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Abstract. This paper is addressing the problem of realigning broken
objects without correspondences. We consider linear transformations be-
tween the object fragments and present the method through 2D and 3D
affine transformations. The basic idea is to construct and solve a polyno-
mial system of equations which provides the unknown parameters of the
alignment. We have quantitatively evaluated the proposed algorithm on
a large synthetic dataset containing 2D and 3D images. The results show
that the method performs well and robust against segmentation errors.
We also present experiments on 2D real images as well as on volumetric
medical images applied to surgical planning.

1 Introduction

In this paper we address the problem of reassembling an object from its parts.
This is also known as the puzzle problem, which is not only interesting from a
theoretical point of view [1,2], but also arises in many application domains like
archaeology [3] or medical imaging [4] e.g. bone fracture reduction [5,6,7]. The
affine puzzle problem can be formulated as follows: Given a binary image of an
object (the template) and another binary image (the observation) containing the
fragments of the template, we want to establish the geometric correspondence
between these images which reconstructs the complete template object from
its parts. The overall distortion is a global nonlinear transformation with the
following constraint: 1) the object parts are distinct (i.e. either disconnected or
separated by segmentation), 2) all fragments of the template are available, but
3) each of them is subject to a different affine deformation.

A related problem is partial matching of shapes [8,9,10]. Partial matching
addresses a particularly challenging setting of classical shape matching, where
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two shapes are dissimilar in general, but have significant similar parts. In this
context, our problem would require to find a partial matching between the tem-
plate and each fragments of the observation. Current approaches are usually
based on the Laplace-Beltrami framework [11,10], but classical approaches like
the Iterative Closest Point (ICP) [12] algorithm can also be used assuming an
appropriate shape representation [8]. Considering the rather high computational
complexity of these algorithms, this solution is far from optimal for our problem.

Another related problem is the piece-wise approximation of nonlinear deforma-
tions by locally linear transformations. In [13], the distortion is modeled as locally
affine but globally smooth transformation, which accounts for local and global vari-
ations in image intensities. The classical solution [14] comprises identifying point
correspondences based on salient points between the images and then either a time
consuming optimization procedure or the solution of a system of equations pro-
vide the parameters of the unknown deformation. Finding reliable point correspon-
dences between the images is a difficult problem on its own.

Most of the existing solutions to the puzzle problem [1,2,3] consist in matching
fragment-pairs to find neighbors, which are then reassembled by a rigid body
transformation. In [1], Kong and Kimia propose a 2D curve matching technique
based on the geometric features of puzzle pieces. The solution is obtained by a
recursive grouping of triples using a best-first search strategy. The method can
be extended to 3D fragments scanned by a laser range finder, where a pair of
ridges are matched using a generalization of the 2D curve matching approach.
In [3], the rather high computational complexity of curve matching is reduced by
adopting a multiscale technique. Papaioannou et al. address the problem of 3D
object reconstruction using only the surface geometry of fragments, assuming
no information about the final model to be reconstructed [2]. The basic idea of
the method is that the best fit of two 3D fragments is likely to occur at their
relative pose, which minimizes the point-by-point distance between the mutually
visible faces of the fragments. Matched pieces are then glued via a rigid-body
transformation.

Although classical approaches may account for a template object by incorpo-
rating a set of constraints to improve the overall performance, they are primarily
targeted to problems where a template is not available, e.g. archaeology [3]. On
the other hand, there are many applications where a template object is available:
In industrial applications usually 3D models of manufactured parts can be easily
produced. In medical imaging an atlas can be used or, by taking advantage of
the symmetry of the human body, the intact bone can provide a template for
bone fracture reduction, as shown in Section 5.3. Therefore we address this im-
portant setting of the puzzle problem and propose a generic solution which is
then applied to 2D and 3D transformations. The methodology adopted here is
similar in spirit to the affine matching methods of [15] and [16]. However, none
of these works addresses the puzzle problem. [16] assumes that both images con-
tain the same number of shapes and radiometric information is available. Based
on these informations, Hagege and Francos construct a linear system of equa-
tions which provides the parameters of the aligning transformations. Since the
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partitioning of the template is not available, this method cannot be used here.
In [15], Domokos and Kato presented an elegant solution to recover affine de-
formations between 2D shapes. This method is also unable to solve the puzzle
problem because the deformation is nonlinear and there is no direct correspon-
dence between the template and its observed fragments.

