar equations by changing the role of the point
sets x and y. Note, that this step introduces no new unknown
parameters, since A is uniquely determined by parameters
qij in the non-singular case. This produces an overdetermined
system of equations up to third order.

For discrete digital images the formulations still hold if
integrals are interchanged for summation, and the calculation
of the Jacobian is approximated by the ratio of the volumes
spanned by the objects (e.g. voxel counts). The system of
such polynomial equations can be efficiently solved using the
standard Levenberg-Marquardt (L-M) method. The iterative
L-M solution makes it possible to impose restrictions on the
transformation to be found, producing rigid-body or similarity
transformations instead of affine. This can be achieved by e.g.
selecting the 6 parameters of the rigid-body transformation
for use by the solver, while from these 6 parameters the 4× 4
affine matrix is computable when calculating the error of the
system of polynomial equations1.

Notice that all unknowns are outside of the integrals in
Eq. (2), thus the integrals have to be evaluated only once.
Its time complexity is O(N), where N is the number of the
voxels of the object, since all the summations can be computed
in a single pass over the volume image.

Since L-M is an iterative process, we found that the solution
is sensitive to the initial start position. Rotation was found to
be the main problem, thus we systematically started the search
from 27 different orientations corresponding to 120 degrees
of rotation along each axes, and used heuristics to earlier
termination of non-promising directions. Note that this search
strategy is not necessary if the orientations of the objects are
closer than 120 degrees, which is generally fulfilled with CT
imaging.

1Note that the Jacobian is 1 for rigid-body transformations. Since in real
registration problems the identity criterion is not fulfilled, we got better results
using the approximated value of the Jacobian instead of 1.

III. MEDICAL APPLICATIONS

Fast rigid-body registration of bone structures is important
in image guided surgical planning in execution for registering
pre-operative volumes to intra-operative ones. Zhang et al.
give an overview of surface based registration techniques [6]
and propose a 15 times faster method than standard Iterative
Closest Point (ICP) methods. However, it still takes around
one minute to register vertebrae models segmented from high
resolution CT images. If the segmentation is available, our
method could be used instead of ICP to get the result faster.

Affine registration is also applied for creation of brain
atlases, at least as preliminary step before an elastic or non-
linear part [14]. Automatic initial placement of deformable
organ models can also benefit from fast linear registrations
[15]. By collecting and transforming a set of images to a
common reference frame, a probabilistic atlas can be produced
for various organs. Using the same registration method, this
probabilistic atlas data can be mapped to the space of the study
to be segmented. Here precise alignment of all anatomical
structures is not crucial, the focus is on fast execution.

In [16], Ma et al. propose a similar approach to ours for
registration of serial sections of microscope images. After a
binarization step, an initial rigid transformation is computed
based on the centroids (translation) and moments (rotation) of
the binary objects. Then a correlation-based iterative technique
is applied that optimizes the overlap between the objects. It
takes around 6 seconds to register one 2D section pairs. Our
more sophisticated method could replace the first step.

Rigid registration of thoracic images are also applicable for
e.g. lymphoma detections and changes over time using PET-
CT scanners. PET images delineate the uptake of the contrast
agent in organs (lymph nodes), while the CT modality can be
used for registration and morphological localization. Here non-
rigid registrations are discouraged since these could change the
size of the organs.

A. Segmentation

Since our method is based on binary objects, we have to
extract such information from the images. Our registration
algorithm is best suited for tasks where such information is
readily available, which is the case in several tasks. Otherwise,
bone structures are usually relatively easy to extract from CT
images in acceptable quality for our method. Here we propose
a general framework for segmentation. This approach is able
to remove the high intensity parts of the bed from below
the patient and other high intensity tissue regions that are
not bones (e.g. the parts of the colon delineated in the bone
intensity range, if they do not touch the bone).

Algorithm 1 summarizes the main steps, while Fig. 1 shows
the results of Steps 3, 4 and 9. In Step 2, we have to set
a threshold value to produce a binary image. Since bone
structures have high intensity values in CT images, we set
it to keep the upper 20% of the image intensity interval. Step
3 is for removing noise artifacts; these usually are of small
size. Experimentally we set this threshold to 40 mm2. It is
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Fig. 1. Segmentation of a pelvic CT image (only a 2D slice of a 3D volume is shown). Top: The image is binarized and the small connected objects are
removed as the result of Step 3. Middle: Slices are projected along the Z-axis in Step 4. By keeping the largest connected region, it is possible to remove
the bed from the image. Bottom: Objects that fall outside of the largest connected component of the dilated image are detected as outliers (blobs shown with
outline only). Notice that even small bone regions are correctly classified.

advisable to select only those 2D slices of the volumes that
delineate roughly the same parts of the body.

