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cation [6, 7, 14, 15]. It is well known that multigrid methods
can improve significantly the convergence rate and theIn this paper, we are interested in massively parallel

multiscale relaxation algorithms applied to image classification. quality of the final results of iterative relaxation techniques.
It is well known that multigrid methods can improve signifi- There are many approaches in multigrid image segmen-
cantly the convergence rate and the quality of the final results tation. A well known approach is the renormalization
of iterative relaxation techniques. First, we present a classical group algorithm which is based on renormalization group
multiscale model which consists of a label pyramid and a whole ideas from statistical physics. This technique has been
observation field. The potential functions of coarser grids are

adapted by Gidas [13] to image processing. The main ad-derived by simple computations. The optimization problem is
vantage of the method is that it provides a mechanism forfirst solved at the higher scale by a parallel relaxation algorithm;
relating the processing at different scales with one another.then the next lower scale is initialized by a projection of the
This mechanism is a nonlinear transformation—called theresult. Second, we propose a hierarchical Markov random field
renormalization group (RG) transformation. The coarsermodel based on this classical model. We introduce new interac-

tions between neighbor levels in the pyramid. It can also be grids and their Hamiltonians are well defined; they are
seen as a way to incorporate cliques with far apart sites for a deduced from the original image. The major difficulty is
reasonable price. This model results in a relaxation algorithm the computation of the energy functions at coarser grids.
with a new annealing scheme: the multitemperature annealing Usually, this computation cannot be done explicitly; one
(MTA) scheme, which consists of associating higher tempera- must approximate them [10, 25]. Another drawback is the
tures to higher levels, in order to be less sensitive to local minima loss of Markovianity at coarser grids [26] since the coarser
at coarser grids. The convergence to the global optimum is

energy functions obtained by the RG transformation can-proved by a generalization of the annealing theorem of S. Ge-
not be decomposed as a sum of clique-potentials. In [13],man and D. Geman (IEEE Trans. Pattern Anal. Mach. Intell.
the Hamiltonians are approximated by a sum of clique-6, 1984, 721–741).  1996 Academic Press, Inc.

potentials, and hence one can use classical relaxation algo-
rithms to minimize the energy at coarser grids. Unfortu-
nately, such approximations are available only for certain1. INTRODUCTION
simple models, mainly in image restoration [13]. Another

Markov random fields (MRF) have become more and interesting model has been proposed by Bouman and Sha-
more popular during the past few years in image processing piro [7]. This model consists of a label pyramid where each
[1, 5, 8, 9, 12, 27]. A good reason for this is that MRF level is causally dependent on the coarser layer above it.
require less a priori information on the world model. On The model results in a new optimization criterium called
the other hand, the local behavior of MRF allows for the sequential MAP estimate. This model yields to a nonitera-
development of highly parallel algorithms in combinatorial tive segmentation algorithm and direct methods of parame-
optimization problems. ter estimation.

In this paper, we are interested in massively parallel The basis of our approach is a consistent multiscale MRF
multiscale relaxation algorithms applied to image classifi- model originally proposed by Heitz et al. in [14, 15] for

motion analysis. Related models can also be found in [6] for
texture segmentation and in [17] for image reconstruction.

* This work has been partially funded by CNES (French Space
This model consists of a label pyramid and a whole obser-Agency), AFIRST, and GdR TdSI (DRED/CNRS). We thank the second
vation field. The original energy function can be decom-reviewer of the paper for pointing out a lack in the Multitemperature

Annealing Theorem. posed as a sum of potential functions which are defined

18
1077-3169/96 $18.00
Copyright  1996 by Academic Press, Inc.
All rights of reproduction in any form reserved.



HIERARCHICAL MRF MODEL AND MULTITEMPERATURE ANNEALING 19

on neighbor blocks and only depend on the labels associ- Let us consider now a monogrid supervised image seg-
mentation model [21, 22] and suppose that the observationsated with these blocks and on the observation field. Using

this decomposition, the parameters of coarser grids can be consist of gray levels. A very general problem is to find
the labeling ĝ which maximizes P(g u F ). Bayes theoremcomputed very easily. This model results in a multigrid

relaxation scheme which replaces the original optimization tells us that P(g u F ) 5 (1/P(F )) P(F u g)P(g). Actually
P(F ) does not depend on the labeling g and we have theproblem by a sequence of more tractable problems. Using

a top down strategy in the label pyramid, the optimization assumption that P(F u g) 5 Ps[S P( fs u gs). It is then easy
to see that, under some independence assumption [4], theproblem is first solved at a higher level; then the lower grid

is initialized with the previous result by a simple projection. global labeling which we are trying to find is given by
This algorithm is very efficient in the case of deterministic
relaxation (for instance, ICM [3, 18]) which gets stuck in ĝ 5 max

g[V
p
s[S

P( fs u gs) p
C[C

exp(2VC(gC)). (1)
a local minimum near the starting configuration. In the
case of stochastic relaxation (for instance, simulated an-
nealing [11, 23, 24]), which is far less dependent on the It is obvious from this expression that the a posteriori
initial configuration, the results are only slightly better, but probability also derives from an MRF. The energies of
the method is still interesting with respect to computer cliques of order 1 directly reflect the probabilistic modeling
time, especially on a sequential machine. We give a general of labels without context, which would be used for labeling
description of this model and the relaxation scheme associ- the pixels independently. Let us assume that P( fs u gs) is
ated with it in Section 2. Gaussian, the class l [ L is represented by its mean value

Then we propose a new hierarchical MRF model defined el , and its deviation is represented by sl . We get the
on the whole label pyramid (Section 3). In this model, energy function
we have introduced a new interaction scheme between
neighboring levels in the pyramid, yielding a better com-

U 5 O
s[ S

Slog(Ï2fsgs
) 1

( fs 2 egs
)2

2s 2
gs

D1 O
C[C

V2(gC), (2)munication between the grids. It can also be seen as a way
to incorporate cliques with far apart sites for a reasonable
price. This model gives a relaxation algorithm with a new

whereannealing scheme which can be run in parallel on the entire
pyramid. The basic idea of this annealing scheme, which
we propose to call multitemperature annealing (MTA), is

V2(gC) 5 Vhs,rj(gs , gr) 5 H2b if gs 5 gr

1b if gs ? gr

(3)the following: to the higher levels, we associate higher
temperatures which enable the algorithm to be less sensi-
tive to local minima. However at a finer resolution, the with b $ 0.
relaxation is performed at a lower temperature. The com- The initial problem is reduced to a combinatorial optimi-
plete convergence study of the multitemperature annealing zation problem, namely to the minimization of a noncon-
schedule can be found in Section 4. Our annealing theorem vex energy function. Several approaches have been pro-
is a generalization of the well-known theorem of Geman posed to solve this task, such as simulated annealing (SA)
and Geman [11] and the proof can be found in the Ap- [11, 23, 24], ICM [3, 18], and modified metropolis dynamics
pendix. (MMD) [22]. Multigrid schemes have also been proved to

Finally, image segmentation experiments are shown in be very efficient for energy minimization [7]. Here, we
Section 5 with the Gibbs sampler [11] and the ICM [3, briefly describe a classical multiscale model extensively
18] using the three models for each algorithm (monogrid, studied by Heitz et al. in [14, 15], which was the basis for
multiscale, and hierarchical). These methods have been our hierarchical MRF model.
implemented in parallel on Connection Machine CM200
[16]. 2.1. The Classical Multiscale Model

2. MULTISCALE MRF MODELS
In the following, we will focus on a MRF defined over

a first-order neighborhood system with an energy functionHerein, we are interested in the following general prob-
given bylem: we are given a set of sites S 5 hs1 , s2 , . . . , sNj and

a set of image data F 5 h fsjs[S . Each of these sites may
U(g, F ) 5 U1(g, F ) 1 U2(g), (4)belong to any one of L classes (or equivalently take any

label from L 5 h1, 2, . . . , Lj). A global discrete labeling
g assigns one label gs (gs [ L) to each site s in S. (g, F ) where U1 (resp. U2) denotes the energy of the first-order

(resp. second-order) cliques.is an MRF with respect to a chosen neighborhood system
G 5 hGsjs[ S . To generate a multigrid MRF model, let us divide the
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and
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C[C
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FIG. 1. The two subsets of C in the case of a first-order neighborhood

system. (a) C i
k ; (b) C i
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5 O
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k[B
i

VB
i

k (gi
k) 1 O

hbk,bljneighbors
VB

i

k,l(gi
k , gi

l).

