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Abstract

1)
2)
3)
4)
5)

6)

In this short thesis, we summarize the main results of our work related to Markovian image modeling:

We have proposed a novel hierarchical MRF model and applied it to graylevel image segmentation [1]-[6].
We have proposed a new annealing schedule for Simulated Annealing: Multi-temperature annealing allows
to assign different temperatures to different cliques during the minimization of the energy of a MRF model.
The convergence of the new algorithm has also been proved toward a global optimum [6], [7].

We have solved the estimation of the hierarchical model parameters and applied it to remote sensing image
segmentation [8]-[11].

We have proposed a monogrid MRF model which is able to combine color and texture features in order to
improve the quality of unsupervised segmentations [12], [13].

We have proposed a novel RIMCMC sampling method which is able to identify multi-dimensional Gaussian
mixtures. This technique has been applied to fully automatic color image segmentation [14], [15].

A new multilayer MRF model has been proposed which is able to segment an image based on multiple cues
(such as color, texture, or motion) [16]-[21].

Our other contributions not discussed in this thesis are as follows:
« We have developed a monogrid MRF model for graylevel image segmentation and applied the model for

remote sensing imaging. For this model, we have proposed a novel pseudo-stochastic relaxation algorithm,
called Modified Metropolis Dynamics (MMD) [22]—[24].

« We have studied different optimization techniques in the context of MRF energy minimization [22], [23], [25],

[26]. As a result, we also developed a demo program implementing most of these algorithms. The program
is freely downloadable from our website [27].

In collaboration with SZTAKI, our monogrid MRF model and MMD algorithm [22]-[24] has been successfully
adopted for the CNN (Cellular Neural Network) architecture [28], [29].
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« We have developed a monogrid MRF model for color image segmentation [30] as well as for motion-based
video object segmentation [31].

« We have successfully applied a non-photorealistic rendering technique, called Stochastic Paintbrush Transfor-
mation, to the problem of content based image retrieval [32], [33].

I. INTRODUCTION

HE primary goal of any segmentation algorithm is to divide the donfaiof the input image into

the disjoint partsR; such that they belong to distinct objects in the scene. The solution of this
problem sometimes requires high level knowledge about the shape and appearance of the objects unc
investigation [34]—-[37]. In many applications, however, such information is not available or impractical
to use. Hence low-level features of the surface patches are used for the segmentation process [38
[40]. Herein, we are interested in the latter approach. In either case, we have to summarize all relevar
information in a model which is then adjusted to fit the image data.

One broadly used class of models is the so catl@adoon modelwhich has been extensively studied
from both probabilistic [41] and variational [42], [43] viewpoints. The model assumes that the real world
scene consists of a set of regions whose observed low-level features changes slowly, but across tl
boundary between them, these features change abruptly. What we want to infarte@ w consisting
of a simplified, abstract version of the input imageregionsR; has a constant value (calledabel in
our context) and the discontinuities between them form a clirvéhe contour. The paifw, I') specifies
a segmentationRegion based methods are mainly focusing.owhile edge based methods are trying to
determinel’ directly.

Taking the probabilistic approach, one usually wants to come up wiphobability measureon the
set() of all possible segmentations @f and then select the one with the highest probability. Note that
Q is finite, although huge. A widely accepted standard, also motivated by the human visual system [44]
[45], is to construct this probability measure in a Bayesian framework [46]-[48]: We shall assume that we
have a set of observed] and hidden X) random variables. In our context, any observed valueY
represents the low-level features used for partitioning the image, and the hiddenzentiXy represents
the segmentation itself. First, we have to quantify how well any occurrencefits y. This is expressed
by the probability distributionP(y|x) - theimaging modelSecond, we define a set of properties that any
segmentationr must posses regardless the image data. These are describe@d: hythe prior, which
tells us how well any occurrence satisfies these properties. Factoring these distributions and applying
the Bayes theorem gives us thesteriordistribution P(x|y) o< P(y|x)P(x). Note that the constant factor
1/P(y) has been dropped as we are only interestetlwhich maximizeghe posteriorj.e. the Maximum
A Posteriori (MAP) estimate of the hidden field.

The models of the above distributions depend also on certain parameters that we dénoBipgrvised
segmentation assumes that these parameters are either known or a set of joint realizations of the hidd
field X and observationy” (called atraining se) is available [41], [49]. This is known in statistics
as thecomplete datgproblem which is relatively easy to solve using Maximum Likelihood (ML) [46].
Although the prior knowledge of the parameters is a strong assumption, supervised methods are still usef
alternatives when working in a controlled environment. Many industrial applications, like quality inspection
of agricultural products [50], fall into this category. In the unsupervised case, however, we know neither
© nor X. This is called thencomplete datgroblem where botl® and X has to be inferred from the
only observable entity”. Hence our MAP estimation problem becom@s®) = arg max, ¢ P(z, O|y).
Expectation MaximizatioEM) [51] and its variants (Stochastic EM [52], [53], Gibbsian EM [54]), as
well as Iterated Conditional ExpectatiofiICE) [9], [55] are widely used to solve such problems. It is
important to note, however, that these methods calculate a local maximum [46].

