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Abstract

Reversible jump Markov chain Monte Carlo (RJMCMC) is a recent method
which makes it possible to construct reversible Markov chain samplers that
jump between parameter subspaces of different dimensionality. In this pa-
per, we propose a new RJMCMC sampler for multivariate Gaussian mixture
identification and we apply it to color image segmentation. For this purpose,
we consider a first order Markov random field (MRF) model where the sin-
gleton energies derive from a multivariate Gaussian distribution and second
order potentials favor similar classes in neighboring pixels. The proposed
algorithm finds the most likely number of classes, their associated model pa-
rameters and generates a segmentation of the image by classifying the pixels
into these classes. The estimation is done according to the Maximum A Poste-
riori (MAP) criterion. Experimental results are promising, we have obtained
accurate results on a variety of real color images.

1 Introduction

MRF modeling and MCMC methods are successfully used in different areas of image pro-
cessing. In fact, the simplest statistical model for an image consists of the probabilities of
pixel classes. The knowledge of the dependencies between nearby pixels can be modeled
by a MRF. Such models are much more powerful [7, 12], even if it is not easy to deter-
mine the values of the parameters which specify a MRF. If each pixel class is represented
by a different model then the observed image may be viewed as a sample from a realiza-
tion of an underlying label field. Unsupervised segmentation can therefore be treated as
an incomplete data problemwhere the color values are observed, the label field is miss-
ing and the associated class model parameters,including the number of classes, need to
be estimated. Such problems are often solved using MCMC procedures. Although the
general theory and methodology of these algorithms are fairly standard, they have their
limitations in case of problems with parameters of varying dimension. Recently, a novel
method, called Reversible Jump MCMC (RJMCMC), has been proposed by Green [5].
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This method makes it possible to construct reversible Markov chain samplers that jump
between parameter subspaces of different dimensionality. In this paper, we will develop
a RJMCMC sampler for identifying multi-variate Gaussian mixtures. In particular, we
will apply this technique to solve the unsupervised color image segmentation problem in
a Markovian framework.

Due to the difficulty of estimating the number of pixel classes (or clusters), unsuper-
vised algorithms often assume that this parameter isknown a priori. When the number
of pixel classes is also being estimated, the unsupervised segmentation problem may be
treated as a model selection problem over a combined model space. Basically, there are
two approaches in the literature. One of them is an exhaustive search of the combined pa-
rameter space[15, 9]: Segmentation and parameter estimates are obtained via an iterative
algorithm by alternately sampling the label field based on the current estimates of the pa-
rameters. Then the maximum likelihood estimates of the parameter values are computed
using the current labeling. The resulting estimates are then applied to a model fitting
criterion to select the optimum number of classes. Another approach consists of a two
step approximation technique [7, 10]: the first step is a coarse segmentation of the image
into the most likely number of regions. Then the parameter values are estimated from the
resulting segmentation and the final result is obtained via a supervised segmentation.

Our approach consists of building a Bayesian color image model using a first order
MRF. The observed image is represented by a mixture of multivariate Gaussian distribu-
tions while inter-pixel interaction favors similar labels at neighboring sites. In a Bayesian
framework [4], we are interested in theposterior distributionof the unknowns given the
observed image. Herein, the unknowns comprise the hidden label field configuration,
the Gaussian mixture parameters, the MRF hyperparameter, and the number of mixture
components (or classes). Then a RJMCMC algorithm is used to sample from the whole
posterior distribution in order to obtain a MAP estimate via simulated annealing [4]. Until
now, RJMCMC has been applied to univariate Gaussian mixture identification [13] and
its applications in different areas like inference in hidden Markov models [14], intensity
based image segmentation [1], and computing medial axes of 2D shapes [16]. The nov-
elty of our approach is two-fold: first, we extend the ideas in [13, 1] and we propose a
RJMCMC method for identifying multi-variate Gaussian mixtures. Second, we apply it
to unsupervised color image segmentation: RJMCMC allows us the direct sampling of
the whole posterior distribution defined over the combined model space thus reducing
the optimization process to a single simulated annealing run. Another advantage is that
no coarse segmentation neither exhaustive search over a parameter subspace is required.
Although for clarity of presentation we will concentrate on the case of three-variate Gaus-
sians in the remaining part of this paper, it is straightforward to extend the equations to
higher dimensions.