(9)

initial grid into blocks of n 3 n, typically 16 (4 3 4) neighbor
pixels. We consider that the label assigned to the pixels of

Now, we can define our pyramid (see Fig. 2) where levela block is constant over all the pixels of the block. These
i contains the coarse grid S i which is isomorphic to theconfigurations will describe the MRF at scale 1. Scale i is
scale Bi. The coarse grid has a reduced configuration spacedefined similarly by considering labels which are constant
Ji 5 LNi. The isomorphism Fi from S i in Bi is just aover blocks of size ni 3 ni.
projection of the coarse label field to the fine grid S 0 5 S :Let B i 5 hbi

1 , . . . , bi
Ni

j (Ni 5 N/n2i) denote the set of
blocks and Vi the configuration space at scale i (Vi ,
Vi21 , ? ? ? , V0 5 V). The label associated with block Fi: J i R Vi

(10)bi
k is denoted by gi

k . We can define the same neighborhood
ji ° g 5 Fi(j i).

structure on B i as on S :

The model on the grids S i (i 5 0, . . . , M) defines a
bi

k and bi
l are neighbors set of consistent multiscale MRF models, whose energy

functions derived from Eqs. (8) and (9)

⇔ Hbi
k ; bi

l or

'C [ C u C > bi
k ? B and C > bi

l ? B.

(5)

Ui(j i, F ) 5 Ui
1(j i, F ) 1 Ui

2(j i)

5 U1(Fi(gi), F ) 1 U2(Fi(gi)) i 5 0, . . . , M
(11)Now, let us partition the original set C into two disjoint

subsets C i
k and C i

k,l:
where

1. Cliques which are included in bi
k (see Fig. 1a):

Ui
1(j i, F ) 5 O

k[S
i

(VB
i

1 (gi
k , F ) 1 VB

i

k (gi
k))

(12)C i
k 5 hC [ C u C , bi

kj. (6)

5 O
k[ S

i

Vi
1(gi

k , F )
2. Cliques which sit astride two neighboring blocks

hbi
k , bi

lj (see Fig. 1b):

C i
k,l 5 hC [ C u C , (bi

k < bi
l) and

(7)
C > bi

k ? B and C > bi
l ? Bj.

It is obvious from this partition that our energy function
(see Eq. (4)) can be decomposed as

U1(g, F ) 5 O
s[S

V1(gs , fs)

(8)
5 O

bi
k[B

i
O

s[bi
k

V1(gs , fs) 5 O
bi

k[B
i

VB
i

1 (gi
k , F )

  

VB
i

1 (gi
k,F ) FIG. 2. The isomorphism Fi between Bi and S i.
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and

Ui
2(j i) 5 O

hk,ljneighbors
VB

i

k,l(gi
k , gi

l) 5 O
C i[C

i

Vi
2(gi

C), (13)

where Ci is a second-order clique corresponding to the
definition in Eq. (5) and C i is the set of cliques on the grid i.

The relaxation scheme on this pyramid is very simple.
Instead of the original optimization problem, we have a
sequence of problems to solve:

ĝi 5 arg min
j i[Ji

Ui(j i, F ), i 5 M, . . . , 0. (14)

Using a top-down strategy in the pyramid, we solve the
problem first at a higher level i; then the level i 2 1 is FIG. 3. The multiscale relaxation scheme.
initialized by (Fi21)21 n Fi(ĝi), where ĝi is obtained at the
convergence of a relaxation algorithm at level i. Before

2.2. Relaxation Schemeexplaining in detail the relaxation scheme, let us derive
the equations of a multiscale image segmentation model Basically, this is the same procedure as in the monogrid
using the results reported in Eqs. (2) and (3) [19, 20]: case. The only difference is that we have more functions

to minimize which are less complex than the original one.
Ui

1(j i, F ) 5 O
si[ S

i

Vi
1(j i

si , F ), The algorithm is the following (see Fig. 3): instead of min-
imizing the original energy function U, we tackle the se-
quence of problems Ui (M $ i $ 0) using a top-down

where
strategy in the pyramid. First, we solve the problem at a
higher level i using a parallel relaxation scheme; then the

Vi
1(j i

si , F ) 5 O
s[bi

si

V1(gs , fs) 1 O
C[C

i
si

V2(gC)

(15)
level i 2 1 is initialized by (Fi21)21 n Fi(ĵi) which is just a
projection of ĵi on the finer grid S i21 (ĵi is the solution at
level i).

5 O
s[bi

si
Slog(Ï2fsgs

) 1
( fs 2 egs

)2

2s 2
gs

D2 pib The advantages of this algorithm are clear: each ĵ i gives
a more or less good estimate of the final result. The esti-
mate is better as i goes down to 0. On the other hand, for
the higher values of i, the corresponding problem is simplerand
since the state space has only a few elements.

The scheme is particularly well adapted to the determin-
Ui

2(j i) 5 O
Ci5hri,sij[C

i

Vi
2(j i

Ci),
istic relaxation methods which are more sensitive to the
initial configuration than the stochastic ones. In our experi-
ments (see Section 5), the final result is improved comparedwhere
to the monogrid version of the same algorithm. However,
for the stochastic ones, the final result is only slightly im-
proved since these methods are independent of the initialVi

2(j i
Ci) 5 O

hr,sj[DCi
V2(gr , gs) 5 H2qib if gr 5 gs

1qib if gr ? gs .
(16) configuration.

Another important measure of the efficiency is the speed
of convergence. On a sequential machine, the proposed

The values of pi and qi depend on the chosen block size scheme exhibits fast convergence properties. However, on
and the neighborhood structure, pi is the number of cliques a SIMD machine, the speed depends mainly on the virtual
included in the same block at scale Bi and qi is the number processor ratio (VPR 5 number of the virtual processors
of cliques between two neighboring blocks at scale Bi. per physical processor). This means that the monogrid
Considering blocks of n 3 n and a first-order neighborhood scheme may be faster on such a machine, considering the
system, we get (very simple) parallelization described above, because the

multiscale scheme demands usually more iterations (the
pi 5 2ni(ni 2 1) (17)

relaxation algorithm must converge at each level and there
is a minimal number of iterations necessary for the conver-qi 5 ni. (18)
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gence). In our experiments, the monogrid scheme was al-
ways faster than this scheme on a Connection Machine
CM200 (see Section 5).