Due to the difficulty of estimating the number of pixel classes (or clusters), unsupervised algorithms
often suppose that this parameterkisown a priori [40], [53], [56]-[58]. When the number of pixel
classes is also being estimated, the unsupervised segmentation problem may be trestedehsaection
problem over a combined model space.
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Fig. 1. First order neighborhood system with corresponding cliques.

A. Markovian Approach

In real images regions are usually homogeneous, neighboring pixels have similar properties. Marko
Random Fields (MRF) are often used to capture such contextual constraints in a probabilistic framework
MRFs are well studied with a strong theoretical background hence providing a tool for rigorous and
concise image modeling. Furthermore, they allow Markov Chain Monte Carlo (MCMC) sampling of the
(hidden) underlying structure which greatly simplifies inference and parameter estimation.

Formally, a simple MRF image model is constructed as follows: we are given a set of sites (usually
corresponding to pixelsy = {si,s2,...,sy}. For each sites, the region-type (or class) that the site
belongs to is specified by a class lahel, which is modeled as a discrete random variable taking values
in A = {1,2,...,L}. The set of these labels = {w;,s € S} is a random field, called th&abel
process Furthermore, the observed image featureg.(@raylevel, color, texture,...) are supposed to be
a realizationF = {f;|s € S} from another random field, which is a function of the label process
Basically, theimage processF represents the manifestation of the underlying label process. Thus, the
overall segmentation model is composed of the hidden label pracessl the observable noisy image
processF. If each pixel class is represented by a different model then the observed image may be viewe
as a sample from a realization of the underlying label field.

(w, F) is then regarded as a MRF with respect to an appropriate neighborhood-systefi@, }.cs.

The simplest example of such a neighborhood can be seen in Fig. 1. According to the Hammersley
Clifford theorem [59],(w, ) must then follow a Gibbs distribution with an energy functidiw, ) =

> cec Volw, F), whereC denotes a clique off, andC is the set of all cliques. The restriction ofto

the sites of a given cliqué’ is denoted byvc. The potential functioV(w¢) is defined for every”' € C

and everyw € 1, whereQ) = A" is the set of all possiblé"¥ discrete labelings. The advantage of such

a decomposition is that these potentials are a function of the local configuration of the field making it
possible to define the Gibbs distribution directly in terms of local interactions.

The MAP estimatey of the label field is then obtained by minimizing the non-convex energy function,
which can be solved by stochastic or deterministic relaxation [22], [23], [25], [26].

Il. HIERARCHICAL MRF MODELS AND MULTI-TEMPERATUREANNEALING

It is well known that multigrid methods can improve significantly the convergence rate and the quality
of the final results of iterative relaxation techniques. Herein, we propose a new hierarchical model [1]-
[6], which consists of a label pyramid and a single observation field. The parameters of the coarse gric
can be derived by simple computation from the finest grid. In addition, we have introduced a new local
interaction between two neighboring grids which allows to propagate information more efficiently giving
estimates closer to the global optimum for deterministic as well as for stochastic relaxation schemes. Fc
the hierarchical model, we also propose a novel Multi-Temperature Annealing (MTA) algorithm [6]-[8].
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Fig. 3. The neighborhood systeghand the cliques
C1, Co andcg.

Fig. 2. The isomorphisn®’ betweens’ and S°.

The convergence towards the global optimum is proven by the generalization of the annealing theorer
of Geman and Geman [41].

A. Multiscale and Hierarchical Model

In the following, we will focus on a MRF with a first order neighborhood (see Fig. 1) whose energy
function is given by:
Ulw, F) =U(w, F) 4+ Us(w) (1)

where U; (resp.U;) denotes the energy of the first order (resp. second order) cliques. To generate a
multigrid MRF model, let us divide the initial grid into blocks afx n, typically 16 @ x 4) neighboring
pixels. We consider that the same label is assigned to each pixels of a given block. These configuratior
will describe the MRF at scale 1. Scalas defined similarly by considering labels which are constant
over blocks of sizen’ x n'.

Let B' = {b},...,bYy,} (N = N/n*) denote the set of blocks arfg} the configuration-space at scale
Qg C-- C Q= Q). The label associated with blodk is denoted bywi. We can define the
same neighborhood structure & as onsS:

b, =0bjor ' @)
ACecC.Cnb, AP andCNb; £ 0
Let us partition the original sef into two disjoint subsetg’; (cliques which are included ih}) and

C;.,(cliques which sit astride two neighboring blocks,, b;}). It is obvious from this partition that our
energy function can be decomposed in the following way:

b, and b} are neighbors—>- {

Ui(w, F) =Y Vilws, fo) = D> Vilws. f) = Y Vi (W), F) (3)
s€S bi €B? seb bieB
VE (Wi, F)
Uo(w) =D Valwe) = > D Valw)+ >, > Valw)
ceC b};EBi CecliC {bg,b; }neighbors Ce(,’li’l
— —
Vi (i) VB (whwi)

