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Abstract—A novel correspondence-less approach is proposed
to find a non-linear aligning transformation between a pair
of deformable 3D objects. Herein, we consider a polynomial
deformation model, but our framework can be easily adapted
to other common deformations. The basic idea of the proposed
method is to set up a system of nonlinear equations whose solution
directly provides the parameters of the aligning transformation.
Each equation is generated by integrating a nonlinear function
over the object’s domains. Thus the number of equations is deter-
mined by the number of adopted nonlinear functions yielding a
flexible mechanism to generate sufficiently many equations. While
classical approaches would establish correspondences between
the shapes, our method works without landmarks. The efficiency
of the proposed approach has been demonstrated on a large
synthetic dataset as well as in the context of medical image
registration.

I. INTRODUCTION

Registration of deformable objects [1], [2] has many ap-
plication areas such as 3D laser scan registration [3] or
volumetric medical image alignment [4]. When registering
a pair of objects, first we have to characterize the possible
deformations. From this point of view, registration techniques
can be classified into two main categories: physical model-
based and parametric or functional representation [5]. Herein,
we deal with the latter representation, which typically orig-
inate from interpolation and approximation theory. A broad
class of such deformations are polynomial. Unlike spline-
based transformations e.g. thin plate splines [6], [7], which
are typically based on interpolation, polynomial models are
approximating the underlying deformation. Furthermore, the
control points of interpolating thin plate spline models are
placed at extracted point matches and they usually include
various regularizations, such as the bending energy [6]. On
the other hand, polynomial deformations are governed by
fewer parameters and are acting globally on the shapes, hence
regularization is not needed. Moreover, many non-polynomial
transformation can be approximated by a polynomial one e.g.
via a Taylor expansion [8].

From an algorithmic viewpoint, registration methods can be
divided into two main categories: landmark-based and area-
based (or feature-less) approaches. Landmark-based meth-
ods are challenged by the correspondence problem, which
is particularly difficult to solve in the case of non-linear
deformations. Area-based approaches are typically relying on
the availability of rich radiometric information which is used to
construct a similarity measure based on some kind of intensity
correlations. The aligning transformation is then found by

maximizing similarity between the objects, which usually
yields a complex non-linear optimization procedure. In many
cases, reliable radiometric information may not be available
(e.g. range data or multimodal medical images), therefore
purely shape-based methods are particularly interesting [1],
[2], [3], [4], [9].

Most of these approaches are focusing on point set registra-
tion. In [9], a probabilistic model is proposed where a Gaussian
mixture with centroids corresponding to the first set is fit to
the second point set by maximizing the likelihood. In [1], both
point sets are represented as a Gaussian mixture model and
then the L2 distance of the two mixtures is minimized. While
point-based registration has the advantage of tolerating rather
high occlusions, they are typically inefficient for large point
sets. In many applications, however, the goal is the accurate
alignment of whole volumetric objects of several megavoxels.
Therefore object level registration methods are needed e.g. in
medical imaging.

While elastic registration of planar shapes has been ad-
dressed by many researchers [10], [8], the extension of 2D
methods for 3D object registration is far from trivial. Herein,
we propose a correspondence-less approach for aligning 3D
deformable objects subject to a polynomial deformation. The
basic idea is to construct a system of nonlinear equations by
integrating a set of nonlinear functions over the object volumes
and then solve it by classical Levenberg-Marquardt algorithm.
We have conducted a series of quantitative tests on a synthetic
dataset to demonstrate the performance and robustness of the
proposed approach. The method has been successfully applied
to the alignment of segmented lung CT images.

II. POLYNOMIAL REGISTRATION FRAMEWORK

A broadly used class of deformations is the polynomial
family. In the three dimensional case, the deformation field
π : R3 → R3, π(x) = [π1(x), π2(x), π3(x)] is given by three
polynomial functions πi : R3 → R. Without loss of generality,
we can assume that d = deg(π1) = deg(π2) = deg(π3):
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The transformation has a total of k = (d+3)(d+2)(d+1)/2
parameters. Denoting the coordinates of the template and
the observation by x = [x1, x2, x3]

T ∈ R3 and y =
[y1, y2, y3]

T ∈ R3, respectively, the following relation holds
between points of the two objects:

π(x) = y ⇔ x = π−1(y). (1)

Since individual point correspondences are not available, let
us integrate out individual point matches of (1) over the fore-
ground regions Ft and Fo of the template and the observation:∫

Fo

ydy =

∫
Ft

π(x)|Jπ(x)|dx, (2)

where |Jπ(x)| : R3 → R is the Jacobian determinant of the
transformation composed of the following partial derivatives:
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For π2 and π3, we get a similar formula. Note that (2) is
a system of three equations. Unfortunately, in most cases
the number of the parameters of π is much higher than
three, therefore we need to generate more equations. For that
purpose, observe that applying a properly chosen ωi : R3 → R
function to both sides of (1) yields the following form of (2):∫

Fo

ωi(y)dy =

∫
Ft

ωi(π(x))|Jπ(x)|dx, i = 1, . . . , ℓ.

