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Abstract. In this paper, we propose a Markov random field (MRF)
image segmentation model which aims at combining color and texture
features. The theoretical framework relies on Bayesian estimation as-
sociated with combinatorial optimization (Simulated Annealing). The
segmentation is obtained by classifying the pixels into different pixel
classes. These classes are represented by multi-variate Gaussian distri-
butions. Thus, the only hypothesis about the nature of the features is
that an additive white noise model is suitable to describe the feature
values belonging to a given class. Herein, we use the perceptually uni-
form CIE-L∗u∗v∗ color values as color features and a set of Gabor filters
as texture features. We provide experimental results that illustrate the
performance of our method on both synthetic and natural color images.
Due to the local nature of our MRF model, the algorithm can be highly
parallelized.
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1 Introduction

Image segmentation is an important early vision task where pixels with similar
features are grouped into homogeneous regions. There are many features that
one can take into account during the segmentation process: gray-level, color,
motion, different texture features, etc. However, most of the segmentation algo-
rithms presented in the literature are based on only one of the above features.
Recently, the segmentation of color images (textured or not) received more at-
tention [3,6,7]. In this paper, we are interested in the segmentation of color
textured images. This problem has been addressed in [7], where an unsupervised
segmentation algorithm is proposed which uses Gaussian MRF models for color
textures. These models are defined in each color plane with interactions between
different color planes. The segmentation algorithm is based on agglomerative
hierarchical clustering. Our approach is different in two major points. First, we
use a stochastic model based segmentation framework instead of clustering. Sec-
ond, we use a combination of classical, gray-level based, texture features and
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color instead of a direct modelization of color textures. The segmentation model
consists of a MRF defined over a nearest neighborhood system. The image fea-
tures are represented by multi-variate Gaussian distributions (basically a noise
model). Since the different texture-types are described by a set of Gaussian pa-
rameters, it is possible to classify or recognize textures based on a prior learning
of the possible parameters. Of course, parameter estimation can be a difficult
task, if we do not have training data. Herein, we do not address this problem but
we note that the estimation task can be solved using an adaptive segmentation
technique [5,10].

We use the perceptually uniform CIE-L∗u∗v∗ color values and texture fea-
tures derived from the Gabor filtered gray-level image. Of course, the nature of
the texture features is not crucial to the algorithm from the segmentation point
of view. The only requirement in the current model is that an additive white
noise model should be suitable to describe the texture features. Most of the filter-
ing approaches (see [8] for a comparative study of different filtering techniques)
fall into this category but stochastic texture models (such as Gaussian Markov
random fields [7,10]) are also suitable for our segmentation model. Herein, we use
a real-valued even-symmetric Gabor filter bank. Segmentation requires simulta-
neous measurements in both spatial and frequency domain. However, spatial lo-
calization of boundaries requires larger bandwidths whereas smaller bandwidths
give better texture measurements. Fortunately, Gabor filters have optimal joint
localization in both domains [4]. In addition, when we are combining texture fea-
tures with color, the spatial resolution is considerably increased. We have tested
the algorithm on a set of both natural and synthetic color textured images.

2 MRF Segmentation Model

We assume that images are defined over a finite lattice S = {s1, s2, . . . , sN},
where s = (i, j) denotes lattice sites (or pixels). For each pixel s, the region-type
(or pixel class) that the pixel belongs to is specified by a class label, ωs, which
is modeled as a discrete random variable taking values in Λ = {1, 2, . . . , L}. The
set of these labels ω = {ωs, s ∈ S} is a random field, called the label process.
Furthermore, the observed image features (color and texture) are supposed to
be a realization F = {fs|s ∈ S} from another random field, which is a function
of the label process ω. Basically, the image process F represents the deviation
from the underlying label process. Thus, the overall segmentation model is com-
posed of the hidden label process ω and the observable noisy image process
F . Our goal is to find an optimal labeling ω̂ which maximizes the a posteriori
probability P (ω | F), that is the maximum a posteriori (MAP) estimate [2]:
arg maxω∈Ω