= Y VW + ) VB 4)

bt eB {bk,b; }neighbors
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Now, we define a pyramid (see Figure 2) where levebntains the coarse grisf’ which is isomorphic to
the scale3’. The coarse grid has a reduced configuration sgce AY:. The isomorphisn®’ : S¢ — B
is just a projection of the coarse label field to the finest gifd= S. The energy function on the grid
S (i=0,...,M) is derived from Eq. (3)—(4):

U, F) = Ui, F) + Us(w') = U (®"(wy), )+Uz(<1>z(wz))

whereUi(w', F) = Z(Vli(w,i,f)JrVk (W) =) Vi(wi, F (5)
keS? keS?
andU(w') = Z ) (wh w)) Z Vs (we) (6)
{k,l}neighbors cieCt

where(C" is a second order clique corresponding to the definition in Eq. (2)Carsl the set of cliques
on grid . B

Let S = {51,...,55} = UY,S" (N = 3V, N) denote the sites of the pyramid. We define the
following function ¥ between two neighboring levels, which assigns to a site its descendants (that is the
sites of the corresponding block):

U:S — 87 UE)={r|lsecS =rcSandbt Cbi} (7)

It is clear that¥—! will assign to a site its ancestor (that is the site at the upper level corresponding to
the block of this site). Now we can define on these sites the following neighborhood-system (see Fig. 3)

- U vl @uee) | ses) ®

whereG’ is the neighborhood structure of tié level. We will consider only the first and second order
cliques, potentials for other cliques are supposed td.beet C denote the set of these cliques which
can be partitioned into three disjoint subsétsC,, C; corresponding to first order cliques, second order
cliques which are on the same level and second order cliques which sit astride two neighboring level
(see Figure 3). Lef) denote the configuration-space of the pyramid:

Q=2"xZ'x---xZM={o|w=("w,. .. "))} 9)

The model on the pyramid defines a MRF, whose energy function is given by:

Uw,F) = U(@,F)+ Uy(®) (10)
D(@,F) = > Vi@ F)=>_ > ViWwsF)=> Ui F)
5€S i=0 sieSi i=0
(@) = > Val@e)+ > Va(@c) Z Us(w') + > Va(@e) =Y > Viwi) + > Va(@e)
CceCy CeCs CceCs =0 CeCi CceCs

The above energy of the hierarchical model can be minimized using classical combinatorial optimizatior
algorithms [22], [23], [25], [26], [61]. The only difference is that we work on a pyramid here and not on a
rectangular lattice as in the case of classical monogrid models. We have applied the model for supervise
image segmentation and compared the segmentation results of the classical monogrid [22]-[24], [26
multiscale and hierarchical models on synthetic (Fig. 4) and real (Fig. 5) images. For both images, the
label pyramid has been generated witlevels. The detailed equations can be found in [1], [6]. All tests
have been conducted on a Connection Machine CM200 8Jthprocessors. In terms of segmentation
quality, the hierarchical model clearly outperforms the other methods. Further results can be found in [1]

[6].
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| model | num. of iter.| CPU time| timefiter.| error rate] 3| ~ |
monogrid 89| 10.39 sec| 0.117 sec, 2576 1.0| —
multiscale 146 | 14.7 sec, 0.1 sec. 2118 1.0| —
hierarchical 42 | 460.9 sec| 10.97 sec. 1231| 1.0| 0.2

Noisy image 6N R = 10dB) Monogrid Multiscale Hierarchical

Fig. 4. Results obtained by the Gibbs Sampler [41] on a noisy synthetic image<(128, SN R = 10dB) with 16 classes [1]-[6]. In the
table, we show for each model the number of iterations, the CPU time, the error rate of the segmentatiemgmber of misclassified
pixels) and the inter- and intra-clique potentiglsand .

Original image Monogrid Multiscale Hierarchical

Fig. 5. Results obtained by ICM [60] on @56 x 256) SPOT image witht classes [1]-[6].

B. Multi-Temperature Annealing

In the following we will focus on Simulated Annealing (SA) [41], where the temperature-change is
controlled by the so-callednnealing scheduleThere are two well known schemdsymogeneousnd
inhomogeneouannealing [61], which works also on the hierarchical model. Herein, we propose a new
annealing schedule, callédulti-Temperature AnnealinVTA), which is the most efficient with the new
model. The basic idea is to associate higher temperatures to coarser levels in the pyramid which mak
the algorithm less sensitive to local minima. However at a finer resolution, the relaxation is performed ai
a lower temperature (at the bottom level, it is closé)}oFor the cliques siting between two levels, we
use either the temperature of the finer level or the one of the coarser level (but once chosen, we alway
keep the same choice throughout the algorithm). More generally, we have the following problem:

Let S = {s1,...,sny} be a set of sitesy some neighborhood system with cliguésandw a MRF
over these sites with energy functiéh 7, denotes the uniform distribution on the set of globally optimal
configurations, and defin€**? = max,, U(w), U™ = min, U(w) and A = U — U™/, Furthermore,
let us suppose that the sites are visited for updating in the dmdem,,...} € S. We now define an
annealing scheme where the temperatlirdepends on the iteratioh and on the cliqueg’. For that
purpose, lety denotes the following operation:

exp(=U(w) @ T(k,C))

P(X =w) =7rgc)(w) = 7 (11)
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¥ _ Vo(w)
whereU(w) @ T(k, C) CZGCTU‘%O) : (12)

As usual with SA [41], [61], the transition from one configuration to another is governed by the energy
change between the two states. Assumifge (2,,; is a globally optimal configurationl/ (w') — U™/
equals ta) (i.e. there is no more energy change, the system is frozen). In the case of a classical annealinc
dividing by a constant temperature does not change this relation (obvisisly/ (w') — U™ /T, is still
0). But it is not necessarily true that/(w') — U™) @ T'(k,C) is also0! Because choosing sufficiently
small temperatures for the cliques whesg is locally not optimal {.e. strengthening the non-optimal
cliques) and choosing sufficiently high temperatures for the cliques whbjgres locally optimal (.e.
weakening the optimal cliques), we obtditi(w') — U™/) @ T(k,C) > 0, meaning that.’ is no longer
globally optimal (.e. in such cases, SA may not be able to reach a global optimum).

Thus, we have to impose further conditions on the temperature to guarantee the convergence towa
global optimum. First, let us examine the decomposition over the cliquégwf — U(n) for arbitraryw

andn, w # n:
Uw)=U(n) = (Ve(w) = Ve(n)). (13)
ceC
Indeed, there may be negative and positive members in the decomposition. According to this fact, we
have the following subsums:

> (Velw) = Veln) = > (Ve(w) = Ve(n)) + > (Ve(w) = Ve(n)). (14)

cec CeC:(Vo(w)—Ve(n)<0 CeC:(Ve (w)~Ve ()20

J/ J/

g v~

7 (wm) EF (w.m)
Furthermore, let us defing} as:
Y= min XF(,W"). (15)

w' € Qsup

W' € Qopt
Then the following theorem gives an annealing schedule, wtierdemperature is a function éf and
C eC [6]

Theorem 1 (Multi-Temperature Annealingkssume that there exists an integer> N such that for
everyk =0,1,2,..., 8 C{ngy1, k12, .., nktn}. FOrallC € C, let T'(k,C) be any decreasing sequence
of temperatures it for which

1) limy oo T(k,C) = 0.

Let us denote respectively /"’ andT;*” the maximum and minimum of the temperature function
atk (VC € C: T < T(k,C) < T™).

2) For allk > k, for some integek, > 2: T,/ > N¥%/In(k).

3) If ¥ (w,w’) # 0 for somew € Q\ Q,,, W € Q,, then a further condition must be imposed:
sup _qinf i
For all k: TkT—nfk < R with
k

U(w) — U"

R = i —_— 16
e TS @] (16)
w’ S ant
Y7 (w,w’) #0
Then for any starting configuration e € and for everyw € Q:
lim P(X(k) =w | X(0) =n) = m(w). (17)

k—oo

The complete proof of this theorem can be found in [3], [6].
Remarks:
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Fig. 6. Energy decrease and segmentation results of the Gibbs sampler on a synthetic image with the inhomogeneous and MTA schedules.
both cases, the parameters were strictly the same, the only difference is the applied schedule. We also show the global energy plot (comput
at a fixed temperature on the finest level) versus the number of iterations. Note that both schedules reach practically the same minimul
(53415.4 for the inhomogeneous and 53421.4 for the MTA), however the inhomogeneous schedule 28guiezations {96.8 sec. CPU

time) while the MTA schedule requires only0 iterations 840.6 sec. CPU time) for the convergence [3], [6], [7].

1) In practice, we cannot determidfe@and X%, as we cannot comput& neither.

2) ConsideringZ} in condition 2, we have the same problem as in the case of a classical annealing.
The only difference is that in a classical annealing, we havimstead of: . Consequently, the
same solutions may be used: an exponential schedule with a sufficiently high initial temperature.

3) The factorR is more interesting. We propose herein two possibilities which can be used for practical
implementations of the method: Either we choose a sufficiently small intéfy&l, 7:*7] and
suppose that it satisfies the condition 3 (we have used this technique in the simulations), or we us
a more strict but easily verifiable condition instead of condition 3, namely:

Sup inf
im L — T

Jim = 0. (18)

4) What happens iE~(w,«’) is zero for allo andw’ in condition 3 and thus is not defined? This is
the best case because it means thaglalally optimal configurations are aldocally optimal. That
is we have no restriction on the inter\,{ﬁl,z”f ,T.""], thus anylocal temperature schedule satisfying
conditions 1-2 is good.

