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Abstract

A novel correspondence-less approach is proposed to
find a thin plate spline map between a pair of deformable
3D objects represented by triangular surface meshes. The
proposed method works without landmark extraction and
feature correspondences. The aligning transformation is
found simply by solving a system of nonlinear equations.
Each equation is generated by integrating a nonlinear func-
tion over the object’s domains. We derive recursive formu-
las for the efficient computation of these integrals. Based on
a series of comparative tests on a large synthetic dataset,
our triangular mesh-based algorithm outperforms state of
the art methods both in terms of computing time and accu-
racy. The applicability of the proposed approach has been
demonstrated on the registration of 3D lung CT volumes.

1. Introduction
A wide range of application areas, such as registration of

3D laser scans [22] or volumetric medical images [16], re-
quires the alignment of deformable objects [11, 19]. When
registering a pair of objects, first we have to characterize
the possible deformations. From this point of view, reg-
istration techniques can be classified into two main cate-
gories: physical model-based and parametric or functional
representation [10]. Herein, we deal with the latter repre-
sentation, which typically originate from interpolation and
approximation theory. A broadly used class of such para-
metric models are splines, in particular thin plate splines
(TPS) [2, 24]. TPS models are quite useful whenever a
parametric free-form registration is required but the under-
lying physical model of the object deformation is unknown
or too complex. Furthermore, TPS models can be extended
to include various regularizations, such as the bending en-
ergy) [2].

From a methodological point of view, we can differen-
tiate landmark-based and area-based (or feature-less) ap-
proaches. Landmark-based methods are challenged by the
correspondence problem, which is particularly difficult to

solve in the case of non-linear deformations. Area-based
approaches are typically relying on the availability of rich
radiometric information which is used to construct a sim-
ilarity measure based on some kind of intensity correla-
tions. The aligning transformation is then found by maxi-
mizing similarity between the objects, which usually yields
a complex non-linear optimization procedure. In many
cases, reliable radiometric information may not be avail-
able (e.g. range data or multimodal medical images), there-
fore purely shape-based methods are particularly interest-
ing [11, 19, 22, 16, 17].

Most of these approaches are focusing on point set reg-
istration. In [17], a probabilistic model is proposed where a
Gaussian mixture with centroids corresponding to the first
set is fit to the second point set by maximizing the likeli-
hood. In [11], both point sets are represented as a Gaussian
mixture model and then the L2 distance of the two mixtures
is minimized. While point-based registration has the advan-
tage of tolerating rather high occlusions, they are typically
inefficient for large point sets. In many cases, however, the
goal is the accurate alignment of whole volumetric objects
of several megavoxels (e.g. medical applications). There-
fore object level registration methods are needed.

Several other correspondence-less approach could be
found, focusing on solving the related partial matching or
shape recognition problems [14, 4, 3]. These approaches
could handle large scope of deformations, but usually they
do not use classical parametric transformation models.

While elastic registration of planar shapes has been
addressed by many researchers [1, 8], the extension of
2D methods for 3D object registration is far from trivial.
Herein, we propose a general TPS framework for align-
ing 3D deformable objects. The basic idea of the method
is inspired by [8]: an overdetermined system of nonlinear
equations is constructed by integrating a set of nonlinear
functions over the object volumes, which is then solved in
the least squares sense. However, the procedure we de-
velop here to construct the equations is substantially dif-
ferent: in [8], the integrals are evaluated in terms of 2D pix-
els, which is relatively straightforward to extend to 3D vox-



els. Unfortunately, the computational complexity of such
a naive extension is extremely high for practical applica-
tions. In this paper, we will show that complexity can be
drastically reduced when the input objects are represented
as triangular surface meshes. Triangular surface meshes
are typically produced by e.g. stereo reconstruction meth-
ods [23, 12] but they can be easily extracted from volume
images [21] as well. The performance and robustness of the
proposed approach has been quantitatively evaluated on a
synthetic dataset, and it has also been successfully applied
to the alignment of segmented lung CT images.