Algorithm 1: Bone segmentation from a CT image
Input: CT study
Output: “Bone”, “outlier”, “other object” classification
of voxels

1 Optional: Smooth the CT image (e.g. Gaussian blur)
2 Threshold the image keeping voxels of high intensity
3 From each 2D slice, remove objects that are smaller

than a predefined area
4 Project the voxels of each slice to a 2D image along

the Z-direction
5 Keep the largest connected region of the projection
6 Use the result of Step 5 as a binary mask

and apply logical AND operation on each 2D slice
7 Make a copy of the image and dilate it
8 Keep the largest connected region of the dilated image
9 Classify connected objects from the image that fall

outside of the result of Step 8 as “outliers”
10 Classify remaining object points as “bone” and

all other voxels as “other object”

The approach may be fully automatized, though we suggest
a semi-automatic extension if applicable. The segmentation
result can be further improved by manually correcting the
classification of misclassified parts (e.g. small bones farther
away from the pelvis, contrast agent in the colon too close to
the bone). We successfully applied this segmentation both for
pelvic and thoracic studies.

B. Registration of pelvic and thoracic images

We tested our method on pelvic and thoracic data. We used
the rigid-body restriction in our method and since the orien-
tations of the objects are close to each other, it was enough
to use only one initial orientation. We compared the results
of our method against a classic intensity similarity method
based on mutual information (MI) utilizing a multiresolution

pyramid scheme [11], that is adopted to binary objects2. Since
ground truth is not known, we can perform visual inspection
and compute the Dice coefficient as δ = |R4O|

|R|+|O| ·100%, where
4 denotes symmetric difference, while T , R and O are the sets
of voxels of the template, registered object and observation
respectively.

CT image pairs delineating the pelvic area were acquired
at different times. The pairs of images were from the same
patient. The spatial resolution of the CT studies were around
0.6−0.8 mm in-slice. The slice distance was 5 mm in 11 cases,
2.5 mm in 4 cases. We also got three CT thoracic studies of
the same person acquired by a PET-CT scanner. Here the in-
slice resolution was 0.9766 mm and the slice distance was
3.27 mm. We used the full thoracic region and the extracted
pelvis region also.

Our algorithm was implemented in Matlab 7.7 and was run
on a desktop computer using Intel Core2 Duo processor at 2.4
GHz. The construction of the system of equations took around
half a second, the optimization around 0.2 second. The average
computing time of the MI method was around 2 minutes for
the smaller, and 6 minutes for the larger pelvic CT studies.
For the studies of the thorax, it usually took around 8 minutes
to finish. This shows the clear advantage of our approach.

C. Pelvic CT results
The main challenges here are poor image resolution, sub-

stantial segmentation errors, and slightly different placement
of the femoral head and lower portion of the spine. These CT
experiments showed that even when the “identity criterion”
required by our method is not fulfilled, the results are good
or at least acceptable.

The MI method does provide lower δ-error values, and
visually near perfect overlaps, see Figs. 2 and 3. Even these
visually optimal cases produce quite high error values (always
above 10%) incorporating the unknown segmentation errors. In
few cases our method even outperforms the MI method. Very
inaccurate segmentations (the real overlap between objects are
above 20%) can produce higher δ errors, but usually such
results still can be regarded as a fast, coarse approximations.

2Note that a simpler similarity metric could also be used here. E.g. the SSD
(Sum of Squared Differences) metric could produce similar results requiring
a bit less computing time.
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Fig. 3. Registration of pelvic CT data: superimposed registered 3D bone models (top row), and bone contours of the registered template (yellow) overlayed
on a CT slice of the observations (bottom row). δ errors are 14.2%, 19%, and 27.87%. The first two cases show good alignment. Even the third one can be
regarded as a fast, coarse approximation.
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Fig. 2. Registration results (δ-errors) of the pelvic CT tests ordered by best-
to-worst errors of the MI method. Notice that even the best case exhibits quite
large segmentation error (above 10%). Our method produces unacceptably
high errors mainly when the segmentation error increases above 20%. The
computing time is below 1 second in our case, while for the MI method it
takes several minutes.

D. Thoracic CT results

For thoracic images the rigidity criterion no longer holds.
Besides the femoral heads, the spine and the scapula can be

Fig. 4. Registration of thoracic CT data: superimposed registered 3D bone
models. Perfect alignment is not possible due to the relative movements of
the bone structure. Such a result is a good starting point for e.g. lymph node
detection.

moved with respect to each other. For such thoracic images
both MI and our method provided errors above 30% (see Fig.
4). Still, such a result can be used as a good initialization for
a lymph node pairing method.
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IV. CONCLUSION

In this paper we extensively tested our registration method
on real medical data. The solution is obtained by solving
polynomial systems of equations, there is no need for further
correspondences. Since our method has linear time complexity,
it is especially suitable for fast and efficient registration of
large images, even if the segmentations of the objects are not
perfect. An optimized implementation could provide real-time
registrations of 3D objects.
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