In Fig. 6, we compare the inhomogeneous and MTA schedules on a noisy synthetic image using th
Gibbs sampler. Since each site interacts with its ancestor and its descendants, the hierarchical moc
usually requires more computing time than a monogrid model. However, as we have shown in [3], [6],
[7], experiments prove that this model with the MTA schedule yields faster convergence (with respect ta
the number of iterations) for the stochastic relaxation algorithms and gives estimates which are closer t
the global optimum. Other tests can be found in [3], [6], [7].

[11. PARAMETER ESTIMATION

In real life applications, the model parameters are usually unknown, one has to estimate [62] them fron
the observable image. Here we develop an algorithm for hierarchical Markovian models [8]-[11]. Our
approach is similar in spirit to Iterative Conditional Estimation [53], [63] as well as to the Estimation-
Maximization algorithm: we recursively look at the Maximum a Posteriori (MAP) estimate of the label
field given the estimated parameters then we look at the Maximum Likelihood (ML) estimate of the
parameters given a tentative labeling obtained in the previous step. The only parameter supposed to |
known is the number of labels, all the other parameters are estimated.
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When both the model parametggsand w are unknown, the estimation problem becomes [11], [40],
[64] R
(0,0) = arg max P(w,F | ©). (19)

The pair (@, (:)) is the global maximum of the joint probability (w, F | ©). If we regard© as a random

variable, the above maximization is an ordinary MAP estimation in the following way [64]: Let us suppose,

that © is restricted to a finite volume domailg and suppose thab is uniform onDg (that is P(O) is

constant). Then, we get [11], [64]:

PTIOPO) _ Pl f 0)
P(F) fD veo Plw, F | ©)dO

= argm%xP(w,}— | ©). (21)

(20)

argmaéxP(w,®|.7:) = argmax

However, this maximization is very difficult, having no direct solution. Even Simulated Annealing (SA) is
not implementable because the local characteristics with respect to the paratesersot be computed
from P(w, F | ©). One possible solution is to adopt the following criterion instead [11], [40], [64]:

» = argmaxP(w,F|0) (22)
= argmgxP(@,f|@) (23)

@

Clearly, Eq. (22) is equivalent to Eq. (19) for = © and Eqg. (23) is equivalent to Eq. (19) with= .
Furthermore, Eq. (22) is equivalent to the MAP estimatesoh the case of known parameters:

arg max P(w, F | (:)) — argmax P(w | F,0)P(F | ©) = argmax P(w | F, (:))

Hence in the following we will concentrate on Eq. (23) which gives the ML estimate of the parameters.
Considering the hierarchical MRF segmentation model (see Fig. 3), we have the following logarithmic
likelihood function [8]—-[11]:

zzz(mfmﬂf%)ﬁZanvzmwm 5.0) (@)

i=0 sicSi sebi, =0 ciec Ccels
S Ny

J/

'

Nif (@) Nif ()

whereq' is the number of cliques between two neighboring blocks at $6al&/* (%) denotes the number
of inhomogeneous cliques siting at the same scale /Eitd) denotes the number of inhomogeneous
cligues siting astride two neighboring levels in the pyramid. Considering the first term, we get

Zzz(_mrmi “ws) Zzzz@nr@) 28 e

i=0 s7€S7 seb, A€M i=0 sieSt seb’,
S

where S} is the set of sites at level where&,: = ). Derivating with respect tq:,, andc,, we get a
closed form solution for the ML estimates of the Gaussian parameters:

VA A: A = ) O'i by 26
R D D ID IS EEt T 30 3D SURVNUIN

1=0 sieSt seb; 1=0 sieSt seb;

Notice that a grey-level valug, may be considered several times. More precisglyis consideredn-
times in the above sum for a givenif there arem scales wher& assigns the label to the sites. m
can also be seen as a weight. Obviously, the iadnas been labeled by at different levels, the more is
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probable thats belongs to class and hence its grey-level valug characterizes better the classThe
derivates of the logarithmic likelihood function with respecti@nd~ are given by:

55 (CON"@) = W(Z(8,2))) = —N"@) - 2L (Z(3,7) @)
5 (AN"@) ~ZB7) = ~N"@) - 5 (Z(5) 28)

From which, we get
Ni@) — Zeen V@) exp(—ANT () — /N (w) 29)
> weq eXp(=AN"(w) — yN"(w))
Ny = e NPV — V) (30)
> weq XP(=FN"(w) — YN (w))
The solution of the above equations can be approximated using the following algorithm.
Algorithm 1 (Hyperparameter Estimation):

@ Setk=0and |n|t|aI|ze60 andq". Furthermore, letV"(5) denote the number of inhomogeneous cliques

at the same scale and?*() denotes the number of inhomogeneous cliques between levels.