2 Color Image Segmentation Model

Let us suppose that the observed imageF = {~f s|s∈S ,∀i : 0<~f
i
s < 1} consists of three

spectral component values at each pixels denoted by the vector~f s. The segmentation is
done by assigning a labelωs from the set of labelsΛ = {1,2, . . . ,L} to each sites. ω ∈Ω
denotes a labeling (or segmentation),Ω is the set of all possible labeling.

Basically, we regard our image as a sample drawn from a first order MRF. The goal of



our analysis is inference about the numberL of Gaussian mixture components, the com-
ponent parametersΘ = {Θλ = (~µλ ,Σλ )‖λ ∈ Λ}, the component weightspλ , summing
to 1, the clique potential (or inter-pixel interaction strength)β , and the segmentationω.
The joint distribution of the variablesL, p,β ,ω,Θ,F is given by:

P(L, p,β ,ω,Θ,F ) = P(ω,F |Θ,β , p,L)P(Θ,β , p,L) (1)

In our context, it is natural to impose conditional independences on(Θ,β , p,L) so that
their joint probability reduces to the product of priors:

P(Θ,β , p,L) = P(Θ)P(β )P(p)P(L) (2)

Let us concentrate now on the posterior distribution of(F ,ω) which may be expressed
as: P(F | ω,Θ,β , p,L)P(ω | Θ,β , p,L). Before further proceeding, let us examine the
above factorization. As we declared earlier, pixel classes are represented by a three-variate
Gaussian distribution and the underlying MRF label process follows a Gibbs distribution
defined over a first order neighborhood system [4]. Thus, we can impose further condi-
tional independences yielding:

P(F | ω,Θ,β , p,L) = P(F | ω,Θ) (3)

= ∏
s∈S

1√
(2π)3 | Σωs |

exp

(
−1

2
(~f s−~µωs

)Σ−1
ωs

(~f s−~µωs
)T

)

P(ω |Θ,β , p,L) = P(ω | β , p,L) (4)

=
1

Z(β , p,L)
exp(−U(ω | β , p,L)) , where

U(ω | β , p,L) = ∑
s∈S

− log(pωs)+β ∑
{s,r}∈C

δ (ωs,ωr) (5)

U(ω | β , p,L) is called theenergy function. δ (ωs,ωr) = 1 if ωs andωr are different and
−1 otherwise.Z(β , p,L) = ∑ω∈Ω exp(−U(ω | β , p,L)) denotes the normalizing constant
(or partition function). Furthermore,C denotes the set of cliques and{s, r} is a doubleton
containing the neighboring pixel sitess andr. Since the partition functionZ(β , p,L) is
not tractable [8], the comparison of the likelihood of two differing MRF realizations from
Eq. (5) is infeasible. However, we can compare their Pseudo-Likelihood [8]. Therefore,
using Eq. (1), Eq. (2), Eq. (4), and the fact thatP(F ) is constant for a given image, we
can now easily approximate the posterior distribution:

P(L, p,β ,ω,Θ |F ) ≈ P(F | ω,Θ) ∏
s∈S

pωs exp

(
−β ∑

∀r:{s,r}∈C

δ (ωs,ωr)

)

∑
λ∈Λ

pλ exp

(
−β ∑

∀r:{s,r}∈C

δ (λ ,ωr)

)

×P(β )P(L) ∏
λ∈Λ

P(~µλ )P(Σλ )P(pλ ) (6)

In order to simplify our presentation, we will follow [13] and chose uniform reference
priors forL,~µλ , Σλ , pλ (λ ∈Λ). However, we note that informative priors could improve
the quality of estimates, especially in the case of the number of classes.



3 Sampling from the Posterior Distribution

A broadly used tool to sample from the posterior distribution in Eq. (6) is the Metropolis-
Hastings method [6]. Classical methods, however, can not be used due to the changing
dimensionality of the parameter space. To overcome this limitation, a promising ap-
proach, called Reversible Jump MCMC (RJMCMC), has been proposed in [5]. When we
have multiple parameter subspaces of different dimensionality, it is necessary to devise
different move typesbetween the subspaces [5]. These will be combined in a so called
hybrid sampler. For our image segmentation model, we shall make use of the following
move types:

1. sampling the labelsω (ie. re-segment the image);

2. sampling Gaussian parametersΘ = {(~µλ ,Σλ )};
3. sampling the mixture weightspλ (λ ∈ Λ);

4. sampling the MRF hyperparameterβ ;

5. sampling the number of classesL (splitting one mixture component into two, or
combining two into one).