2. Thin plate spline registration framework
Thin plate splines (TPS) [2, 24] are commonly used as

parametric models for elastic deformations using radial ba-
sis functions. In the three dimensional space, a TPS trans-
formation φ : R3 → R3 can be decomposed as three coor-
dinate functions φ(x) = [φ1(x), φ2(x), φ3(x)]

T , ∀φi(x) :
R3 → R. Given a set of control points ck ∈ R3 and
associated mapping coefficients aij , wki ∈ R with i =
1, . . . , 3, j = 1, . . . , 4 and k = 1, . . . ,K, the TPS functions
are

φi(x) = ai1x1 + ai2x2 + ai3x3 + ai4 +
K∑

k=1

wki∥ck − x∥.

(1)
Note that in 3D the radial basis functions the Euclidean
norms ∥ck − x∥ [10]. The number of parameters are N =
3(K + 4) consisting of 12 affine parameters aij and 3 local
coefficients ωki for each of the K control points ck. The
local parameters are also required to satisfy the following
additional constraints [24], ensuring that the TPS at infinity
behaves according to its affine term:

K∑
k=1

wki = 0 and
K∑

k=1

ckjwki = 0, i, j = 1, 2, 3.

(2)
When correspondences are available, the exact mapping of
the control points are also known which, using (1), provides
constraints on the unknown parameters. Thus in classical
correspondence based approaches, control points are placed
at extracted point matches, and the deformation at other po-
sitions is interpolated by the TPS. Therefore in such cases,
a TPS can be regarded as an optimal interpolating function
whose parameters are usually recovered via a complex op-
timization procedure [2, 24].

However, we are interested in solving the TPS regis-
tration problem without correspondences. Therefore, as
in [8], a TPS is a parametric model to approximate the
true deformation. Control points can be placed e.g. on a
uniform grid in order to capture local deformations every-
where. Obviously, a finer grid would allow a more refined
approximation of the deformation field at the price of an

increased number of free parameters. Denoting the coor-
dinates of the template volume Ft and observation Fo by
x = [x1, x2, x3]

T and y = [y1, y2, y3]
T , respectively, the

points are related by φ:

φ(x) = y (3)

Since individual point correspondences are not available, let
us integrate both sides of (3) over the object volumes:∫

Fo

ydy =

∫
φ(Ft)

zdz, (4)

where φ(Ft) corresponds to the domain of the transformed
template image. When objects are represented as a set of
foreground voxels, the generation of the transformed vol-
ume would be computationally expensive. In order to avoid
the generation of φ(Ft), in the 2D case Domokos et al. [8]
proposed to use integral transformation∫

Fo

ydy =

∫
Ft

φ(x)|Jφ(x)|dx, (5)

which involves the Jacobian determinant of φ, composed
of the partial derivatives of the transformation. While the
naive extension of this idea to 3D is fairly straightforward,
its complexity is still quite high due to the large number
of voxels. In the next section, we will show that when 3D
objects are represented as triangulated surface meshes, the
computational complexity of φ(Ft) can be drastically re-
duced by computing the integrals in (4) via recursive for-
mulas.

Of course, (4) provides three equations only (one for
each coordinate), but any useful TPS model has much more
than three parameters. To generate sufficiently many equa-
tions, we will extend the 2D solution [8] and apply a set of
non-linear functions {ωi}ℓi=1 to both sides of (3) yielding a
system of ℓ nonlinear equations:∫

Fo

ωi(y)dy =

∫
φ(Ft)

ωi(z)dz i = 1, . . . , ℓ. (6)

Since each ωi generates one equation and we have N un-
knowns, ℓ ≥ N must hold. The least squares solution of the
above system directly provides the parameters of the align-
ing TPS transformation.