(@ Using SA at a fixed temperatufg, generate a new labeling sampling from

- .
eXp <_% 21],\10 Z{S,T}Eci 5(0}57 w?")) + eXp <_PYT Z{s,r}ec_é(w87 w?"))
Z2(5,7%) Z(5".3") |
Compute the number of inhomogeneous cliqd&é(n) and N (n) in 1.
@ If N (n) =~ N"(@) and N"(n) =~ N**(&) then stop, elsé& = k+1. If N"'(n) < N**(&) then decrease
gr,if N*(n) > N™(&) then increased®. 3" is obtained in the same way. Continue S@pwith

This algorithm completes the computation of the ML estimate of the parametersigilére unsupervised
segmentation is then carried out usiAgaptive Simulated Annealing1], [64], which is an iterative
algorithm generating tentative labelings based on current parameter estimatssi\{ing Eq. (22)) then
updating the parameter values to their ML estimate based on the current labelisglying Eq. (23) by
making use of Eq. (26) and Algorithm 1). In fact, it is a classical Simulated Annealing with an additional
step to reestimate model parameters during segmentation. The convergence of ASA has been prov
in [40].

The algorithm has been tested on several synthetic and real images [9]-[11]. In Fig. 7, we show ont
of these results. In summary, the presented unsupervised algorithm provide results comparable to tho
obtained by supervised segmentations, but of course at the price of higher computing time.

PX =w) = (31)

IV. UNSUPERVISEDSEGMENTATION OF COLOR TEXTURED IMAGES

The proposed segmentation model [12], [13] consists of a monogrid MRF defined over a neares
neighborhood system (see Fig. 1) with pixel classes represented by multivariate Gaussian distribution:
This kind of modelization corresponds well to our features: Texture feature images (extracted by Gabo
filters) are constructed in such a way that similar textures map to similar intensities. Hence pixels with
a given texture will be assigned a well determined value with some variance. Furthermore, pixels with
similar color map to their average color. Putting these feature distributions into one multivariate Normal
mixture, the modes will correspond to clusters of pixels which are homogeneous in both color and texture
properties. Therefore regions will be formed where both features are homogeneous while boundaries wi
be present where there is a discontinuity in either color or texture. Applying these idessageeprocess
F can be formalized as followsP(f, | w,) follows a Normal distributionV (4, 32), each pixel class
Ae A={1,2,..., L} isrepresented by its mean vecjdy and covariance matriX,. The whole posterior
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Unsupervised
Parameter| Initial | Final | Supervised
Lo 83.5| 84.3 85.48
o2 256.0| 483.9 446.60
- 11 100.0| 115.5 115.60
SNR = 5dB Histogram o3 169.0| 444.6 533.97
_ _ i 152.5| 146.7 146.11
o3 676.0| 502.1 540.32
13 181.5| 177.9 178.01
1 ﬂ o3 100.0| 500.0 504.34
1G] 0.7 1.0 0.7
L L v 0.1 0.1 0.1

Supervised (0.6% error) Unsupervised (0.68% error)

Fig. 7. Supervised and unsupervised segmentation results and misclassification rate with the Gibbs Sampler. We also compare the parame
obtained by the unsupervised algorithm to the ones used for the supervised segmentation [8]-[11].

can now be expressed as a first order MRF by including the contribution of the likelihood term via the
singletons i(e. pixel sitess € S). Indeed, the singleton energies directly reflect the probabilistic modeling

of labels without context, while doubleton clique potentials express relationship between neighboring pixe
labels. Thus the energy function of the so defined MRF image segmentation model has the following form

3 (m(ﬂ%)n S+ S (F - i) (- ﬁu,s)T) 5 Y dlnw) (32)

seS {s,r}eC

(\]

where 5 > 0 is a weighting parameter controlling the importance of the prior.GAmcreases, the
resulting regions become more homogeneous.

The proposed segmentation model has the following parameters:

1) The weights of the prior term,

2) the number of pixel classds,

3) the mean vectofi, and covariance matrix:, of each class\ € A.

The automatic determination df will be addressed in Section V. Whilgé strongly depends on the

input image dataj is largely independent of it. Experimental evidence suggests that the model is not
sensitive to a particular setting af [12], [13]. We found that settingg > 2.0 gives satisfactory and
stable segmentations. Unlike the first two parameters, the mean and covariance of the Gaussians mu
be computed directly from the input image. Our solution to this problem [13] adopts a general iterative
algorithm, known as th&M algorithm to compute the maximum likelihood estimates of the parameters
of a mixture density. Basically, we will fit a Gaussian mixtureloftomponents to the histogram of the
image features. The observations consist of the histogramdiéta= 1, ..., D) of the feature images.
D denotes the number of histogram points and the dimension of a data point equals to the dimension c
the combined color-texture feature space. Assuming therd arlasses, we want to estimate the mean
valuesgi, and covariance matrices, for each pixel class\ € A.