In Section 2, a general solution is proposed followed by Section 3 about the
numerical implementation issues and Section 4 presenting the application of our
method for various linear transformations. Finally, Section 5 presents quantita-
tive results on 2D and 3D synthetic datasets as well as on various real images
and Section 6 concludes the paper.

2 Realigning Object Parts

Given an n dimensional template object and an observation containing its affine
deformed fragments, we want to recover the transformations realigning these
shapes into their original position on the template. Let us denote the homoge-
neous point coordinates of the template and observation by x = [x1, . . . , xn, 1]
and y = [y1, . . . , yn, 1] ∈ P

n. Furthermore, let � ∈ N denote the number of frag-
ments on the observation. The transformation aligning the observation with the
template is a non-linear one, composed of � linear transformations

Ai =

⎡
⎢⎢⎢⎣

ai11 ai12 . . . ai1(n+1)

...
. . .

...
ain1 ain2 . . . ain(n+1)

0 0 . . . 1

⎤
⎥⎥⎥⎦ i = 1, . . . � . (1)

Since the observation has disjoint parts, we can assume that points of each
deformed shape are labeled by the function λ′ : P

n → {0, 1, . . . , �}, which assigns
0 to the background. Obviously, there is a corresponding hidden labeling λ :
P

n → {0, 1, . . . , �} which assigns the label i to the template points corresponding
to the ith shape. Our goal is to recover the affine matrices {Ai}�

i=1. The main
challenges are that neither the partitioning (i.e. the hidden labeling λ) of the
template nor correspondences between the shapes are known.

2.1 Solution for One Pair of Shapes

Let us first establish a solution for the ith shape. The template and observation
domains are denoted by Di = {x ∈ P

n|λ(x) = i} and D′
i = {y ∈ P

n|λ′(y) = i},
respectively. Note that D′

i is known but Di is unknown. The points of these
domains are related by the unknown transformation Ai:

x = Aiy. (2)

One way to recover Ai is to establish point correspondences and then set up a
system of equations from Eq. (2). Since Di is unknown, finding correspondences
is practically impossible. Therefore we are interested in a direct method without
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solving the correspondence problem. For that purpose, let us notice that that
the relation in Eq. (2) remains valid when a function ω : P

n → R is acting on
both sides of the equation [15]:

ω(x) = ω(Aiy) . (3)

We then integrate out individual point correspondences [15] yielding
∫

Di

ω(x)dx = |Ai|
∫

D′
i

ω(Aiy)dy, (4)

where the integral transformation x = Aiy, dx = |Ai|dy has been applied,
and |Ai| is the Jacobian determinant. Based on Eq. (4), we can construct as
many equations as needed by making use of a set of linearly independent func-
tions {ωj}m

j=1, m ≥ n(n + 1). The solution of the resulting nonlinear system of
equations provides the parameters of Ai[15].

2.2 Solving for All Shapes Simultaneously

We have established relations between the ith shape-pair, but we know neither
the correspondence between the shapes nor the partitioning Di of the template.
Would these information available, a pairwise alignment could be recovered by
any standard binary registration method. Unfortunately, that would require to
solve a partial matching problem [8] between each observation shape and the
template, which is far from trivial. Therefore we will sum equations for all shape
domains Di and solve the problem simultaneously, estimating all parameters in
one system of equations. Thus Eq. (4) becomes

�∑
i=1

∫

Di

ωj(x)dx =
�∑

i=1

|Ai|
∫

D′
i

ωj(Aiy)dy . (5)

Let D := ∪�
i=1Di, where D = {x ∈ P

n|λ(x) �= 0} is the shape domain cor-
responding to the whole template. Therefore the left hand side of the above
equation can be written as

�∑
i=1

∫

Di

ωj(x)dx =
∫

⋃
�
i=1 Di

ωj(x)dx =
∫

D
ωj(x)dx , (6)

which can be computed directly from the input image without knowing the
partitioning Di. The resulting system of equations has �n(n + 1) unknowns:

∫

D
ωj(x)dx =

�∑
i=1

|Ai|
∫

D′
i

ωj(Aiy)dy, j = 1, . . . , m . (7)

The solution of the system Eq. (7) provides all the unknown parameters of the
overall deformation. Since each ωj provides one equation, we need m ≥ �n(n+1)
linearly independent functions to solve for � linear transformations. In practice,
m > �n(n + 1) yielding an over-determined system for which a least squares
solution is obtained.
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3 Numerical Implementation

Theoretically, any nonlinear function satisfying Eq. (3) could be used to con-
struct the system of equations Eq. (7). In practice, however, the solution
is obtained via iterative least-squares minimization algorithms, like the
Levenberg-Marquardt algorithm [17], requiring a carefully chosen numerical
scheme.

3.1 Normalization

First of all, the coordinates of both images are normalized into the unit hyper-
cube [−0.5, 0.5]n, i.e. ∪�

i=1D′
i �→ [−0.5, 0.5]n and D �→ [−0.5, 0.5]n. This is

achieved by translating the origin into the center of the mass of the template
and observation followed by an appropriate isotropic scaling with a common
factor corresponding to the maximum size of the template and observation. Of
course, the solution of the nonlinear system has to be unnormalized to get the
right transformations between the original shapes. Denoting the normalizing
transformations of the template and observation by Nt, No, respectively and the
solutions by Ãi, the true transformation is thus obtained as Âi = N−1

t ÃiNo for
all i = 1, . . . , �.

Since a least-squares solution involves minimizing the algebraic error of
Eq. (7), we expect an equal contribution from each equation in order to guar-
antee an unbiased error measure. This is achieved by normalizing the range of
each ωj into [−1, 1]. We found experimentally, that the transformations occur-
ring during the least-squares minimization process do not transform the shapes
out of a hyper-sphere with center in the origin and a radius

√
n/2 (i.e. the

circumscribed hyper-sphere of the unit hyper-cube). Thus the normalization
can be done by dividing the integrals in Eq. (7) with an appropriate constant
cj corresponding to the maximal magnitude of the integral over this domain:

cj =
∫

‖x‖≤
√

n
2

|ωj(x)|dx , j = 1, . . . , m. (8)

3.2 Algorithmic Solution and Complexity

In practice, only a limited precision digital image is available, thus the inte-
grals can only be approximated by a discrete sum over the foreground pixels
introducing an inherent, although negligible error into our computation. The
continuous domains D and D′

i are represented as finite sets of foreground pix-
els denoted by D and D′

i. Thus the discrete form of the normalized Eq. (7)
becomes

1
cj

∑
x∈D

ωj(Ntx) =
1
cj

�∑
i=1

|Ai|
∑
y∈D′

i

ωj(NoAiy) , j = 1, . . . , m . (9)
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The system of Eq. (9) is solved by iterative least squares minimization us-
ing the Levenberg-Marquardt algorithm [17], which requires the evaluation of the
equations at every iteration step. Thus the time complexity of the algorithm is
considerably decreased if the sums can be precomputed, hence avoiding scanning
the image pixels at every iteration. Theoretically, an arbitrary set of ω func-
tions could be used, as long as they generate linearly independent equations.
It is shown in [15], however, that choosing a set of polynomial functions will
result in a polynomial system of equations, where these sums become precom-
puted constants. According to these findings the following set of polynomes are
adopted

{ωj : P
n → R}m

j=1 ={x �→ xu1
1 . . . xun

n |uk ∈ N, k = 1, . . . , n, 0 ≤
n∑

k=1

uk ≤ d} , (10)

where d is the maximum degree and the number of the polynomes is given by
m = 1

n!

∏n
i=1(d + i).

The simple pseudo code of the algorithm is shown in Algorithm 1. Since
a set of polynomial functions is applied to generate Eq. (9), the unknowns are
eliminated from the sums [15]. Hence the algorithm has a linear time complexity:
the complexity of constructing the system Eq. (9) is O(|D| +

∑�
i=1 |D′

i|); and
the complexity of the solver itself is thus independent from the size of the input
images.