∏
s∈S P (fs | ωs))P (ω), where Ω denotes the set of all possible la-

belings.
Herein, the image process is modeled by an additive white noise. Thus, we

suppose that P (fs | ωs) follows a Gaussian distribution and pixel classes λ ∈ Λ =
{1, 2, . . . , L} are represented by the mean vectors µλ and the covariance matrices
Σλ. Furthermore, ω is supposed to be a MRF with respect to a first order
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neighborhood system. Thus, according to the Hammersley-Clifford theorem [2],
P (ω) follows a Gibbs distribution:

P (ω) =
exp(−U(ω))

Z(β)
=

∏
C∈C exp(−VC(ωC))

Z(β)
, (1)

where U(ω) is called an energy function, Z(β) =
∑

ω∈Ω exp(−U(ω)) is the nor-
malizing constant (or partition function) and VC denotes the clique potential
of clique C ∈ C having the label configuration ωC . C is the set of spatial sec-
ond order cliques (ie. doubletons). Note that the energies of singletons (ie. pixel
sites s ∈ S) directly reflect the probabilistic modeling of labels without context,
while doubleton clique potentials express relationship between neighboring pixel
labels. In our model, these potentials favor similar classes in neighboring pixels.
Thus the energy function of the so defined MRF image segmentation model has
the following form:

U(ω, F) =
∑
s∈S

(
ln(

√
(2π)3 | Σωs

|) +
1
2
(fs − µωs

)Σ−1
ωs

(fs − µωs
)T

)

+β
∑

{s,r}∈C
δ(ωs, ωr), (2)

where δ(ωs, ωr) = 1 if ωs and ωr are different and 0 otherwise. β > 0 is a
parameter controlling the homogeneity of the regions. As β increases, the re-
sulting regions become more homogeneous. Now, the segmentation problem is
reduced to the minimization of the above energy function. Since it is a non-
convex function, some combinatorial optimization technique is needed to tackle
the problem. Our experiments used Simulated Annealing (Gibbs sampler [2])
and Iterated Conditional Modes (ICM) [1].

2.1 Color Features

The first question, when dealing with color images, is how to measure quantita-
tively color difference between any two arbitrary colors. Experimental evidence
suggests that the RGB tristimulus color space may be considered as a Rieman-
nian space [9]. Due to the complexity of determining color distance in such
spaces, several simple formulas have been proposed. These formulas approxi-
mate the Riemannian space by a Euclidean color space yielding a perceptually
uniform spacing of colors. One of these formulas is the L∗u∗v∗ [9] color space
that we use herein.

2.2 Texture Features

Many different techniques have been proposed for analyzing image texture.
Herein, we will focus on the multi-channel filtering approach where the chan-
nels are represented by a bank of real-valued, even-symmetric Gabor filters. The
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Fourier domain representation of the basic even-symmetric Gabor filter oriented
at 0o is given by [4]:

H(u, v) = A

(
exp

(
−1

2

(
(u − u0)2

σ2
u

+
v2

σ2
v

))
+ exp

(
−1

2

(
(u + u0)2

σ2
u

+
v2

σ2
v

)))
,

(3)
where σu = 1/2πσx, σv = 1/2πσy, A = 2σxσy, u0 is the frequency of a si-
nusoidal plane wave along the x-axis, and σx and σy are the deviations of the
Gaussian envelope along the x and y axes. Filters with other orientations can
be obtained by rotating the coordinate system. In our tests, we used four ori-
entations: 0o, 45o, 90o, 135o and the radial frequencies u0 are 1 octave apart:√

2,
√

2/2,
√

2/4,
√

2/8, . . . For an image with a width of 2W pixels, the high-
est radial frequency falling inside the image array is

√
2/2W−2. From each fil-

tered image g, we compute a feature image using the nonlinear transformation
| tanh(αgs) |, s ∈ S; followed by a Gaussian blurring with a deviation propor-
tional to the center frequency of the Gabor filter: σ = k/u0. In our experiments,
the Gabor filtered images are scaled to the interval [−1, 1] and we set α = 40
and k = 1.

Table 1. Computing times and segmentation error on the synthetic images.