We note that the only randomness in scanning these move types is the random choice
between splitting and merging in move (5). One iteration of the hybrid sampler, also
called asweep, consists of a complete pass over these moves. The first four move types
are conventional in the sense that they do not alter the dimension of the parameter space.
In each of these move types, the posterior distribution can be easily derived from Eq. (6)
by setting unaffected parameters to their current estimate. For example, in move (1), the
parametersL, p,β ,Θ are set to their estimateŝL, p̂, β̂ , Θ̂. Thus the posterior in Eq. (6)
reduces to the following form:

P(L, p,β ,ω,Θ |F ) ≈ P(F | ω,Θ̂)P(ω | β̂ , p̂, L̂)

≈ ∏
s∈S


 1√

(2π)3 | Σ̂ωs |
exp

(
−1

2
(~f s−~̂µωs

)Σ̂−1
ωs

(~f s−~̂µωs
)T

)
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× ∏
s∈S

p̂ωs exp

(
−β̂ ∑

∀r:{s,r}∈C

δ (ωs,ωr)

)
(7)

whereL̂, p̂, β̂ , Θ̂ are the current estimates of the parametersL, p,β ,Θ. Basically, the
above equation corresponds to a segmentation withknown parameters.

Hereafter, we will focus on move (5), which requires the use of the reversible jump
mechanism. This move type involves changingL by 1 and making necessary correspond-
ing changes toω,Θ andp. We remark that at this move type, basically the whole posterior
distribution in Eq. (6) is sampled. Onlyβ can be set to its estimatêβ .

3.1 Splitting One Class into Two

The split proposal begins by choosing a classλ at randomwith a uniform probability
Psplit

select
(λ ) = 1/L. ThenL is increased by1 andλ is split into λ1 andλ2. In doing so, a



new set of parameters need to be generated. AlteringL changes the dimensionality of the
variablesΘ andp. Thus we shall define a deterministic functionψ as a function of these
Gaussian mixture parameters:

(Θ+, p+) = ψ(Θ, p,u) (8)

where the superscript+ denotes parameter vectors after increasingL. u is a set of random
variables having as many elements as the degree of freedom of joint variation of the
current parameters(Θ, p) and the proposal(Θ+, p+). Note that this definition satisfies
thedimension matchingconstraint [5], which guarantees that one can jump back and forth
between different parameter sub-spaces. The new parameters ofλ1 andλ2 are assigned by
matching the0th, 1th, 2th moments of the component being split to those of a combination
of the two new components [13]:

pλ = p+
λ1

+ p+
λ2

(9)

pλ~µλ = p+
λ1

~µ+
λ1

+ p+
λ2

~µ+
λ2

(10)

pλ (~µλ~µT
λ + Σλ ) = p+

λ1
(~µ+

λ1
~µ+T

λ1
+ Σ+

λ1
)+ p+

λ2
(~µ+

λ2
~µ+T

λ2
+ Σ+

λ2
) (11)

There are 10 degrees of freedom in splittingλ since covariance matrices are symmetric.
Therefore, we need to generate a random variableu1, a random vector~u2 and a symmetric
random matrixu3. We can now compute the new parameter values as follows:

p+
λ1

= pλ u1, (12)

p+
λ2

= pλ (1−u1) (13)

µ+
λ1,i = µλ ,i +u2i

√
Σλ ,i,i

1−u1
u1
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√
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2
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2
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2
)

u3i,iu3j, j if i 6= j
(16)
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2
)
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1−u2i
2
)(

1−u2j
2
)√(

1−u3i,i

)(
1−u3j, j

)
if i 6= j

(17)

We note that in Eq. (14) and Eq. (15), we randomly alternate the+ and− signs ofu2i
for eachi. This is needed to get proper mean values after splitting. The random vari-
ablesu are chosen from the interval(0,1]. In order to favor splitting a class into roughly
equal portions, beta(1.1,1.1) distributions are used. To guarantee numerical stability in
inverting Σ+

λ1
and Σ+

λ2
, one can use some regularization like in [3], or one can use the

well-known Wishart distribution [11]. However, we did not experience such problems,
mainly because the obtained covariance matrices are also reestimated from the image



Original image Segmentation result (3 classes)

Figure 1: Segmentation of imagerose41.

data in subsequent move types. Therefore as long as our input image can be described by
a mixture of Gaussians, we can expect that the estimated covariance matrices are correct.