Algorithm 1. Pseudo-code of the proposed algorithm.
Input : The binary template (D) and � observation shapes (D′

i, i = 1, . . . , �)

Output: � estimated linear transformations Âi

Normalize the input coordinates by an appropriate similarity transformation N1

into [−0.5, 0.5]n such that the center of mass becomes the origin.
Choose a set of ωj : P

n → R (j = 1, . . . , m ≥ �n(n + 1)) polynomial functions.2

Construct the (over-determined) system of equations Eq. (9).3

Find a least-squares solution of the system using a Levenberg-Marquardt4

algorithm. The solver is initialized with the parameters of the identity
transformation.
Unnormalizing the solutions Ãi gives the parameters of the aligning5

transformation as Âi = N−1
t ÃiNo.

4 Affine Transformations

Herein we apply the registration framework to important classes of linear de-
formations: 2D and 3D affine, and 3D rigid body. 2D affine transformations are
often used as a linear approximation of projective distortions. 3D rigid body
transformation is important in many medical applications. In particular, when
bony structures need to be aligned in CT volumes then this transformation
should be considered due to the bio-mechanical properties of bones.
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4.1 2D Affine Transformations

A 2D affine transformation has 6 parameters, hence n = 2 and we have 6�
unknowns. In order to obtain sufficiently many equations by using the set of ω
functions described in Eq. (10), d has to be chosen such that

m =
(d + 1)(d + 2)

2
≥ 6� ⇒ d ≥

⌈√
1 + 48� − 3

2

⌉
, (11)

where 
·� denotes the upper integer parts. Eq. (7) becomes for all j = 1, . . . , m

∫

D
xu1

1 xu2
2 dx =

�∑
i=1

∫

D′
i

|Ai|(ai11y1+ai12y2+ai13)
u1(ai21y1+ai22y2+ai23)

u2dy , (12)

where the Jacobian can be easily computed as |Ai| = ai11ai22 − ai12ai21.

4.2 3D Affine Transformations

The extension of the 2D case to 3D is rather straightforward. Here, the tem-
plate parts undergo different 3D affine transformations, having a total of 12�
unknowns. In this case, d has to be chosen such that

m =
(d + 1)(d + 2)(d + 3)

6
≥ 12� ⇒ d ≥

⌈
c

3
+

1
c
− 2

⌉
, where

c = 3

√
3

(
324� +

√
(324�)2 − 3

)
. (13)

The Jacobian can be computed as in the 2D case.

4.3 3D Rigid-Body Transformations

An important special case of 3D linear deformations is the rigid-body trans-
formation. This kind of transformations have six degree of freedom: α1, α2, α3

are the rotation angles and t1, t2, t3 are the translations along the three coordi-
nate axes. A similar set {ω}m

j=1 can be used as in Eq. (13), but we need fewer
polynomes:

d ≥
⌈

c

3
+

1
c
− 2

⌉
, where c = 3

√
3

(
27 + 162� +

√
(27 + 162�)2 − 3

)
. (14)

Since a rigid-body transformation does not change the size of the objects, the
Jacobian determinant equals to 1, hence it is omitted from the equations.
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5 Experimental Results

The proposed method has been evaluated on 2D and 3D synthetic datasets.
In the case of 2D transformations, the dataset consisted of 10 template objects.
Synthetic observations were generated by first cutting each object into 2 parts in
4 different ways, resulting in 4 images for each template. Then 600 observations
of size 700×700 were generated by applying randomly composed affine transfor-
mations to each of these images with the following parameter ranges: rotation
angles of [−π/4; π/4] and along both axes scaling factors from [0.75; 1.25], skew-
ing from [−0.1; 0.1], and translations of [−25; 25]. In the 3D case, 10 template
volumes were randomly cut into 2 parts by a plane, such that the smaller part
is at least 20% of the original volume. By cutting each volume in five different
ways, 50 volume images are obtained. Then random 3D affine transformations
with similar parameters as in the 2D case (the only difference is that transla-
tions were chosen from [-10;10]) have been used to generate a total of 200 3D
observations of size 250 × 250 × 250.

template observation realigned observation realigned

Fig. 1. Sample results on 2D synthetic images

For the evaluation of the results, we defined two kind of error measures: The
first one (denoted by ε) measures the average distance between the true Ai and
the estimated Âi transformation for all object. The second one is the absolute
difference (denoted by δ) between the template and the aligned shapes:

ε =
∑

p∈D′
i,1≤i≤�

‖(Ai − Âi)p‖
|D′| , and δ =

|D̂  D|
|D̂| + |D| · 100%, (15)

where  means the symmetric difference, while D′ = ∪�
i=1D

′
i and D̂ = ∪�

i=1D̂i

denote the set of pixels of the observation and aligned shape respectively. Intu-
itively, ε shows the average transformation error per pixel. Note that ε can only
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template observation realigned

Fig. 2. Sample results on 3D synthetic images

be used when the true transformation is also known, while δ can always be com-
puted. On the other hand, ε gives a better characterization of the transformation
error as it directly evaluates the mistransformation. As a subjective evaluation
measure, we found experimentally that a δ ≤ 5% in 2D and a δ ≤ 10% in 3D
corresponds to a visually good alignment.

The proposed method was implemented in Matlab and ran under Linux with
3GHz CPU and 3GB memory. The typical runtime was under 3 seconds for 2D
and 10 seconds for 3D shapes. Some results are shown in Fig. 1 and Fig. 2.
Quantitative results in Table 1 clearly show that the proposed method provides
almost perfect alignments in both 2D and 3D.

5.1 Robustness

In practice, segmentation never produces perfect shapes. Therefore, besides us-
ing various kind of real images inherently subject to such errors, we have also
evaluated the robustness of the proposed approach against different type of seg-
mentation errors. In the first testcase, 5%, . . . , 20% of the foreground pixels has
been removed from the observation before registration. In the second case, we
occluded continuous square-shaped regions of size equal to 1%, . . . , 10% of the
shape. Finally, we randomly added or removed squares uniformly around the
boundary of a total size 1%, . . . , 10% of the shape. Note that we do not include
cases where erroneous foreground regions appear as disconnected regions, be-
cause such false regions can be efficiently removed by appropriate morphological
filtering. We therefore concentrate on cases where segmentation errors cannot be
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(a) missing pixels (b) occlusion (c) boundary error

Fig. 3. Sample observations with various degradations

Table 1. Median of error measures achieved by the proposed method on the 2D and
3D synthetic datasets. The first two rows show the results without degradation while
the rest contains the error values vs. various type of segmentation errors as shown in
Fig. 3.

Without degradation ε (pixel) δ (%)

2D affine transformations 0.11 0.13
3D affine transformations 0.7 3.09

(a) missing pixels 1% 5% 10% 20% 1% 5% 10% 20%

2D affine transformations 6.57 21.1 32.83 56.26 2.09 6.24 8.39 12.62
3D affine transformations 1.22 4.65 9.71 19.02 3.99 8.67 15.8 23.54

(b) size of occlusion 1% 2.5% 5% 10% 1% 2.5% 5% 10%

2D affine transformations 9.91 20.45 35.04 58.68 3.54 6.35 9.51 13.75
3D affine transformations 3.27 7.7 14.73 22.74 8.07 13.08 18.47 26.13

(c) size of boundary error 1% 2.5% 5% 10% 1% 2.5% 5% 10%

2D affine transformations 1.9 3.91 6.65 12.23 0.59 1 1.73 3.08
3D affine transformations 0.99 1.44 2.33 4.03 3.23 3.65 4.44 5.8

filtered out. See samples of these errors in Fig. 3. Table 1 shows that our method
is quite robust whenever errors are uniformly distributed over the whole shape
(first and third testcases). However, it becomes less stable in case of larger local-
ized errors, like occlusion and disocclusion. This is a usual behavior of area-based
methods because they are relying on quantities obtained by integrating over the
object area. Thus large missing parts would drastically change these quantities
resulting in false alignments. Nevertheless, in many application areas one can
take images under controlled conditions which guarantees that observations are
not occluded (e.g. medical imaging, industrial inspection).

5.2 Solving the Tangram Puzzle

Tangram is a dissection puzzle consisting of seven flat tiles (called tans), which
are put together to form various shapes. The objective is to form a specific shape
given only by its silhouette. Fig. 4 shows some examples of these shapes and the
solutions found by our method.
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Fig. 4. Solutions of the Tangram puzzle. Top: Template images with overlayed con-
tours of aligned fragments. Bottom: Observations.