We note that in [15] another parallelization scheme has
been proposed which consists of generating configurations
in parallel, using different temperatures at different levels,
with periodic interactions between them. The interaction
introduces a transfer, at every n iterations, of a small block
of labels to the next finer level. The block is accepted, if
the energy of the new block is lower (deterministic rule).
We also implemented a finer version of this scheme. In
our approach, each site at each iteration transfers its state
to the next lower level. At the lower scale, this information
is taken into account as the state of an additional neighbor
site. The transition is then governed by the Gibbs sampler
or any other method, taking into account this external
information (probabilistic rule).

The problem with both algorithms is that, to our knowl-
edge, the convergence of such an algorithm has not been
proved. Looking for a better parallelization scheme with
a theoretical background may be a future work.

3. THE HIERARCHICAL MODEL

In this section, we propose a new hierarchical MRF
model. The basic idea is to find a better way of communica-

FIG. 4. The functions C and C21.tion between the levels than the initialization used for the
multiscale model. Our approach consists in introducing
new interactions between two neighbor grids1 in the pyra-
mid. This scheme permits also the parallelization of the Let us define the following function C between two neigh-
relaxation algorithm on the whole pyramid. First, we give bor levels, which assigns to a site of any level the corre-
a general description of the model; then we study a special sponding block of sites at the level below it (that is, its
case with a first-order neighborhood system. descendants). C21 assigns its ancestor to a site (see Fig. 4):

3.1. General Description C: S i R S i21

(21)
We consider here the label pyramid and the whole obser- C(s) 5 hr u s [ S i ⇒ r [ S i21 and bi21

r , bi
sj.

vation field defined in the previous section. Let S 5
hs1 , . . . , sNj denote the sites of this pyramid. Obviously, Now we can define on these sites the neighborhood system

(see Fig. 5)

S 5 <
M

i50

S i

(19) G 5 S<M

i50

GiD< hC21(s) < C(s) u s [ S j, (22)

N 5 OM
i50

Ni .
where Gi is the neighborhood structure of the ith level, and
we have the cliques

V denotes the configuration space of the pyramid:

C 5 S<M

i50

C iD< C *, (23)V 5 J0 3 J1 3 ? ? ? 3 JM

(20)
5 hg u g 5 (j 0, j 1, . . . , j M)j.

where C * denotes the new cliques sitting astride two neigh-
bor grids. We can easily estimate the degree of the new1 One can imagine interactions between more than two levels but these

schemes are too complicated for practical use. cliques since it depends on the block size: Each site inter-
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partitioned into three disjoint subsets C 1 , C 2 , C 3 corre-
sponding to first-order cliques, second-order cliques which
are on the same level, and second-order cliques which
sit astride two neighboring levels (see Fig. 5). Using this
partition, we can derive the energy function

U(g, F ) 5 U1(g, F ) 1 U2(g) (27)

U1(g, F ) 5 O
s[S

V1(gs , F )

5 OM
i50

O
si[S

i

Vi
1(j i

si , F ) 5 OM
i50

Ui
1(ji, F ) (28)

U2(g) 5 O
C[C 2

V2(gC) 1 O
C[C 3

V2(gC)

FIG. 5. The neighborhood system G and the cliques C1 , C2 , and C3 .

5 OM
i50

O
C[C

i

Vi
2(j i

C) 1 O
C[C 3

V2(gC)

acts with its ancestor (there is one) and its descendants
5 OM

i50
Ui

2(j i) 1 O
C[C 3

V2(gC). (29)(there are wh); thus,

deg(C *) 5 max
C*[C *

u C* u5 wh 1 2 (24)
The equations of a hierarchical image segmentation model
are (using Eqs. (28) and (29)) [19, 20]:

and

deg(C ) 5 deg(C ) 1 deg(C *) 2 1. (25) U1(g, F ) 5 OM
i50

O
si[S

i

Vi
1(j i, F ) (30)

Furthermore, let X be a MRF over G with energy function
andU and potentials hVCjC[C . The energy function is of the

form

U2(g) 5 OM
i50

O
Ci[C

i

Vi
2(j i

Ci) 1 O
C[C 3

V2(gc), (31)U(g) 5 O
C[C

VC(g)

where5 OM
i50

O
C[C

i

Vi
C(g) 1 O

C[C *
VC(g)

(26)

V2(gc) 5 Vhs,rj(gs , gr) 5 H2c if gs 5 gr

1c if gs ? gr ,
(32)5 OM

i50
O

Ci[C
i

Vi
Ci(j i) 1 O

C*[C *
VC*(g)

with c $ 0.5 OM
i50

Ui(j i) 1 U*(g).
In the next section, we propose a new annealing scheme

for the efficient minimization of the energy function of the
hierarchical model.It turns out from the above equation that the energy func-

tion consists of two terms. The first corresponds to the sum
of the energy functions of the grids defined in the previous 4. MULTITEMPERATURE ANNEALING
section and the second (U*(g)) is the energy over the new

4.1. Parallel Relaxation Schemecliques located between neighbor grids.

Now, let us see how the energy U(g) is minimized. If3.2. A Special Case
we use a deterministic relaxation method where the tem-
perature parameter is kept constant during the iterationsIn this section, we study the model in the case of a first-

order neighborhood system. We will consider herein only (for example, ICM [3]), then the original formulation of
the algorithm does not change. The only difference is thatfirst- and second-order cliques. Clique potentials for the

other cliques are supposed to be 0. The cliques can be we work on a pyramid and not on a rectangular shape as in
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FIG. 7. Memory complexity of the hierarchical model.

at a low temperature close to 0. This algorithm can be
described by a sequence of homogeneous Markov chains
which are generated at a fixed temperature. The tempera-
ture will be decreased in between subsequent Markov
chains.

2. Inhomogeneous annealing. The same initially high
temperature is assigned to each level; however, the temper-FIG. 6. Relaxation scheme on the pyramid. The levels connected by
ature is now lowered after each transition. In this case, thepointers are updated at the same time.
algorithm is described by an inhomogeneous Markov chain
where the temperature is decreased in between subse-
quent transitions.

the monogrid case. We can easily parallelize this algorithm
3. Multitemperature annealing (MTA). To the higherusing the coding technique described by Besag in [3]: we

levels, we associate higher temperatures which enable thepartition the pyramid S into disjoint updating sets so that
algorithm to be less sensitive to local minima. However,pixels which belong to the same set are conditionally inde-
at a finer resolution, the relaxation is performed at a lowerpendent, given the data of all the other sets. This enables
temperature (at the bottom level, it is close to 0).us to update different levels at the same time (see Fig. 6).