3. Computing the integrals over meshes

In the following, we will propose an efficient computa-
tional scheme for the integrals in (6). For that purpose, let us
denote the triangular surface meshes of the template and ob-
servation objects by T△ and O△ and the volumes enclosed
by these meshes by F△

t and F△
o , respectively.



First, let us observe that the transformation φ acting on
the mesh T△ generates a new surface mesh by transforming
the vertices of the triangles:

φ(T△) = {(φ(A), φ(B), φ(C)) | (A,B,C) ∈ T△} (7)

The volume enclosed by this transformed surface mesh
φ(T△) is denoted by Dφ. Since Ft ≈ F△

t and Fo ≈ F△
o ,

the integrals from (4) can be approximated as∫
Fo

ydy ≈
∫
F△

o

ydy (8)∫
φ(Ft)

zdz ≈
∫
Dφ

xdx. (9)

Assuming that every triangle is oriented consistently
counter-clockwise when seen from the exterior of the ob-
ject, the integrals over the volumes of (8) and (9) can be
computed exactly as the sums of signed integrals over prop-
erly generated tetrahedrons:∫

F△
o

ydy =
∑

o∈O△

sgn(vol(To))
∫
To

ydy (10)

∫
Dφ

zdz =
∑

π∈φ(T△)

sgn(vol(Tπ))
∫
Tπ

zdz (11)

The key point here is the creation of the tetrahedrons: For

Figure 1. Tetrahedrons generated from a triangular mesh of a torus:
The blue tetrahedron has positive signed volume and the red one
has negative.

each triangle o = (A,B,C), let us create a tetrahedron
To = (A,B,C, 0) defined by the vertices of the correspond-
ing triangle o and the origin 0. Thus for all triangle, we gen-
erate a tetrahedron with the fourth vertex shared by all of
these tetrahedrons (see Fig. 1). Although the choice of the
fourth vertex is arbitrary, setting it to the origin will greatly
simplify our computations. The computation of the signed
volume of such a tetrahedron To is straightforward:

vol(To) =
1

6

∣∣∣∣∣∣
A1 B1 C1

A2 B2 C2

A3 B3 C3

∣∣∣∣∣∣ , (12)

where A,B,C ∈ R3 are the vertices of the corresponding
triangle o. The sign is important because it describes the

orientation of triangles seen from the origin for non-convex
shapes. For example in Fig. 1, there is a torus given by its
triangular mesh. The volumes of the tetrahedrons generated
by the two marked triangles has different signs, caused by
the different vertex order.

Then from (10) and (11), we get the following approxi-
mation for our basic equation (4):∑

o∈O△

sgn(vol(To))

∫
To

ydy ≈

∑
π∈φ(T△)

sgn(vol(Tπ))
∫
Tπ

zdz (13)

How to proceed when an ωi function is acting on both
sides of the equation? In general, we cannot compute the
integrals in a straightforward way for an arbitrary func-
tion. However, it is possible to derive a similar closed
form formula for the integrals as before, when ωi are poly-
nomials. In particular, if ωi(x) = xni

1 xmi
2 xoi

3 , where
{(ni,mi, oi)}ℓi=1 = {(a, b, c) | a + b + c = O} and
O ∈ {0, . . . , Omax}, then (6) becomes:∑

o∈O△

sgn(vol(To))

∫
To

ymi
1 yni

2 yoi3 dy ≈

∑
π∈φ(T△)

sgn(vol(Tπ))
∫
Tπ

zmi
1 zni

2 zoi3 dz (14)

Note that the integrands are simply various geometric mo-
ments of tetrahedrons To and Tπ, which can be efficiently
computed by applying the methods proposed in [13, 20].

Let us first define trinomial coefficients as

(a, b, c) =
(a+ b+ c)!

a!b!c!
.

The integral over a tetrahedron To can then be written
as [13]∫

To

ymi
1 yni

2 yoi3 dy = 6
| vol(To)|mi!ni!oi!