(6)
The basic idea of the proposed approach is to generate a
sufficient number of independent equations by making use of
a set of non-linear functions {ωi}ℓi=1. Since we need at least
k equations and each ωi generates one equation, ℓ ≥ k must
hold.

III. NUMERICAL IMPLEMENTATION

In practice, we only have a digital representation of the
continuous objects Ft and Fo, hence the equations of (6) are
only approximately valid. In addition, objects extracted from
images are subject to various segmentation errors, which again
introduces errors in the equations. Therefore in practice, an
overdetermined system is constructed, i.e. ℓ > k, which is then
solved in the least-squares sense via a Levenberg-Marquardt
algorithm.

Since the system is solved by minimizing the algebraic
error, proper normalization is critical for numerical stability.
For that purpose, the template and observation coordinates are

normalized into [−0.5, 0.5] by applying normalizing transfor-
mations No and Nt, respectively:

No =


o1 0 0 −o1O1

0 o2 0 −o2O2

0 0 o3 −o3O3

0 0 0 1

 (7)
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where Ti, Oi (i = 1, . . . , 3) are the centroids of the template
and the observation, respectively and ti, oi (i = 1, . . . , 3) are
the scale factors. This will basically transform the input objects
into a unit sphere centered at the origin.

Moreover the range of the ωi functions should also be nor-
malized into [−1, 1] in order to ensure a balanced contribution
of the equations to the algebraic error. This can be achieved
by dividing the integrals with the maximal magnitude of the
integral over the unit sphere containing the objects [8]:
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2

|ωi(x)|dx (9)

The discretized form of (6) using the above normalizations is
thus

|No|
Ni

∑
y∈Fo

ωi(y) =
|Nt|
Ni

∑
x∈Ft

ω(π(x))|Jπ(x)| (10)

where Fo and Ft are the set of the normalized voxel co-
ordinates of the observation and template respectively; and
|No| and |Nt| are the determinants of the corresponding
normalizing linear transformations.

The resulting π̂∗ transformation is acting between the
normalized objects, hence we have to denormalize it. In our
experiments, we register the template image to the observation:

Ft
π̂−→ Fo

↓ ↓
Nt(Ft)

π̂∗

−→ No(Fo)

π̂ = N−1
o ◦ π̂∗ ◦Nt (11)

therefore to obtain π̂ from π̂∗, we have to use Nt and the
inverse of No:

N−1
o =


1/o1 0 0 O1

0 1/o2 0 O2

0 0 1/o3 O3

0 0 0 1

 (12)

To denormalize the solution π̂∗, we have to combine Nt

with the polynomial base functions, multiply all parameters
with the corresponding scale factor of N−1

o and then add the
corresponding translation terms of N−1

o to the parameters of
the zero order terms:
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where a∗ijk are the parameters of the normalized solution (π̂2

and π̂3 can be obtained similarly). Algorithm 1 shows the main
steps of the proposed method. The computational complexity
is

O(ℓ|Fo|+ I|Ft|(ℓ+ k + 9J)), (14)

where ℓ is the number of ω functions, k and 9J are the number
of the required operations for computing the transformation
function and the Jacobian determinant on each coordinate,
respectively. I denotes the number of function calls executed
by the Levenberg-Marquardt solver.

Algorithm 1 Pseudo code of the proposed algorithm
Input: template and observation voxels
Output: The transformation parameters of π̂

1: Choose a set of ℓ > k nonlinear functions {ωi}ℓi=1, and
for each ωi compute the normalizing constant Ni using
(9).

2: Compute the normalizing transformations No and Nt as in
(7) and (8), which maps voxel coordinates into [−0.5, 0.5].

3: Construct the system of equations (10).
4: Find a least-squares solution of the system using the

Levenberg-Marquardt algorithm. Use the identity trans-
formation for initialization.

5: Denormalize the solution π̂∗ using (13), which provides
the parameters of the aligning transformation.