Let us consider in the following a relaxation algorithm In all cases, the final configuration of the finest level is
where the temperature changes during the iterations. The taken as the solution of the problem.
temperature change is controlled by a function, the so-

4.2. Complexitycalled annealing schedule. Such a method is, for example,
the simulated annealing (Gibbs sampler [11], metropolis In this section, we study the complexity of the optimiza-
algorithm [23, 24]) or some deterministic scheme such as tion of the hierarchical model in terms of the required
modified metropolis dynamics [21, 22]. For these algo- memory (or number of processors in the parallel imple-
rithms, we introduce a new annealing schedule: the multi- mentation) and the required communication compared to
temperature annealing (MTA). The idea is to associate the monogrid model.
different temperatures to different levels in the pyramid. Memory/processor. We refer to the notations of the Sec-
For the cliques sitting between two levels, we use either tion 2: let us suppose that our image is of the size
the temperature of the lower level or that of the higher W 3 H. Following the procedure described in Section 2,
level (but once chosen, we always keep the same level we generate a pyramid containing M 1 1 levels. Without
throughout the algorithm). For the parallelization [2], we loss of generality, we can assume that W/w # H/h, where
use the same coding technique as in the previous case. w 3 h is the block size and both w and h are greater

We have three ways of annealing. The first two are well than or equal to two. The hierarchical model requires a
known [23]; they require no modification of the original maximum of (1 1 1/w)WH processors (cf. Eq. (33)), since
algorithm, except that we work on a pyramid instead of a all levels must be stored at the same time. The memory
rectangular shape. The third is a new annealing schedule (or processors) required for the storage of these levels (see
which is the most efficient with the hierarchical model: Fig. 7), considering a rectangular shape, is given by

1. Homogeneous annealing. We assign to each level of
the pyramid the same, initially high, temperature. The re-

WH 1
WH
wh

1
WH

(wh)2 1 ? ? ? 1
WH

(wh)M

(33)
laxation is performed with this fixed temperature until an
equilibrium is reached (i.e., until the change of the energy
function associated with the model is less than a threshold). 5 WH OM

i50

1
(wh)i , S1 1

1
wDWH.

The temperature is then lowered. The algorithm is stopped
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where

U(g) s/ T(k, C) 5 O
C[C

VC(g)
T(k, C)

. (35)

Let us suppose that the sites are visited for updating in
the order hn1 , n2 , . . .j , S. The resulting stochastic process
is denoted by hX(k), k 5 0, 1, 2, . . .j, where X(0) is the
initial configuration. X(k) is an inhomogeneous Markov
chain with transition matrix

Pg,h(k 2 1, k)

(36)

5 5
Gg,h(T(k, C))Ag,h(T(k, C)) ;h ? g

1 2 O
z?g

Gg,z(T(k, C))Ag,z(T(k, C)) h 5 g.

Considering the Gibbs sampler, the generation matrix
Gg,h(T(k, C)) and acceptation matrix Ag,h(T(k, C)) is
given by

Gg,h(T(k, C)) 5 Gg,h(k)FIG. 8. Communication scheme of the hierarchical model.

Communication. Considering only the first- and second- 5 51, if h 5 gugn
k

5l
for some l [ L

0, otherwise
(37)

order cliques (mostly used in practice, see Fig. 8), it is
clear that we have (wh 1 1) more communications per

Ag,h(T(k, C)) 5 fT(k,C)(Xnk
5 gnk

u Xs 5 gs , s ? nk). (38)processors. Each site interacts with its ancestor (there is
one) and its descendants (there are wh).

It turns out that the new model demands more proces- Note that the acceptance is governed by the local character-
sors and more computer time. However, as we can see istics. fT(k,C)(Xnk

5 gnk
u Xs 5 gs , s ? nk) has a slightly

later, experiments show that the new interaction is a better different meaning than fT(k,C)(g) in Eq. (34):
way to communicate between the grids yielding faster con-
vergence (with respect to the number of iterations) for the

fT(k,C)(Xs 5 gs u Xr 5 gr , s ? r)
(39)stochastic relaxation algorithms and giving estimates which

are closer to the global optimum for deterministic as well
5

1
Zs

exp S2
oC[C : s[C VC(g)

T(k, C) Das for stochastic relaxation schemes.

4.2.1. Multi-Temperature Annealing
withThe main purpose and study of this section is a new MTA

schedule. In this case, the configurations are generated at
different temperatures at different sites. The temperature

Zs 5 O
l[L

exp S2
oC[C : s[C VC(gugs5l)

T(k, C) D . (40)is then lowered after each transition according to the MTA
schedule (see Theorem 4.1). More generally, we have the
following problem:

The transition matrix at time k is then of the formLet S 5 hs1 , . . . , sNj be a set of sites, G some neighbor-
hood system with cliques C, and X an MRF over these
sites with energy function U. We define an annealing
scheme where the temperature T depends on the iteration
k and on the cliques C. Let s/ denote the operation Pg,h(k) 5 5

fT(k,C)(Xnk
5 hnk

u Xs 5 hs , s ? nk),

if h 5 gugn
k
5l for some l [ L

0,
otherwise.

(41)

P(X 5 g) 5 fT(k,C)(g) 5
exp(2U(g) s/ T(k, C))

Z
, (34)
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Let Vopt be the set of globally optimal configurations optimal configurations (uVoptu) and the number of configu-
rations with maximal global energy (uVsupu). Thus, the de-
composition of D for a given (g9, g0) is of the formVopt 5 hg [ V : U(g) 5 min

h[V
U(h)j. (42)

D 5 o2
(g9, g0) 1 o1

(g9, g0) (48)Let f0 be the uniform distribution on Vopt , and define

Furthermore, let us define o1

D asU sup 5 max
g[V

U(g), (43)

o1

D 5 min
g9[Vsup
g0[Vopt

o1
(g9, g0). (49)U inf 5 min

g[V
U(g), (44)

and
Obviously, D # o1

D . The following theorem gives an an-
nealing schedule, basically the same as in [11]. However,D 5 U sup 2 U inf. (45)
the temperature here is a function of k and C [ C.

Let us examine the decomposition of U(g) s/ T(k, C)
defined in Eq. (35). Let g9 [ Vopt be a globally optimal THEOREM 4.1 (MULTITEMPERATURE ANNEALING).
configuration. Thus, U(g9) 2 Uinf equals 0. In the case of Assume that there exists an integer k $ N such that for
a classical annealing, dividing by a constant temperature every k 5 0, 1, 2, . . . , S # hnk11 , nk12 , . . . , nk1kj. For all
does not change this relation (obviously, ;k: (U(g9) 2 C [ C, let T(k, C) be any decreasing sequence of tempera-
Uinf)/Tk is still 0). But it is not necessarily true that tures in k for which
(U(g9) 2 Uinf) s/ T(k, C) is also 0! Because choosing suffi-

1. limkRy T(k, C) 5 0. Let us denote respectively byciently small temperatures for the cliques where g9C is lo-
T inf

k and T sup
k the maximum and minimum of the temperaturecally not optimal (i.e., strengthening the nonoptimal

function at k (;C [ C : T inf
k # T(k, C) # T sup

k ).cliques) and choosing sufficiently high temperatures for
the cliques where g9C is locally optimal (i.e., weakening the 2. For all k $ k0 , for some integer k0 $ 2: T inf

k $
optimal cliques), we obtain (U(g9) 2 Uinf) s/ T(k, C) . N o1

D /ln(k).
0, meaning that g9 is no longer globally optimal.

3. If o2
(g, g9) ? 0 for some g [ V\Vopt , g9 [ VoptThus, we must impose further conditions on the temper-

then a further condition must be imposed:ature to assure the convergence. First, let us examine the
decomposition over the cliques of U(g) 2 U(h) for arbi-

For all k: (T sup
k 2 T inf

k )/T inf
k # R withtrary g and h, g ? h:

U(g) 2 U(h) 5 O
C[C

(VC(g) 2 VC(h)). (46) R 5 min
g[V/Vopt
g9[Vopt

o2
(g,g9?0

U(g) 2 U inf

uo2
(g, g9)u

. (50)

Indeed, there may be negative and positive members in
the decomposition. According to this fact, we have the

Then for any starting configuration h [ V and for everysubsums
g [ V,O

C[C

(VC(g) 2 VC(h))
lim
kRy

P(X(k) 5 g uX(0) 5 h) 5 f0(g). (51)
5 O

C[C :(VC(g)2VC(h)),0
(VC(g) 2 VC(h))

The proof of this theorem appears in the Appendix.  

o2
(g,h)

Remarks.
1 O

C[C :(VC(g)2VC(h))$0
(VC(g) 2 VC(h)).