The next step is the reallocation of those sitess∈Sλ whereωs = λ . This reallocation
is based on the new parameters and has to be completed in such a way as to ensure the
resulting labelingω+ is drawn from the posterior distribution withΘ = Θ+, p = p+ and
L = L + 1. At the moment of splitting, the neighborhood configuration at a given site
s∈Sλ is unknown. Thus the calculation of the termP(ω+ | β̂ , p+,L+1) is not possible.
First, we have to provide a tentative labeling of the sites inSλ . Then we can sample
the posterior distribution using a Gibbs sampler. Of course, a tentative labeling might be
obtained by allocatingλ1 andλ2 at random. In practice, however, we need a labeling
ω+ which has a relatively high posterior probability in order to maintain a reasonable
acceptance probability. To achieve this goal, we use a few step (around 5 iterations)
of ICM [2] algorithm to obtain a suboptimal segmentation ofSλ . The resulting label
map can be used to draw a sample from the posterior distribution using a one step Gibbs
sampler [4]. The obtainedω+ has a relatively high posterior probability since the tentative
labeling was close to the optimal labeling.

3.2 Merging Two Classes

A pair (λ1,λ2) is chosen with a probability inversely proportional to their distance:

Pmerge
select

(λ1,λ2) =
1/d(λ1,λ2)

∑
λ∈Λ

∑
κ∈Λ

1/d(λ ,κ)
(18)

whered(λ1,λ2) is the combination of the Mahalanobis distance between the classesλ1
andλ2 defined as:

d(λ1,λ2) = (~µλ1
−~µλ2

) Σ−1
λ1

(~µλ1
−~µλ2

)+(~µλ2
−~µλ1

) Σ−1
λ2

(~µλ2
−~µλ1

) (19)

In this way, we favor merging classes that are close to each other thus increasing accep-
tance probability. The merge proposal is deterministic, once the choices ofλ1 and λ2
have been made. These two components are merged, reducingL by 1. As in the case of
splitting, alteringL changes the dimensionality of the variablesΘ and p. The new pa-
rameter values (Θ−, p−) are obtained from Eq. (9)–(11). The reallocation is simply done



by setting the label at sitess∈S{λ1,λ2} to the new labelλ . The random variablesu are

obtained by back-substitution into Eq. (13)–(17).

3.3 Acceptance Probability

In the Metropolis-Hastings algorithm [6], the split or merge proposal is accepted with a
probability relative to the probability ratio of the current and the proposed states. Let
us first consider the acceptance probabilityAsplit for the split move. For the corre-
sponding merge move, the acceptance probability is obtained as the inverse of the same
expression with some obvious differences in the substitutions.Asplit(L, p̂, β̂ , ω̂,Θ̂;L +

1, p+, β̂ ,ω+,Θ+) = min(1,A), whereA is given by:

A =
P(L+1, p+, β̂ ,ω+,Θ+ |F )

P(L, p̂, β̂ , ω̂,Θ̂ |F )

Pmerge(L+1)Pmerge
select

(λ1,λ2)

Psplit(L)Psplit
select

(λ )Prealloc

× 1

P(u1)
3

∏
i=1

(
P(u2i)

3

∏
j=i

P(u3i, j)

)
∣∣∣∣

∂ψ
∂ (Θλ , pλ ,u)

∣∣∣∣

Prealloc denotes the probability of reallocating pixels labeled byλ into regions labeled by
λ1 andλ2. It can be derived from Eq. (7) by restricting the set of labelsΛ+ to the subset
{λ1,λ2} and taking into account only those sitess for which ω+

s ∈ {λ1,λ2}. The last
factor is the Jacobian determinant of the transformationψ:

∣∣∣∣
∂ψ

∂ (Θλ , pλ ,u)

∣∣∣∣ =−pλ

3

∏
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i,i
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(
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2)(
1−u3i,i

)
× u3i,i

3

∏
j=i

Σi, j

u1(u1−1)

)