A. Choice of the ω functions

Theoretically, any nonlinear ωi function is applicable in (6)
as long as it is integrable and rich enough. Herein, however,
we will adopt simple power functions of the form ωi(x) =
xni
1 xmi

2 xoi
3 as it makes (10) a polynomial equation, which is

computationally more favorable. The system of (10) for ℓ > k
thus becomes:
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The left hand side is clearly polynomial. On the right hand
side, the product of the powered transformation functions are
polynomials too and so as the Jacobian determinant of the
transformation (5), hence their product will also be polynomial
of degree di = d(ni +mi + oi) + 3(d− 1):
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where d is the degree of the transformation polynomial and,
according to the Multinomial theorem [11], giqrs is also a
polynomial of the parameters of the transformation. Further-
more, the polynomials giqrs do not contain image coordinates,

hence they are independent from the objects. Substituting back
into the right hand side of (15), we get
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Note that the above two formulas are mathematically equiva-
lent, but they have different computational complexities when
equations are solved via an iterative least-squares method.
Since the algebraic error has to be evaluated at each iteration,
the above formulas have to be computed several times for
each iteration step with the actual values of the unknowns.
The formula on the left hand side contains fewer terms but,
since these terms are within a sum over voxels x ∈ Ft, the
object voxels need to be visited each time the formula gets
evaluated. On the other hand, the formula (17) contains much
more terms, but the polynomials giqrs of the unknowns are
separated from the sum over voxels x ∈ Ft, therefore the latter
sums can be precomputed and object voxels are not needed
anymore for the solver. The computational complexity of the
original formula is given by (14). Let us now have a closer
look at the complexity of the formula (17).

Denote the number of terms in a three dimensional full
polynomial by γ : R → R, γ(d) = (d + 3)(d + 2)(d + 1)/6,
where d is the degree of the polynomial. Since the inner sum∑

x∈Ft
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1x

r
2x

s
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in (17) do not depend on the unknowns, they can be pre-
computed as sums of various powers of coordinates, which
are simply various geometric moments of the objects. This
can be done for all ωi functions in O(|Ft|γ(dM )) time, where
dM = max{di}, because the higher order polynomials already
contain the lower orders.

Now, examine the giqrs polynomials. In the worst case, they
are full polynomials of the transformation parameters with a
degree of ni +mi + oi + 1, determined by the degree of the
power functions and the Jacobian determinant. The number of
these terms for the ith equation is γ(di), therefore the total
number of operations is O(γ(di)γ(ni+mi+oi+1)), assuming
that one term of qiqrs can be computed in constant time. The
overall computation time of (17) is thus

O(ℓ|Fo|+γ(dM )|Ft|+ I
ℓ∑

i=1

γ(di)γ(ni+mi+oi+1)) (19)

where I is the number of function calls executed by the
Levenberg-Marquardt solver.

Which one of the two formulas should be used to achieve
optimal computational complexity? There is no generic answer
to this question. Since the left hand side of the equations are
always computed only once and ℓ is basically determined by
the adopted deformation model, the choice between the two
formulas for a particular transformation is determined by the



template observation proposed GMMREG CPD

Fig. 1. Some results on the synthetic images. Observation and registered objects were overlayed, overlapping voxels are shown in yellow, while non-overlapping
ones in red and green.

size of the template object |Ft| and the number of function
calls I .

As an example, we will now analyze the complexity of
a third order polynomial deformation (i.e. d = 3) model
used also in our experiments. To generate sufficiently many
equations, we need at least k = 60 ωi functions. Therefore let
us choose power functions with maximal degree of 3:

{(ni,mi, oi)}64i=1 = {(a, b, c) | 0 ≤ a, b, c ≤ 3} (20)

generating a total of 64 equations. Using the formulas above,

dM = 33

γ(dM ) = 7, 140
64∑
i=1

γ(di)γ(ni +mi + oi + 1) = 16, 453, 488

In our experiments the average number of function calls was
380 for this deformation model and ωi set. Note that the
number of function calls is the same for both formulas, since
they evaluate the same entity but in different ways. Hence, the



computational complexity of the formula (17) will be

O(64|Fo|+ 7, 140|Ft|+ 380 · 16, 453, 488), (21)

while the complexity of the original formula is

O(64|Fo|+ 380(64 + 60 + 90)|Ft|). (22)

We thus conclude, that it is worth to use the formula (17)
when

|Ft| ≥ 84, 286. (23)

Runtime (min) δ(%)
m µ σ m µ σ

13.96 6.85 17.84 7.02 6.06 4.58

TABLE I
RESULTS ON 550 SYNTHETIC IMAGES (M – MEDIAN, µ – MEAN

AND σ – STANDARD DEVIATION).

IV. EXPERIMENTAL RESULTS

In our experiments, we used a third order polynomial
deformation model (i.e. d = 3), which has a total of k =
(d + 3)(d + 2)(d + 1)/2 = 60 parameters. A system of 64
equations were generated by the set ωi(x) = xni

1 xmi
2 xoi

3 ,
where {(ni,mi, oi)}64i=1 = {(a, b, c) | 0 ≤ a, b, c ≤ 3}.