(47)

1. In practice, we cannot determine R and o1

D , nor  

o1
(g,h) can we compute D.

2. Considering o1

D in condition 2, we have the sameNow, let us examine D defined in Eq. (45). If we want
to decompose D as defined above, we must choose some problem as in the case of a classical annealing. The only

difference is that in a classical annealing, we have D insteadconfiguration g9 with a maximum energy (i.e., U(g9) 5
U sup) and another configuration g0 with a minimum energy of o1

D . Consequently, the same solutions may be used: an
exponential schedule with a sufficiently high initial temper-(i.e., U(g0) 5 U inf). Obviously, there may be more than

one decomposition, depending on the number of globally ature.
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TABLE 1
Results on a Noisy Synthetic Image with Four Classes

Levels VPR T0 Iterations Total time (s) Time/iteration (s) Error b c

Original
Gibbs 1 2 4 68 3.01 0.04 183 (1.12%) 1.0 —
ICM 1 2 1 9 0.15 0.02 2948 (17.99%) 1.0 —

Multiscale
Gibbs 4 1,2 4 101 3.85 0.04 176 (1.07%) 1.0 —
ICM 4 1,2 1 17 0.22 0.01 1657 (10.11%) 0.9 —

Hierarchical
Gibbs 4 4 4,3,2,1 41 141.97 3.46 191 (1.16%) 0.7 0.1
ICM 4 4 1 11 30.17 2.74 293 (1.78%) 0.8 0.5

3. The factor R is more interesting. We propose herein pler. In both cases, the parameters were strictly the
same, the only difference is the applied schedule: thetwo possibilities which can be used for practical implemen-

tations of the method: Either we choose a sufficiently small pyramid contains four levels yielding a VPR equal to
4. The initial temperature were respectively 4 (at theinterval [T inf

0 , T sup
0 ] and suppose that it satisfies condition

3 (we have used this technique in the simulations) or we highest level), 3, 2, and 1 (at the lowest level). The
potential b equals 0.7 and c equals 0.1. In Fig. 10 (resp.use a more strict but easily verifiable condition instead of

condition 3, namely, Fig. 9), we show the global energy (computed at a fixed
temperature) versus the number of iterations of the
inhomogeneous (resp. MTA) schedule. Both reach practi-

lim
kRy

T sup
k 2 T inf

k

T inf
k

5 0. (52) cally the same minimum (53415.4 for the inhomogeneous
and 53421.4 for the MTA); however, the inhomogeneous
schedule requires 238 iterations (796.8 s CPU time) but4. What happens if o2

(g, g9) is zero for all g and
the MTA schedule requires only 100 iterations (340.6 sg9 in condition 3 and thus R is not defined? This is the
CPU time) for the convergence.best case because it means that all globally optimal config-

urations are also locally optimal. That is, we have no restric-
tion on the interval [T inf

k , T sup
k ]; thus, any local temperature

5.2. Comparison of the Modelsschedule satisfying conditions 1 and 2 is good.
First, we tested the models on a noisy synthetic image of

5. EXPERIMENTAL RESULTS size 128 3 128. In the image, we have different geometrical
forms (circle and triangle) on a checkerboard image (see

We compare the Gibbs sampler [11] and iterated condi- Fig. 12, Table 1). The Gibbs sampler gives nearly the same
tional mode [3, 18] using three models for each algorithm result in all cases. However the ICM is more sensitive. The
(original, multiscale, and hierarchical). We have also com- multiscale model gives better result than the monogrid one
pared the inhomogeneous and MTA schedules. All tests but the result is not fine in the triangle and the circle. These
have been conducted on a Connection Machine CM200 forms have a different structure than the block structure of
[16] with 8K processors. In Tables 1 and 2, we give for the model, the initialization was wrong in these regions,
each model and for each method the number of levels in and the ICM was not able to correct these errors. In the
the pyramid (for the monogrid model, this is 1), the virtual hierarchical case, instead of the initialization, we have a
processor ratio (VPR) [16], the initial temperature (for the real time communication between the levels which is able
hierarchical model, this is not the same at each level, using to give results close to those obtained with the Gibbs sam-
the MTA schedule), the number of iterations, the comput- pler. This model requires quite greater computing time
ing time, the error of the classification (5 the number of than the others. The reason is that, in the hierarchical case,
misclassified pixels), and the parameter b (see Eqs. (3), the whole pyramid is stored at the same time, yielding a
(15), (16)) and c (see Eq. (32)). greater VPR ratio. On the other hand, we cannot use

the fast ‘‘NEWS’’ communication scheme [16] as in the5.1. Comparison of the Schedules
other cases.

Finally, we present a SPOT image of size 512 3 512 (seeIn Fig. 11 we compare the inhomogeneous and MTA
schedules on a noisy synthetic image using the Gibbs sam- Fig. 13) with ground truth data. In the following table, we
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TABLE 2
Results on the SPOT Image with Six Classes

Levels VPR T0 Iterations Total time (s) Time/iteration (s) b c

Original
Gibbs 1 32 4 234 163.18 0.69 1.5 —
ICM 1 32 1 8 2.03 0.25 1.5 —

Multiscale
Gibbs 5 1–32 4 580 180.17 0.31 1.5 —
ICM 5 1–32 1 36 5.15 0.14 0.3 —

Hierarchical
Gibbs 5 64 4,3,2,1 154 9629.33 62.53 0.7 0.1
ICM 5 64 1 16 915.99 57.25 1.0 0.2

give the mean (e) and the deviation (s 2) for each class drawn by an expert (ground truth data). Classes 1–6 corre-
spond to the regions B3c , B3b , B3d , a2 , hc, and 92a on the(we have six classes):
map. For the hierarchical model a slight improvement can
be noticed for the results of the Gibbs sampler; however,

Class 1 2 3 4 5 6 for the ICM, the improvement is more significant. In Table
2 we give the parameters and the computing time for eache 65.3 81.3 75.4 98.5 82.5 129.0
model and each method.s 2 6.4 12.7 14.9 16.8 9.46 183.2

6. CONCLUSION
As we can see, classes 2 and 5 have nearly the same parame-
ters; it is difficult to distinguish between them. Figure 14 In this paper, we have presented a classical multiscale
(resp. Fig. 15) shows the results obtained with the ICM model and proposed a new hierarchical MRF model. We
(resp. Gibbs sampler). For these results, we give a map have introduced a new interaction scheme between two

neighbor grids in the label pyramid and have experimen-

FIG. 10. Energy decrease with the inhomogeneous annealing schedule.FIG. 9. Energy decrease with the MTA schedule.
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FIG. 11. Results of the Gibbs sampler on a synthetic image with inhomogeneous and MTA schedules.

tally shown that these connections allow us to propagate other hand, these interactions make the model more
complex, demanding computationally more expensivelocal interactions more efficiently, yielding faster conver-

gence (w.r.t. the number of iterations) in many cases and algorithms.
We have also proposed a new general annealinggiving estimates closer to the optimum for deterministic

as well as for stochastic relaxation techniques. On the scheme, the multitemperature annealing. We have used