(mi + ni + oi + 3)!
Sminioi(To)

(15)
with

Sminioi =
∑

a1+a2+a3=mi

∑
b1+b2+b3=ni

∑
c1+c2+c3=oi

(a1, b1, c1)(a2, b2, c2)(a3, b3, c3)×
Aa1

1 Ab1
2 Ac1

3 Ba2
1 Bb2

2 Bc2
3 Ca3

1 Cb3
2 Cc3

3 (16)

where A,B,C ∈ R3 are the vertices of the corresponding
triangle o. The computational complexity of the ith integral
would be O(M9

i ), where Mi = mi + ni + oi is the order
of the moments. However, the summations in (16) can be
rearranged using the following recursive formulas [20]:

Cijk(p) = (i, j, k)pi1p
j
2p

k
3 (17)



Dabc(p,q) =
a∑

i=0

b∑
j=0

c∑
k=0

Cijk(p)Ca−i,b−j,c−k(q) (18)

Then (16) can be rewritten as

Sminioi =

mi∑
a=0

ni∑
b=0

oi∑
c=0

Cabc(A)Dmi−a,ni−b,oi−c(B,C)

(19)
As a result, the complexity reduces to O(M6

i ) [20]. A fur-
ther reduction to O(M3

i ) can be achieved by applying the
results of [13] for rearranging (17), (18), and (19) as

Cijk(p) =

p1Ci−1,j,k(p) + p2Ci,j−1,k(p) + p3Ci,j,k−1 (20)

Dijk(p,q) =
0, if l < 0 for some l ∈ {i, j, k}
1, if l = 0 for all l ∈ {i, j, k}
p1Di−1,j,k(p,q) + p2Di,j−1,k(p,q)+

p3Di,j,k−1(p,q) + Cijk(q), otherwise
(21)

Sijk(To) =
0, if l < 0 for some l ∈ {i, j, k}
1, if l = 0 for all l ∈ {i, j, k}
A1Si−1,j,k(To) +A2Si,j−1,k(To)+

A3Si,j,k−1(To) +Dijk(B,C), otherwise
(22)

Since all of the above formulas are recursive, we can store
the results of lower order polynomials to compute the higher
order ones. Hence the complexity of computing all of the
integrals for i = 1, . . . , ℓ over one tetrahedron will be
O(M3), where M is the maximal degree of polynomials
from the {ωi}ℓi=1 set.

4. Numerical implementation

As we presented in the previous section the equations of
(6) are only approximately valid, due to the discrete rep-
resentation of triangular surfaces. In addition, objects ex-
tracted from images are subject to various segmentation
errors, which again introduces errors in (6). Therefore,
an overdetermined system is constructed, i.e. ℓ > N in
(6), which is then solved in the least-squares sense via a
Levenberg-Marquardt algorithm.

Since the system is solved by minimizing the algebraic
error, proper normalization is critical for numerical stabil-
ity. For that purpose, the template and observation coordi-
nates are normalized into [−0.5, 0.5] by applying normaliz-
ing transformations Nt and No, respectively. This will basi-
cally transform the input objects into a unit cube centered at
the origin. Furthermore, after normalization the origin be-
comes the centroid of the objects, therefore the fourth point
of each tetrahedron, described in the previous section, will
be the centroid of the objects, which also increases numeri-
cal stability.

The range of the ωi functions should also be normalized
into [−1, 1] in order to ensure a balanced contribution of the
equations to the algebraic error. Following [8], this can be
achieved by dividing the integrals with the maximal mag-
nitude of the integral over the unit sphere containing the
objects:

Ni =

∫
∥x∥≤

√
3

2

|ωi(x)|dx (23)

We thus obtain the following system of equations

1

Ni

∫
No(Fo)

ωi(y)dy =
1

Ni

∫
Nt(φ(Ft))

ω(z)dz, (24)

where i = 1, . . . , ℓ. Using the triangular surface mesh rep-
resentations, we get the following approximation of our sys-
tem:

1

Ni

∑
o∈No(O△)

sgn(vol(To))

∫
To

ymi
1 yni

2 yoi3 dy ≈

1

Ni

∑
π∈φ(Nt(T△))

sgn(vol(Tπ))
∫
Tπ

zmi
1 zni

2 zoi3 dz, (25)

where i = 1 . . . ℓ and the integrals over tetrahedrons can
be computed via (15) using the recursive formulas (20)–
(22). The overall computational complexity of Algorithm 1
is thus O(M3(|O△| + |T△|I)), where I is the number of
function calls executed by the Levenberg-Marquardt solver.