The algorithm has been implemented in C++ using the
levmar library written by M.I.A. Lourakis [12]. All tests
were ran under a Linux system running on a virtualized
Core i5 3.1 GHz architecture. The registration error has been
quantitatively evaluated based on the absolute difference of
the aligned objects:

δ =
|Fr △ Fo|
|Fr|+ |Fo|

· 100%, (24)

where Fo and Fr denote the set of foreground voxels of the
observation and registered objects respectively.

In order to quantitatively evaluate the performance of the
proposed method, a synthetic database of 500 deformed ob-
jects has been created. Observations have been generated by
applying second and third order polynomial deformations to
different template objects. The transformation parameters were
randomly picked from the following intervals: a11, b21, c31 ∈
[0.5; 1.5], a21, a31, b11, b31, c11, c21 ∈ [−0.25; 0.25] and all
other parameters are from [−0.5; 0.5]. Note that a00 = b00 =
c00 = 0 (i.e. no translations), because initial normalization
would remove any larger translations. Some of our results are
presented in Fig. 1, where observation and registered objects
were overlayed, overlapping voxels are shown in yellow, while
non-overlapping ones in red and green. The statistics of our
test are described in Table I.

The registered objects, as well as synthetic observations,
were generated by the following procedure (in Matlab): First,
a smooth triangular mesh has been created from the object’s
surface using Matlab’s internal isosurface function. Then
the transformation was applied to the vertices yielding the

transformed triangular mesh, from which the final voxelized
object was obtained by the binvox program available from
http://www.cs.princeton.edu/∼min/binvox/ [13].
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Fig. 2. Comparison with GMMREG [1] and CPD [9].

We have compared our results to the point-based registration
frameworks in [1] (GMMREG) and [9] (CPD). We used
the C++ implementation of these methods available from
http://code.google.com/p/gmmreg and set the parameters to
their default values. At a first stage, we used all of the surface
voxels as the input point set to the algorithm. For these
sets consisting of about 0.5 megavoxel, the algorithms were
running more than 12 hours without finding the transformation.
Therefore the size of the point sets was reduced by using the
vertices of an approximating triangular surface with various
resolutions [14]. The mesh resolution was controlled by the
maximal radius r of the corresponding Delaunay sphere. In
Fig. 2, quantitative results for r = {2.5, 4.5, 6.5} indicate that
these methods provide inferior alignments.

In practice, segmentation never produces perfect shapes,
therefore robustness against segmentation errors was also
evaluated on simulated data: we randomly added or removed
squares uniformly around the boundary of each slice of the
observations yielding a surface error of 15%, 22% and 30%
of the original object volume (see sample slices in Fig. 4).
Fig. 3 shows the quantitative evaluation of the alignment error
δ on more than 115 objects and the same test for the best
GMMREG set (where r = 2.5). Considering that a δ < 10%
corresponds to a visually good alignment, our approach is
quite robust up to as high as 22% surface error.

A. Medical application

Lung alignment is a crucial task in lung cancer diagno-
sis [15]. During the treatment, changes in the tumor size
are determined by comparing follow-up PET/CT scans which
are taken at regular intervals depending on the treatment and
the size of the tumor. Due to respiratory motion, the lung
is subject to a nonlinear deformation between such follow-
ups, hence it is hard to automatically find correspondences.
A common practice is to determine corresponding regions
by hand, but this makes the procedure time consuming and
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Fig. 3. Robustness test comparison with the best GMMREG set (r = 2.5).
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Fig. 4. Sample surface errors on a slice.

the obtained alignments may not be accurate enough for

measuring changes.
Our algorithm has been successfully applied to align 3D

lung CT scans. The polynomial model proved to be a good ap-
proximation of the underlying physical deformation. Promis-
ing results were obtained on the available 8 image pairs with
a median δ error of 8.41% (the mean and standard deviation
were 7.99% and 3.03%, respectively). Some of these results
are presented in Fig. 5, where we also show the achieved
alignment on grayscale slices of the original lung CT images.
For these slices, the original and transformed images were
combined as an 8× 8 checkerboard pattern.

V. CONCLUSIONS

We have proposed a novel elastic registration method which
works without established correspondences. The basic idea
is to set-up a system of non-linear equations whose solution
directly provides the parameters of the aligning transformation.
Herein, we considered a polynomial deformation model, but
other diffeomorphism can also be used by approximating it
via a Taylor expansion. The computational complexity has
been analyzed for two alternative forms of the equations and
optimal choice between these computational schemes has also
been discussed. The efficiency and robustness of the proposed
approach have been demonstrated on a large synthetic dataset.
Our method compares favorably to two recent 3D matching
algorithms [1], [9]. Finally, the algorithm achieved promising
results in aligning lung CT images.
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