FIG. 12. Results on a synthetic image with four classes.
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FIG. 13. Original SPOT image with six classes.

a degenerated case of this MTA scheme for the minimiza- APPENDIX
tion of the energy function of the hierarchical model:

Proof of the Multitemperature Annealing Theoremthe temperature decreasing scheme is rigid with different
fixed coefficients applied to the different levels of the We follow the proof of the annealing theorem given by
label pyramid. This algorithm can be run in parallel on Geman and Geman in [11]. Essentially, we can apply the
the entire pyramid and usually decreases the computa- same proof, only a slight modification is needed.
tional time compared to the classical schemes. A general-
ization of the annealing theorem of Geman and Geman
[11] has been proposed, which gives a theoretical back-

A.1. Notations
ground for the convergence of this method toward
global optimum. We recall a few notations: S 5 hs1 , . . . , sNj denotes

the set of sites, L 5 h0, 1, . . . , L 2 1j is a common stateFinally, the hierarchical model and the theoretical study
given in this paper are presented in a general form. Al- space, and g, h, h9 . . . [ V denote configurations, where

V 5 LN is finite. The sites are updated in the order hn1 ,though they have been adapted for supervised image classi-
fication, one can also use them for other low level vision n2 , . . .j , S. The generated configurations constitute an

inhomogeneous Markov chain hX(k), k 5 0, 1, 2, . . .j,tasks such as edge detection, image restoration, data fusion,
motion, etc. We are currently working on the parameter where X(0) is the initial configuration. The transition

X(k 2 1) R X(k) is controlled by the Gibbs distributionestimation of these models for unsupervised image classi-
fication. fT(k,C) according to the transition matrix at time k:
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FIG. 14. Results of the ICM algorithm. Comparison with ground truth data.

fT(k,C)(Xs 5 gs u Xr 5 gr , s ? r)
(56)

5
1
Zs

exp S2
oC[C : s[C VC(g)

T(k, C) DPg,h(k) 5 5
fT(k,C)(Xnk

5 hnk
u Xs 5 hs , s ? nk),

if h 5 gugn
k
5l for some l [ L

0,
otherwise.

(53)

with

fT(k,C)(g) denotes the Gibbs distribution at iteration k

Zs 5 O
l[L

exp S2
oC[C : s[C VC(gugs5l)

T(k, C) D . (57)
fT(k,C)(g) 5

exp(2U(g) s/ T(k, C))
Z

(54)

The decomposition of U(g) 2 U(h) for arbitrary g and
with h, g ? h is given by

U(g) 2 U(h) 5 O
C[C

(VC(g) 2 VC(h)). (58)U(g) s/ T(k, C) 5 O
C[C

VC(g)
T(k, C)

. (55)

The local characteristics of the above distribution are de- Denoting respectively by o1
(g, h) and o2

(g, h) the sum
over the positive and negative cliques, we getnoted by
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FIG. 15. Results of the Gibbs sampler. Comparison with ground truth data.

D 5 Usup 2 Uinf. (62)O
C[C

(VC(g) 2 VC(h))

and define o1

D as the minimum of positive sums:
5 O

C[C :(VC(g)2VC(h)),0
(VC(g) 2 VC(h))

o1

D 5 min
g9[Vsup
g0[Vopt

o1
(g9, g0). (63)  

o2
(g,h)

1 O
C[C :(VC(g)2VC(h))$0

(VC(g) 2 VC(h)). Obviously, D # o1

D .

(59)

Given any starting distribution e0 , the distribution of  

o1
(g,h) X(k) is given by the vector e0 Pk

i51 P(i):

Furthermore, let
Pe0

(X(k) 5 g) 5 Se0 p
k

i51

P(i)DU
g

(64)

Usup 5 max
g[V

U(g), (60)
5 O

h

P(X(k) 5 g u X(0) 5 h)e0(h). (65)
Uinf 5 min

g[V
U(g), (61)

We use the following notation for transitions: ;l , k and
g, h [ V,and
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P(k, g u l, h) 5 P(X(k) 5 g u X(l) 5 h), Proof of Lemma A.1. Fix k0 5 0, 1, 2, . . . , define Kl 5
k0 1 lk, l 5 0, 1, 2, . . . , where k is the number of transitions
necessary for a full sweep of S (for every k 5 0, 1,and for any distribution e on V,
2, . . . , S # hnk11 , nk12 , . . . , nk1kj). Let d(k) be the smallest
probability among the local characteristics:P(k, g u l, e) 5 O

h

P(X(k) 5 g u X(l) 5 h)e(h).

d(k) 5 inf
1#i#N

g[V

fT(k,C)(Xsi
5 gsi

u Xsj
5 gsj

, j ? i).
Sometimes, we use this notation as P(k, ? u l, e), where

‘‘?’’ means any configuration from V. Finally, let ie 2 ni
denotes the following distance between two distributions

A lower bound for d(k) is given by
on V:

ie 2 ni 5 O
g

ue(g) 2 n(g)u. d(k) $
exp(2Usup s/ T(k, C))

L exp(2Uinf s/ T(k, C))
5

exp(2D s/ T(k, C))
L

$
1
L

exp(2o1

D s/ T(k, C) $
1
L

exp(2o1

D /T inf
k ),It is clear that limnRy en 5 e in distribution (i.e.,

;g : en(g) R e(g)) if and only if ien 2 ei R 0.

where L 5 uLu is the number of possible states at a site.A.2. Proof of the Theorem
Now fix l and define mi as the time of the last replacement

First, we state two lemmas which imply Theorem 4.1: of site si before Kl 1 1 (that is, before the lth full sweep):
LEMMA A.1. For every k0 5 0, 1, 2 . . . ,

;i: 1 # i # N : mi 5 suphk : k # Kl , nk 5 sij.
lim
kRy

sup
g,h9,h0

uP(X(k) 5 g u X(k0) 5 h9)
(66) Without loss of generality, we can assume that m1 .

m2 ? ? ? . mN (otherwise, relabel the sites). Then2 P(X(k) 5 g u X(k0) 5 h0)u 5 0.

P(X(Kl) 5 g u X(Kl21) 5 g9) 5 P(Xs1
(m1) 5 gs1

, Xs2
(m2) 5 gs2

, . . . , XsN
(mN) 5 gsN

u X(Kl21) 5 g9)

5 p
N21

i51

P(Xsi
(mi) 5 gsi

u Xsi11
(mi11) 5 gsi11

, . . . , XsN
(mN) 5 gsN

, X(Kl21) 5 g9) (67)

$ p
N

i51

d(mi) $ L2N p
N

i51

exp(2D/T inf
mi

) $ L2N exp S2
o1

D N
T inf

k01lk

D ,

Consider now the limit given in Eq. (66) and for eachsince mi # Kl 5 k0 1 lk, i 5 1, 2 . . . , N and T inf
k is

decreasing. If k0 1 lk is sufficiently large then T inf
k01lk $ N k . k0 , define Ksup(k) 5 suphl : Kl , kj (the last sweep

before the kth transition) so that limkRy Ksup(k) 5 y. Fixo1

D /ln(k0 1 lk) according to condition 2, and Eq. (67) can
be continued as k . K1 :

sup
g,h9,h0

uP(X(k) 5 g u X(0) 5 h9) 2 P(X(k) 5 g u X(0) 5 h0)uP(X(Kl) 5 g u X(Kl21) 5 g9)

5 sup
g

(sup
h

P(X(k) 5 g u X(0) 5 h)$ L2N exp S2
o1

D N

N o1

D /ln(k0 1 lk)
D5 L2N(k0 1 lk)21.