The images were taken with a digital camera, then they were thresholded
and the resulting 2D shapes were realigned according to the template. The first
three templates of Fig. 4 are more challenging as they are scanned versions of
the printed shapes found in the Tangram manual, which are only approximate
silhouettes of the final tile configurations. We have used the affine model as an
approximation of the actual plane projective transformation acting between the
shapes.

It is well known that the Levenberg-Marquardt algorithm finds a local min-
ima close to the initialization. Finding a good initial configuration is largely
application-dependent. For example, on these images a global optimization pro-
cedure (e.g. Spectral Gradient Method [18]) provided good initialization, from
which Levenberg-Marquardt gives a better solution than starting from the iden-
tity transform.

Finally, we note that some tiles are slightly overlapping in Fig. 4. This is
because overlaps are invisible for the system of equations. Nevertheless, overlaps
could be prevented by checking the transformed fragments at every iterations,
but this is a rather time consuming procedure.

5.3 Realigning Bone Fractures

Complex bone fracture reduction frequently requires surgical care, especially
when angulation or displacement of bone fragments are large. In such situations,
computer aided surgical planning [5] is done before the actual surgery takes
place, which allows to gather more information about the dislocation of the
fragments and to arrange and analyze the surgical implants to be inserted. A
crucial part of such a system is the relocation of bone fragments to their original
anatomic position. Since the input data is typically a volume CT image, this
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Template obtained by mirroring intact bones Observation

Realigned bone fragments

Fig. 5. Bone fracture reduction (CPU time was 15 sec. for these 1 megavoxel CT
volumes)

repositioning has to be performed in 3D space which requires an expensive special
3D haptic device and quite a lot of manual work. Therefore automatic bone
fracture reduction can save considerable time, providing experts with a rough
alignment which can be manually fine-tuned according to anatomic requirements.

Since surgical planning involves the biomechanical analysis of the bone with
implants, only rigid-body transformations are allowed. In [5], a classical ICP al-
gorithm is used to realign fractures. Winkelbach et al. [6] proposed an approach
for estimating the relative transformations between fragments of a broken cylin-
drical structure by using well known surface registration techniques, like 2D
depth correlation and the ICP algorithm. In [7], registration is solved by using
quadrature filter phase difference to estimate local displacements.

Herein, we apply our puzzle framework to reduce pelvic fractures using 3D
rigid-body transformations. In cases of single side fractures, the template is



Affine Puzzle: Realigning Deformed Object Fragments 789

simply obtained by mirroring intact bones of the patient. Fig. 5 shows a typ-
ical result for a pelvic fracture with three fragments. The main challenges are
segmentation errors and, due to the variability of the human body, a slightly
different template. In spite of these difficulties, the alignment of larger parts is
quite accurate, only the small fragment has a noticeable alignment error. Since
the error caused by a misplaced small piece is relatively low, the solver may not
find the best transformation. If we could normalize the terms of Eq. (9) corre-
sponding to each fragment, then the algebraic error would be better balanced
and a precise alignment could be found. Unfortunately, this is impossible as we
should know the partitioning of the template to compute proper normalizing
constants. Since human verification and correction of the result is needed any-
way in a real surgical planning system, these small errors are not critical and
can be easily corrected.

6 Conclusion

A novel framework to solve the affine puzzle problem has been proposed and
applied to 2D and 3D affine transformations. As opposed to classical solutions
based on landmark extraction and correspondences, the proposed solution finds
the aligning transformations without any additional information. Basically, the
method consists in constructing a polynomial system of equations whose solu-
tion directly provides the unknown parameters. Obviously, the number of object
fragments and strength of the deformation may influence the quality of the align-
ment: The more parts we have the more equations are required, which affects
numerical stability. Furthermore, more parts allow more affine transformations
yielding a stronger deformation. A completely random fragment-configuration
corresponds to a complex deformation, for which a stable solution is difficult to
achieve. On the other hand, when pieces are in relative order then a rather accu-
rate solution is obtained. Note, that for the presented medical application, this
is a realistic assumption due to physical constraints. Quantitative evaluations on
both 2D and 3D synthetic datasets demonstrate the performance and robust-
ness of the method and results obtained on real images confirm its relevance in
various application domains.
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