The EM algorithm aims at finding parameter values which maximize the normalized log-likelihood

function: 5
L= % Z log (Z P(d; | A)P(A)) (33)
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The underlying model is that theomplete datancludes not only the observabftz but also thehidden
data labels¥; specifying which Gaussian process generated the diatActually, £; is also a vector of

dimensionL and ZZ. =1if Eli belongs to class and 0 otherwise. The idea is that if labels were known,
the estimation of model parameters would be equivalent to the supervised case. Hence the followin
algorithm is alternating two steps: The estimation of a tentative labeling of the data followed by updating
the parameter values based on the tentatively labeled data.

Algorithm 2 (EM for Gaussian mixture identification):

(@ [Estimation] Replace#; with its conditional expectation based on the current parameter estimates.
Since the labels may only take valuesr 1, the expectation is basically equivalent to the posterior
probability: B
P(d; [ \)P(})

> ren P(di [ VPV
where P(\) denotes the component weight.

(@ [Maximization] Then, using the current expectation of the lab&las the current labeling of the data,
the estimation of the parameters is simple:

P(X\|d;)

(34)

POy = (35)
iy — K%E;Pm&i)&i (36)
B = o SPO ) - ) - ) @)

where K = S>7 P()\ | d;). Basically the posteriors(\ | d;) are used as a weight of the data
vectors. They express the contribution of a particular data pi)imtb the classh\.

(® Go to Step® until convergence. Each iteration is guaranteed to increase the likelihood of the estimates
The algorithm is stopped when the change of the log-likelih8aeslless than a predetermined threshold
(our test cases used 7).

The proposed algorithm has been tested on a variety of color images. We compared segmentatic
results using color-only, texture-only and combined (celexture) features [12], [13] and found in all
test-cases that segmentation based purely on texture gives fuzzy boundaries but usually homogenec
regions, whereas segmentation based on color is more sensitive to local variations but provides sha
boundaries. As for the combined features, the advantages of both color and texture based segmentati
have been preserved: we obtained sharp boundaries and homogeneous regions. Results has also &
compared to those obtained by the JSEG algorithm [65], a recent unsupervised method for color texture
image segmentation. Our method clearly outperforms JSEG (see Fig. 8) but JSEG’s advantage is that v
do not have to specify the image dependent paranieter

V. SEGMENTATION OF COLOR IMAGES VIA REVERSIBLE JUMP MCMC SAMPLING

Our problem becomes much harder when the number of ladbédsalso unknown. We have addressed
this problem in the context of color-based image segmentation [14], [15]. When this parameter is alsc
being estimated, the unsupervised segmentation problem may be treateshatelaselectiomproblem
over a combined model space. From this point of viewwjecomes anodel indicatorand the observation
F is regarded as a three-variate Normakture with . components corresponding to clusters of pixels
which are homogeneous in color.

The goal of our analysis is inference about the numbaf Gaussian mixture components (each one
corresponds to a label), the component paramé&ers{©, = (fi,, X)) | A € A}, the component weights
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Fig. 8. Unsupervised segmentation results on color textured images, each with 5 classes [13].

JSEG [65]
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Fig. 9. ¢ is adiffeomorphisnwhich transforms back and forth between parameter subspaces of different dimensionality [14irfES]sion
matchingcan be implemented by generating a random vegtsuch that the dimensions ¢, «) and X’ are equal.

px summing to 1, the inter-pixel interaction strengthand the segmentatian. A broadly used tool to
sample from the posterior distribution is the Metropolis-Hastings method. Classical methods, however
can not be used due to the changing dimensionality of the parameter space. To overcome this limitatior
a promising approach, called Reversible Jump MCMC (RIMCMC), has been adopted [14], [15]. When
we have multiple parameter subspaces of different dimensionality, it is necessary to devise different
typesbetween the subspaces. These will be combined in a so dall@td sampler For the color image
segmentation model, the following move types are needed [14], [15]:

1) sampling the labels (i.e. re-segment the image);

2) sampling Gaussian parameté&¥s= {(fi,,>\)};

3) sampling the mixture weights,\ (A € A);

4) sampling the MRF hyperparametey

5) sampling the number of classés(splitting one mixture component into two, or combining two

into one).
The only randomness in scanning these move types is the random choice between splitting and mergir
in move (5). One iteration of the hybrid sampler, also callesiv@ep consists of a complete pass over
these moves. The first four move types are conventional in the sense that they do not alter the dimensic
of the parameter space. Hereafter, we will focus on move (5), which requires the use of the reversibl
jump mechanism. This move type involves changingy 1 and making necessary corresponding changes
to w, ® andp. .