2 inf
h

P(X(k) 5 g u X(0) 5 h))
Hence, for a sufficiently small constant G(0 , G # 1), we
can assume that

5 sup
g
Ssup

h
O
g9

P(X(k) 5 g u X(K1) 5 g9)
inf
g,g9

P(X(Kl) 5 g u X(Kl21) 5 g9) $
GL2N

k0 1 lk
(68)

P(X(K1) 5 g9 u X(0) 5 h)
for every k0 5 0, 1, 2, . . . and l 5 1, 2, . . . , keeping in 2 inf

h
O
g9

P(X(k) 5 g u X(K1) 5 g9)
mind that Kl depends on k0 .
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sup
g,h9,h0

uP(X(k) 5 g u X(0) 5 h9) 2 P(X(k) 5 g u X(0) 5 h0)u
P(X(K1) 5 g9 u X(0) 5 h)D

# S1 2
G

k0 1 lkD sup
g,h9,h0

uP(X(k) 5 g u X(K1) 5 h9)
8 sup

g
Q(k, g).

2 P(X(k) 5 g u X(K1) 5 h0)u
Furthermore, for each g [ V,

# S1 2
G

k0 1 lkDSS1 2
G

k0 1 lkD sup
g,h9,h0

uP(X(k)
sup

h
O
g9

P(X(k) 5 g u X(K1) 5 g9)

5 g u X(K2) 5 h9) 2 P(X(k) 5 g u X(K2) 5 h0)uD.P(X(K1) 5 g9 u X(0) 5 h)

# sup
e
O
g9

P(X(k) 5 g u X(K1) 5 g9)e(g9),
Proceeding this way, we have the bound

where e is any probability measure on V. Using Eq. (68),
# p

Ksup(k)

k51
S1 2

G

k0 1 lkD sup
g,h9,h0

uP(X(k) 5 g u X(KKsup(k)) 5 h9)we get

2 P(X(k) 5 g u X(KKsup(k)) 5 h0)u,
e(g9) $

GL2N

k0 1 lk
.

and finally, since the possible maximal value of the supre-
mum is 1,Suppose that P(X(k) 5 g u X(K1) 5 g9) is maximized at

g9 5 gsup and minimized at g9 5 ginf. Then we get
sup
g,h9,h0

uP(X(k) 5 g u X(0) 5 h9) 2 P(X(k) 5 g u X(0) 5 h0)u
sup

e
O
g9

P(X(k) 5 g u X(K1) 5 g9)e(g9)

# p
Ksup(k)

k51
S1 2

G

k0 1 lkD.
# S1 2 (LN 2 1)

GL2N

k0 1 lkD P(X(k) 5 g u X(K1) 5 gsup)

It is then sufficient to show that
1

GL2N

k0 1 lk O
g9?gsup

P(X(k) 5 g u X(K1) 5 g9),5 lim
mRy

p
m

k51
S1 2

G

k0 1 lkD5 0,
P(X(k)5g u X(K1)5ginf )1og9?gsup,ginf P(X(k)5guX(K1)5g9),

and in a similar way which is a well-known consequence of the divergence of
the series

inf
e
O
g9

P(X(k) 5 g u X(K1) 5 g9)e(g9) O
l

(k0 1 lk)21

$ S1 2 (LN 2 1)
GL2N

k0 1 lkD P(X(k) 5 g u X(K1) 5 ginf)
for all k0 and k. This completes the proof of Lemma A.1.

Q.E.D.
1

GL2N

k0 1 lk O
g9?ginf

P(X(k) 5 g u X(K1) 5 g9).
LEMMA A.2.5

P(X(k)5g u X(K1)5gsup)1og9?gsup,ginf P(X(k)5g u X(K1)5g9).

lim
k0Ry

sup
k$k0

iP(k, ? u k0 , f0) 2 f0i 5 0. (69)

Then it is clear that

Proof of Lemma A.2. In the following, let Pk0,k(?) stand
for P(k, ? u k0 , f0), so that for any k $ k0 . 0:

Q(k, g) # S1 2
G

k0 1 lkD (P(X(k) 5 g u X(K1) 5 gsup)

Pk0,k(g) 5 O
h

P(X(k) 5 g u X(k0) 5 h)f0(h).
2 P(X(k) 5 g u X(K1) 5 ginf));

hence, First, we show that for any k . k0 $ 0:
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iPk0,k 2 fT(k,C)i # iPk0,k21 2 fT(k,C)i. (70)
5 O

(gs2
,...,gs

N
)
UO

gs1

(Pk0 ,k21(Xs 5 gs , s [ S )

We can assume for convenience that nk 5 s1 . Then

2 fT(k,C)(Xs 5 gs , s [ S ))UiPk0,k 2 fT(k,C)

5 O
(gs1

,...,gs
N

)
ufT(k,C)(Xs1

5 gs1
u Xs 5 gs , s ? s1) # O

(gs1
,...,gs

N
)
uPk0,k21(Xs 5 gs , s [ S )

Pk0,k21(Xs 5 gs , s ? s1) 2 fT(k,C)(Xs 5 gs , s [ S )u 2 fT(k,C)(Xs 5 gs , s [ S )u

5 iPk0,k21 2 fT(k,C)i.
5 O

(gs2
,...,gs

N
)
S O

gs1
[L

fT(k,C)(Xs1
5 gs1

u Xs 5 gs , s ? s1) u

Second, we prove that fT(k,C) converges to f0 (the uniform
distribution on Vopt):

Pk0,k21(Xs 5 gs , s ? s1) 2 fT(k,C)(Xs 5 gs , s ? s1)uD
lim
kRy

if0 2 fT(k,C)i 5 0.
5 O

(gs2
,...,gs

N
)
uPk0,k21(Xs 5 gs , s ? s1)

To see this, let uVoptu be the number of globally optimal
2 fT(k,C)(Xs 5 gs , s ? s1)u configurations. Then

lim
kRy

fT(k,C)(g) 5 lim
kRy

exp(2U(g) s/ T(k, C))
og9[Vopt

exp(2U(g9) s/ T(k, C)) 1 og9ÓVopt
exp(2U(g9) s/ T(k, C))

(71)

5 lim
kRy

exp(2(U(g) 2 Uinf) s/ T(k, C))
uVoptu 1 og9ÓVopt

exp(2(U(g) 2 Uinf) s/ T(k, C))
5 5

0 g Ó Vopt

1
uVoptu

g [ Vopt .

The above equation is true if (U(g) 2 Uinf) s/ T(k, C) $ o1
(g, g9) 5 o(g) 2 o2

(g, g9).
0. Let us rewrite this inequality as

Now, we consider Eq. (72):

O
C[C

VC(g) 2 VC(g9)
T(k, C)

$ 0, (72) O
C[C

VC(g) 2 VC(g9)
T(k, C)

where g9 is any globally optimal configuration (i.e., g9 [
5 o2

(g, g9) s/ T(k, C) 1 o1
(g, g9) s/ T(k, C)Vopt). While VC(g) 2 VC(g9) may be negative, U(g) 2

Uinf is always positive or zero. We denote by o(g) the $ o2
(g, g9)/T inf

k 1 o1
(g, g9)/T sup

k
energy difference in Eq. (72) without the temperature.
Obviously, it is nonnegative:

5
o2

(g, g9) ? T sup
k 1 o1

(g, g9) ? T inf
k

T inf
k T sup

k
$ 0.

o(g) 5 O
C[C

VC(g) 2 VC(g9) 5 U(g) 2 Uinf $ 0.
Furthermore,

Then let us decompose o(g) according to Eq. (47): o2
(g, g9) ? T sup

k 1 o1
(g, g9) ? Tinf

k

o(g) 5 o1
(g, g9) 1 o2

(g, g9), 5 o2
(g, g9) ? T sup

k 1 (o(g) 2 o2
(g, g9))T inf

k .