The acceptance probability for the merge move can now be easily derived with some
obvious differences in the substitutions asAmerge(L, p̂, β̂ , ω̂,Θ̂;L− 1, p−, β̂ ,ω−,Θ−) =
min

(
1, 1

A

)

4 Optimization According to the MAP Criterion

The following MAP estimator is used to obtain an optimal segmentationω̂ and model
parameterŝL, p̂, β̂ ,Θ̂:

(ω̂ , L̂, p̂, β̂ ,Θ̂) = arg max
L,p,β ,ω,Θ

P(L, p,β ,ω,Θ |F ) (20)

with the following constraints:ω ∈Ω,Lmin≤ L≤ Lmax,∑λ∈Λ pλ = 1,∀λ ∈Λ : 0≤ µλ ,i ≤
1,0≤ Σλ ,i,i ≤ 1, and−1≤ Σλ ,i, j ≤ 1. Eq. (20) is a combinatorial optimization problem
which can be solved using simulated annealing [4]:

Algorithm 1 (RJMCMC Segmentation)

©1 Setk = 0, and initializeβ̂ 0, L̂0, p̂0, Θ̂0, and the initial temperatureT0.



Original image Segmentation result (10 classes)

Figure 2: Segmentation of imagekodakBus93.

©2 A sample(ω̂k, L̂k, p̂k, β̂ k,Θ̂k) is drawn from the posterior distribution using thehybrid
sampleroutlined in Section 3. Each sub-chain is sampled via the corresponding move-
type while all the other parameter values are set to their current estimate.

©3 Goto Step©2 with k = k+1 andTk+1 until k < K .

As usual, an exponential annealing schedule (Tk+1 = 0.98Tk, T0 = 6.0) was chosen
so that the algorithm would converge after a reasonable number of iterations. In our
experiments, the algorithm was stopped after200iterations (T200≈ 0.1).

Although our discussion includes the estimation of the MRF hyperparameterβ , we
haven’t estimated it in our experiments. Since the likelihood is approximated by the
pseudo-likelihood, the posterior density ofβ may not be proper under particular label
configurations. This problem has been reported in [1] and our findings were similar.
Fortunately, the mixture weightspλ are able to maintain a balance between the external
and internal field strength, which makes it possible to setβ a priori.

5 Experimental Results

The proposed algorithm has been tested on a variety of real color images. Herein, we
present a few examples of these results. First, the original images were converted from
RGB to LHS color space in which chroma and intensity informations are separated. The
dynamic range of all color components was normalized such that they take their values
from (0,1). Independently of the input image, we start the algorithm with two classes
(L̂0 = 2), each of them having equal weights (p̂0

0 = p̂0
1 = 0.5). The mean vectors were set

to [0.2,0.2,0.2] and[0.7,0.7,0.7]. The diagonal elements of the covariance matrices were
set to0.05, while other elements were set to0.00001. The hyperparameterβ was fixed a
priori. We found thatβ = 2.5 gives good results on all of the tested images. Furthermore,
the number of classesL was restricted to the interval[1,50].

In Fig. 1, 3 classes have been identified and an accurate segmentation is obtained.
A more difficult scene is segmented in Fig. 2, where 10 classes have been detected.
In Fig. 3, a background-foreground style segmentation is shown. The test images can
be found at the Kodak Digital Image Offering WWW site:http://www.kodak.com/
digitalImaging/samples/imageIntro.shtml.



Original image Segmentation result (9 classes)

Figure 3: Segmentation of imagebird11.

We found that the acceptance rate for the split or merge move was≈ 5% which is
quite reasonable considering the fact that this move type involves a change of the number
of classes only. A similar finding has also been reported in [14].

6 Conclusion

In this paper, we have proposed a new RJMCMC sampler for multivariate Gaussian mix-
ture identification and applied it to unsupervised color image segmentation. For this pur-
pose, we have established a Bayesian segmentation model using MRF modeling of the
underlying label field. Pixel classes are represented by multivariate Gaussian distribu-
tions. The number of classes, class model parameters, and pixel labels are all directly
sampled from the posterior distribution using our RJMCMC sampler. A single parameter
is defined a priori which defines the interaction strength of neighboring pixels. The final
estimates, satisfying the MAP criterion, are obtained through simulated annealing. Ex-
perimental results show that an accurate segmentation can be obtained on a variety of real
images.
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