As mentioned in the previous section, TPS has to satisfy
the additional constrains of (2). Since these constraints are
linear in the parameters of the transformation, the system
(25) can be solved as a constrained least-square problem
with linear constraints.

5. Experimental results
In our experiments we used a TPS model with 64 con-

trol points placed on a uniform grid, yielding a total of
204 parameters. A system of 220 equations were generated
by the set ωi(x) = xmi

1 xni
2 xoi

3 , where (mi, ni, oi)
220
i=1 =

{(a, b, c) | a+ b+ c = O,O = 1, . . . , 9}.
The algorithms have been implemented in C++ us-

ing the Levenberg-Marquardt implementation levmar of



Algorithm 1 Pseudo code of the proposed algorithm
Input: template and observation triangular surface meshes
Output: The transformation parameters of φ

1: Choose Omax such that ℓ > N for the resulting nonlin-
ear function set {ωi}ℓi=1, and for each ωi compute the
normalizing constant Ni using (23).

2: Compute the normalizing transformations Nt and No

which maps vertex coordinates into [−0.5, 0.5].
3: Construct the system of equations (25) using the recur-

sive formulas (20)–(22).
4: Add constraints from (2).
5: Find a constrained least-squares solution of the sys-

tem using the Levenberg-Marquardt algorithm initial-
ized with the identity transformation.

6: Unnormalizing the solution gives the parameters of the
aligning transformation.

Lourakis [15]. All tests were ran under a Linux system run-
ning on a virtualized Core i5 3.1 GHz architecture. The
registration error has been quantitatively evaluated based on
the Dice coefficient of the aligned objects:

δ =
|Fr △ Fo|
|Fr|+ |Fo|

· 100%, (26)

where Fo and Fr denote the set of foreground voxels of the
observation and registered objects respectively.

Figure 2. Some results on the synthetic database: First and second
row contains the template and observation objects, respectively. In
the last row, registered objects are overlayed, overlapping voxels
shown in yellow and non-overlapping ones in red and green.

In order to quantitatively evaluate the performance of the
proposed method, a synthetic database of 750 deformed ob-
jects of size 0.1− 2.5 megavoxels has been created. Defor-
mations were generated based on thin plate splines with 16,
32, and 64 control points placed on corresponding grids.

Random translations with elements from [−0.2, 0.2] were
applied to the control points yielding a random free-form
deformation of the objects. In order to preserve the topology
of the input object, a diffeomorphic transformation were
generated. To achieve this the Jacobian of the generated
transformation has been computed and it has been accepted
only if it’s Jacobian were positive everywhere over the ob-
ject [10]. Some examples of our registration results on this
dataset can be seen in Fig. 2.

The synthetic observations as well as registered objects
were generated by the following procedure using Matlab:
First, a smooth triangular mesh has been created from
the object’s surface using Matlab’s internal isosurface
function. Then the transformation was applied to the ver-
tices yielding the transformed triangular mesh, from which
the final voxelized object was obtained by the binvox pro-
gram available from http://www.cs.princeton.
edu/˜min/binvox/ [18]. Note that this triangulariza-
tion is completely independent of the other triangulariza-
tions used as input for Algorithm 1. In particular, the tri-
angular mesh used for the transformation had much higher
resolution than what was used in the registration process.
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Figure 3. Comparison of registration error and computing time
with various r values for the Delaunay sphere in surface mesh ex-
traction.