Image: Fig. 2 Fig. 3
feature Gibbs error ICM error Gibbs error ICM error
texture 185 sec. 13.5% 3.4 sec. 16.6% 1349 sec. 19.0% 13 sec. 20.6%
color 105 sec. 2.5% 5.5 sec. 8.8% 732 sec. 19.7% 20 sec. 23.1%
combined 319 sec. 1.2% 16 sec. 2.7% 2581 sec. 8.9% 73 sec. 11.4%

3 Experimental Results

The proposed algorithm has been tested on a variety of color images including
synthetic images (Fig. 1, Fig. 2, Fig. 3), outdoor (Fig. 4) and indoor (Fig. 5)
scenes. We have used MIT’s VisTex database to compose the synthetic color
textured images. The test program has been implemented in C and run on a
UltraSparc1 workstation. Herein, we present a few examples of these results
and compare segmentation results using color only, texture only and combined
features. Furthermore, we also compare the results obtained via a determinis-
tic (ICM [1]) and stochastic (Simulated Annealing using the Gibbs sampler [2])
relaxation. The mean vectors and covariance matrices were computed over rep-
resentative regions selected by the user and we set β = 2.5 in all cases. This
value has been found to provide satisfactory results in all cases. An optimal
Gabor filter set containing 2–4 filters has been picked manually for each image.
We remark, however, that it is also possible to automatically select these filters
(see [8] for a collection of methods). We found in all cases that segmentation
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based purely on texture gives fuzzy boundaries but usually homogeneous re-
gions. Whereas segmentation based on color is more sensitive to local variations
in color but provides sharp boundaries. As for the combined features, the advan-
tages of both color and texture based segmentation are quite well preserved: we
obtained sharp boundaries and homogeneous regions (see Fig. 1 as a good exam-
ple). For example, the ball on the tennis image (Fig. 5) is much better detected
than on either the texture or color segmentations. In terms of sharpness and
homogeneity, the combined segmentation clearly outperforms the others. The
power of combined features is well demonstrated by Fig. 3. Three regions con-
tain a wooden texture with nearly matching colors and a small difference in the
direction (right and lower part) or scale (middle part) in texture. The two other
regions have similar texture but completely different color. Comparing color and
texture only segmentations, the latter two regions are perfectly separated in the
color segmentation but they are mixed in the texture one. On the other hand,
the former three regions are much better separated in the texture segmentation
than in the color one. As for the combined segmentation, the five regions are well
separated, the error rate is half of the separate segmentation’s rates. Regarding
the different optimization techniques, we can see that the suboptimal ICM pro-
vides somewhat lower quality compared to the optimal Gibbs sampler but it
converges much faster (see Table 1). However, this difference is less important
in the case of combined features and for the real images it is nearly invisible. We
also run a test on one of the images published in [7] (see Fig. 4) and we found
that our results are close to the ones in [7].

ICM

Color original Texture Color Combined
Gibbs Sampler

Gray original Texture Color Combined

Fig. 1. Segmentation of a 128 × 128 synthetic image with 5 classes. We have used 2
Gabor filters to extract texture features.
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ICM

Color original Texture Color Combined
Gibbs Sampler

Gray original Texture Color Combined

Fig. 2. Segmentation of a 128 × 128 synthetic image with 5 classes. We have used 3
Gabor filters to extract texture features.

ICM

Color original Texture Color Combined
Gibbs Sampler

Gray original Texture Color Combined

Fig. 3. Segmentation of a 256 × 256 synthetic image with 5 classes. We have used 4
Gabor filters to extract texture features.
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ICM

Color original Texture Color Combined
Gibbs Sampler

Gray original Texture Color Combined

Fig. 4. Segmentation of a 384 × 384 real image with 3 classes. We have used 3 Gabor
filters to extract texture features.

ICM

Color original Texture Color Combined
Gibbs Sampler

Gray original Texture Color Combined

Fig. 5. Segmentation of a 360 × 240 real image with 6 classes. We have used 3 Gabor
filters to extract texture features.
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4 Conclusions

We have proposed a MRF image segmentation model which is able to combine
color and texture features. The model itself is not restricted to a specific texture
feature. In fact, any feature is suitable as far as feature values belonging to a pixel
class can be modeled by a random white noise. Due to our model based approach,
it is also possible to classify different kind of textures based on a prior training of
the corresponding parameters. The quality of the segmentation is improved with
respect to color only and texture only segmentations. We also tested different
optimization methods and found that the suboptimal but fast ICM is a good
tradeoff between quality and computing time when using combined features.
Although our implementation is sequential, the algorithm is highly parallel due
to the local nature of the MRF model. Thus, a parallel implementation can
further improve the computing speed.
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