Therefore,from which
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lim
kRy

ifT(k,C) 2 f0i 5 0.o2
(g, g9)(T sup

k 2 T inf
k ) 2 o(g) ? T inf

k $ 0.

Dividing by o2(g, g9) which is negative, we get Then we have

T sup
k 2 T inf

k #
o(g)

uo2
(g, g9)u

T inf
k ,

lim
k0Ry

sup
k$k0

iPk0 ,k 2 f0i # lim
k0Ry

sup
k.k0

Ok21

l5k0

ifT(l,C) 2 fT(l11,C)i

which is true due to condition 3 of the theorem. Finally,
5 lim

k0Ry
Oy
l5k0

ifT(l,C) 2 fT(l11,C)i 5 0.we can prove that

Oy
k51

ifT(k,C) 2 fT(k11,C)i , y, (73) The last term is 0 by (73) which completes the proof of
Lemma A.1. Q.E.D.

THEOREM 4.1 (MULTITEMPERATURE ANNEALING).since
Assume that there exists an integer k $ N such that for
every k 5 0, 1, 2, . . . , S # hnk11 , nk12 , . . . , nk1kj. For allOy

k51
ifT(k,C) 2 fT(k11,C)i 5 O

g
Oy
k51

ufT(k,C)(g) 2 fT(k11,C)(g)u, C [ C , let T(k, C) be any decreasing sequence of tempera-
tures in k for which

and since 1. limkRyT(k, C) 5 0. Let us denote respectively by
T inf

k and T sup
k the maximum and minimum of the temperature

function at k (;C [ C : T inf
k # T(k, C) # T sup

k ).;g: fT(k,C)(g) R f0(g),

2. For all k $ k0 , for some integer k0 $ 2: T inf
k $

it is enough to show that fT (g) is monotonous for every No1
D /ln(k).

g. However, it is clear from Eq. (71) that
3. If o2(g, g9) ? 0 for some g [ V\Vopt, g9 [ Vopt ,

then a further condition must be imposed: For all k,• if g Ó Vopt then fT (g) is strictly increasing for 0 ,
T sup

k 2 T inf
k /T inf

k # R withT # « for some sufficiently small «,
• if g [ Vopt then fT (g) is strictly decreasing for all

T . 0.
R 5 min

g[V\Vopt

g9[Vopt

o2(g,g9)?0.

U(g) 2 U inf

uo2
(g,g9)uFix k . k0 $ 0. From Eq. (70) and Eq. (73), we obtain

iPk0 ,k 2 f0i # iPk0,k 2 fT(k,C)i 1 ifT(k,C) 2 f0i

Then for any starting configuration h [ V and for every# iPk0 ,k21 2 fT(k,C)i 1 ifT(k,C) 2 f0i by Eq. (70)
g [ V,

# iPk0 ,k21 2 fT(k21,C)i 1 ifT(k21,C)

lim
kRy

P(X(k) 5 g u X(0) 5 h) 5 f0(g). (74)
2 fT(k,C)i 1 ifT(k,C) 2 f0i

# iPk0 ,k22 2 fT(k22,C)i 1 ifT(k22,C) 2 fT(k21,C)i
Proof. Using the above-mentioned lemmas, we can

1 ifT(k21,C) 2 fT(k,C)i 1 ifT(k,C) 2 f0i easily prove the annealing theorem:

# ? ? ? # iPk0 ,k0
2 fT(k0 ,C)i 1 Ok21

l5k0

ifT(l,C) 2 fT(l11,C)i lim
kRy

iP(X(k) 5 ?uX(0) 5 h) 2 f0i

5 lim
k0Ry

lim
kRy

k$k0

i O
h9

P(k, ?uk0, h9)P(k0 , h9u0, h) 2 f0i1ifT(k,C) 2 f0i.

On the other hand,
# lim

k0Ry
lim
kRy

k$k0

i O
h9

P(k, ?uk0 , h9)P(k0 , h9u0, h)

Pk0 ,k0
5 f0

2 P(k, ?uk0 , f0)i 1 lim
k0Ry

lim
kRy

k$k0

iP(k, ?uk0 , f0) 2 f0i.
and
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renormalization group, in Proceedings IEEE CVPR ’93, New York,The last term is 0 by Lemma A.2. Moreover, P(k0 , ?u0, h)
June 1993.and f0 have total mass 1; thus,

11. S. Geman and D. Geman, Stochastic relaxation, Gibbs distributions
and the Bayesian restoration of images, IEEE Trans. Pattern Anal.
Mach. Intell. 6, 1984, 721–741.IO

h9

P(k, ?uk0 , h9)P(k0 , h9u0, h) 2 P(k, ?uk0 , f0)I
12. S. Geman and C. Graffigne, Markov random fields image models

and their application to computer vision, in Proceedings ICM ’86
5 O

g

sup
h0

uO
h9

(P(k, guk0, h9) (A. M. Gleason, Ed.), Amer. Math. Soc., Providence, 1987.

13. B. Gidas, A renormalization group approach to image processing
problems, IEEE Trans. Pattern Anal. Mach. Intell. 11(2), 1989,2 P(k, guk0 , h0))(P(k0 , h9u0, h) 2 f0(h9))u
164–180.

# 2 O
g

sup
h9,h0

uP(k, guk0 , h9) 2 P(k, guk0 , h0)u. 14. F. Heitz, P. Pérez, and P. Bouthemy, Multiscale minimization of
global energy functions in some visual recovery problems. CVGIP:
Image Understanding 59(1), 1994, 125–134.

Finally, 15. F. Heitz, P. Pérez, E. Memin, and P. Bouthemy, Parallel visual motion
analysis using multiscale Markov random fields, in Proceedings of
Workshop on Motion, Princeton, Oct. 1991.lim

kRy
iP(X(k) 5 ?uX(0) 5 h) 2 f0i

16. W. D. Hillis, The Connection Machine, MIT Press, Cambridge,
MA, 1985.

# 2 O
g

lim
k0Ry

lim
kRy

k$k0

sup
h9,h0

uP(k, guk0 , h9)
17. M. Hurn and C. Jennison, A study of simulated annealing and a

revised cascade algorithm for image reconstruction, Technical Report
93:04, University of Bath, Apr. 1993.

2 P(k, guk0 , h0)u 5 0. 18. F. C. Jeng and J. M. Woods, Compound Gauss–Markov random fields
for image estimation, IEEE Trans. Acoust. Speech Signal Process. 39,

The last term is 0 by Lemma A.1 which completes the 1991, 638–697.

proof of the annealing theorem. Q.E.D. 19. Z. Kato, M. Berthod, and J. Zerubia, Multiscale Markov random
field models for parallel image classification, in Proceedings ICCV,
Berlin, May 1993.
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