In the first experiment, we evaluated the sensitivity of the
mesh-based algorithm (see Algorithm 1) with respect to the
mesh resolution. For that purpose, the triangular mesh ex-
tractor algorithms from CGAL library [21] were used where
the resolution of the triangular mesh can be controlled by
the maximal radius r of the corresponding Delaunay sphere.
Using our synthetic dataset, triangular meshes has been cre-
ated for r ∈ {1, 3, 5, 6, 10}. Registration results are pre-
sented in Fig. 3 for each of these r values. Obviously, the
resolution of the triangular mesh affects the computation



time. On the other hand, the computational time can be sig-
nificantly reduced by decreasing r at the price of a slightly
lower registration accuracy. We found, that r = 5 has the
best quality over time ratio.

Method
Runtime (min) δ(%)

m µ σ m µ σ

Proposed 1.7 1.38 1.22 6.44 6.12 2.52
Voxel based 31.42 59.77 67.74 7.19 7.05 2.3

Table 1. Results on 750 synthetic images (m – median, µ – mean
and σ – standard deviation).

In Table 1, we compared the registration quality and
computing times of the naive voxel-based extension of [8]
and the proposed mesh-based algorithm for r = 5. While
the registration errors are of similar magnitude, the comput-
ing times show an almost 20 times speed-up for the mesh-
based algorithm. This is not surprising, as the mesh-based
algorithm works only with triangle vertices whose number
is less than 9000, whereas the voxel-based method has to
deal with several hundred thousand voxels. It is more inter-
esting, that the mesh-based algorithm also outperforms the
voxel-based one in terms of alignment accuracy (see also
Fig. 5). This is due to the way these numerical schemes
approximate the continuous integrals in (24). In the voxel-
based case, approximation error is due to 1) the discretiza-
tion error on the object’s surface (inner voxels are not pro-
ducing such errors) and 2) the Jacobian is implicitly as-
sumed to be constant within each voxel (including the inner
ones!). However, the mesh-based algorithm computes the
exact (continuous) integrals over each tetrahedron, there-
fore the only source of the approximation error is the differ-
ence between the true object surface and its approximating
triangular mesh.

In practice, segmentation never produces perfect shapes,
therefore robustness against segmentation errors was also
evaluated on simulated data: we randomly added or re-
moved squares uniformly around the boundary of each slice
of the observations yielding a surface error of 10%, 20%
and 30% of the original object volume (see sample slices in
Fig. 4). The plots in Fig. 4 show the quantitative evaluation
of the alignment error δ on 125 objects. Considering that
a δ < 10% corresponds to a visually good alignment, our
approach is quite robust up to as high as 20% surface error.
The robustness test in [8] showed that the method does not
tolerate occlusions well, which remains true in 3D as well.
Essentially, the algorithm will find a TPS which aligns the
template with the occluded observation.

We have also compared our results to the point-based
registration frameworks in [11] (GMMREG) and [17]
(CPD). We used the C++ implementation of these meth-
ods available from http://code.google.com/p/
gmmreg and set the parameters to their default values
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Figure 4. Robustness test results for various degree of synthetically
generated surface errors. For each test, samples of surface errors
on a voxel slice are shown.

(within the given Matlab framework). The input of these
algorithms were the vertices of the extracted triangular sur-
face meshes, using the same extraction technique as in the
previous tests. The mesh resolution was controlled by the
maximal radius r of the corresponding Delaunay sphere.
For the best GMMREG set both the average and median
runtimes were 30 min, for the lower resolutions both the av-
erage and median runtimes were 3 min. In Fig. 5, quantita-
tive results for r ∈ {2.5, 4.5, 6.5} indicate that these meth-
ods provide inferior alignments.

5.1. Medical application

Lung alignment is a crucial task in lung cancer diagno-
sis [5]. During the treatment, changes in the tumor size are
determined by comparing follow-up PET/CT scans which
are taken at regular intervals depending on the treatment and
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Figure 5. Comparison of voxel-based and triangular mesh-based
results. The Delaunay sphere in surface mesh extraction was r =
5. On the bottom, comparison with GMMREG [11] and CPD [17]

.

the size of the tumor. Due to respiratory motion, the lung is
subject to a nonlinear deformation between such follow-ups,
hence it is hard to automatically find correspondences. A
common practice is to determine corresponding regions by
hand, but this makes the procedure time consuming and the
obtained alignments may not be accurate enough for mea-
suring changes.

We successfully applied the proposed approach to align
3D lung CT scans. Since the triangular mesh based-
approach is more accurate and faster, the input voxel vol-
umes were first transformed into a triangular mesh using
r = 5, and then the TPS parameters were recovered by Al-
gorithm 1. Promising results were obtained on the available
8 image pairs with a median δ error of 5.41% (the mean and
standard deviation were 5.83% and 2.09%, respectively).

In medical applications, however, it is necessary to align
the inner part of the objects too. For that purpose, the TPS
model needs to be regularized and hence we were looking
for a solution, which not only solves the system of equations
but also minimizes the bending energy:

Ebending = λ

∫
Ft

{(
∂2ϕ

∂x2
1

)2

+

(
∂2ϕ

∂x2
2

)2

+

(
∂2ϕ

∂x2
3

)2

+

2

(
∂2ϕ

∂x1∂x2

)2

+ 2

(
∂2ϕ

∂x2∂x3

)2

+ 2

(
∂2ϕ

∂x3∂x1

)2 }
dx,

where λ > 0 is an application dependent parameter (λ =
10−8 in our experiments). In Algorithm 1, this function
is added to the algebraic error of the system of equations,
which are then minimized simultaneously. Some of our
results are presented in Fig. 6, where we also show the

achieved inner alignment on grayscale slices of the original
lung CT images. For these slices, the original and trans-
formed images were combined as an 8 × 8 checkerboard
pattern.

In many medical image registration problem, one is
looking for a smooth deformation, thus a diffeomorphic so-
lution is needed. It is a well known fact, that thin plate
splines may not be diffeomorphic without further regular-
ization. For example in the landmark based approaches,
an energy function, composed by the derivatives of the
displacement field, is minimized [7] or a flow of diffeo-
morphisms is defined, and using its velocity field and a
linear differential operator the deformation energy is min-
imized [9, 6] to achieve a diffeomorphic transformation.
In out approach, using the bending energy minimization
provided sufficient constraint to obtain diffeomorphic so-
lutions. This finding has been experimentally confirmed on
the lung dataset by computing the Jacobian of the obtained
transformations for all of the input voxels: the values were
positive in every cases.

6. Conclusion

We have proposed a novel TPS registration method
which works without established correspondences to reg-
ister two objects represented by their triangular surface
meshes. The basic idea is to set-up a system of non-
linear equations whose solution directly provides the pa-
rameters of the aligning transformation. An efficient nu-
merical scheme were proposed for triangular mesh repre-
sentation. The efficiency and robustness of the proposed ap-
proach have been demonstrated on a large synthetic dataset,
and the mesh-based algorithm proved to be the most effi-
cient in both accuracy and computational complexity. Our
method compares favorably to two recent 3D matching al-
gorithms [11, 17]. Finally, the algorithm achieved promis-
ing results in aligning lung CT images, which demonstrates
the usefulness of the method in real life applications.

We also remark, that our numerical approach can be eas-
ily applied in the 2D case, using a polygonal representation
of the planar shapes: For each edge of the polygons and
a common point for all edges, a triangle can be generated,
which gives a two dimensional triangular grid, for which
similar recursive formulas could be derived as in Section 3.
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Figure 6. Alignment of lung CT volumes. Segmented 3D lung images were generated by the InterView Fusion software of Mediso Ltd.
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