The split proposalbegins by randomly choosing a claswith a uniform probabilitijgl;ﬁt()\) =1/L.
Then L is increased byt and X is split into A\; and X,. In doing so, a new set of parameters need to
be generated. Alterind. changes the dimensionality of the variablesand p. Thus we shall define a
deterministic functiony) as a function of these Gaussian mixture parameters:

(©F,p7) = (0, p,u) (38)

where the superscript denotes parameter vectors after incrementing: is a set of random variables
having as many elements as the degree of freedom of joint variation of the current pardeterand

the proposal©™,p™). Note that this definition satisfies tltmension matchingonstraint (see Fig. 9),
which guarantees that one can jump back and forth between different parameter sub-spaces [14], [1E
This is needed to ensure the convergence of simulated annealing towards a global optimum. The ne
parameters of\; and )\, are assigned by matching thé, 1**, 2t» moments of the component being split

to those of a combination of the two new components [14], [15]:

px = Py +D% (39)
Py = Dy By, + Pl B, (40)

There are 10 degrees of freedom in splittikgsince covariance matrices are symmetric. Therefore, we
need to generate a random variabhle a random vectom2 and a symmetric random matrix3. We
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Original image Segmentation (3 labels) Initial Gaussians Final (3 classes)

Fig. 10. Segmentation of imagese4land the estimated Gaussian mixture [14], [15].

can now define the diffeomorphisg which transforms the old parametei3, p) into the new(©*,p™)
using the above moment equations and the random numbers2, andu3 [14], [15]:

Py, = paul (42)
p}; = pa(l —ul) (43)
1— ul
l/&rm = i+ u2i\/ X (44)
ul
My = Hai— u2iy/Sxii T ui (45)
1
ui; (1 —u2?) Syii— if =4
Zj\rl,z',j = 7 ( ) Sy / (46)
ugi,jz/\,i,j\/(l — u2;”) \/(1 —u2;?) uliu3;; ifi#j
1 -
(1 — U317z> (1 — U,QIQ) 2)\71'72‘— if 4 :j
Paid = ul (47)

(1 — ’LLSZ’J) E)\,i,j\/(l — U2,L2) (1 — U2j2) \/(1 — ugz,z) (1 — Ung) if 4 7éj

The random variables are chosen from the intervéd, 1]. In order to favor splitting a class into roughly
equal portions, beta.1, 1.1) distributions are used. The next step is the reallocation of thosessitesre

ws = A. This reallocation is based on the new parameters and has to be completed in such a way as
ensure the resulting labeling™ is drawn from the posterior distribution with = ©*, p = p*™ and
L=L+1.

Merging of a pair(\;, \;) is basically the inverse of the split operation [14], [15].

Finally, the split or merge proposal is accepted with a probability relative to the probability ratio of the
current and the proposed states. The segmentation and parameter estimation is then obtained as a M
estimation implemented via simulated annealing:

Algorithm 3 (RIMCMC Segmentation):

@ Setk = 0. Initialize 5°, L%, p°, ©°, and the initial temperaturé,.

@ A sample(@*, L*, p*, 3%, ©F) is drawn from the posterior distribution using thgbrid sampleroutlined
earlier. Each sub-chain is sampled via the corresponding move-type while all the other paramete
values are set to their current estimate.

(® Goto Step® with £k =k + 1 and Ty, until k£ < .

As usual, an exponential annealing schedille { = 0.987}, Ty = 6.0) was chosen so that the algorithm

would converge after a reasonable number of iterations. In our experiments, the algorithm was stoppe
after 200 iterations (5o = 0.1).

The proposed algorithm has been tested [14], [15] on a variety of real color images and results hav
also been compared to those produced by JSEG [65]. In Fig. 11, we show a couple of results obtaine
on the Berkeley Segmentation Dataset, and in Fig. 12, we plot the corresponding precision-recall curve:
Note that RIMCMC has a slightly high&-measurewhich ranks it over JSEG. However, it is fair to
say that both method perform equally well but behave differently: while JSEG tends to smooth out fine
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Fig. 11.

Human
segmentation

Benchmark results on images from the Berkeley Segmentation Dataset [15]

Original image JSEG [65]

RIMCMC [15]
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Fig. 12. Precision-recall curve, F-measure and CPU time comparison for JSEG and RIMCMC [15].

details (hence it has a higher precision but lower recall value), RIMCMC prefers to keep fine details a
the price of producing more edgese( its recall values are higher at a lower precision value).

VI. MULTILAYER MRF MODELIZATION

The human visual system is not treating different features sequentially. Instead, multiple cues are
perceived simultaneously and then they are integrated by our visual system in order to explain the
observations. Therefore different image features has to be handled in a parallel fashion. We have develop
such a model in a Markovian framework and successfully applied it to color-texture [16], [17] and color-
motion segmentation [18]-[21]. Herein, we present the MRF image segmentation model which aims a
combining color and motion features for video object segmentation [18], [19]. The model has a multi-
layer structure (see Fig. 13): Each feature has its own layer, cidbdre layer where an MRF model
is defined using only the corresponding feature. A special layer is assigned to the combined MRF mode
This layer interacts with each feature layer and provides the segmentation based on the combination
different features. Unlike previous methods, our approach doesn’t assume motion boundaries being pa
of spatial ones. The unigueness of the proposed method is the ability to detect boundaries that are visib
only in the motion feature as well as those visible only in the color one.

Perceptually uniform color values and precomputed optical flow data is used as features for the
segmentation. The proposed model consists of 3 layers. At each layer, we use a first order neighborhoc
system and extra inter-layer cliques (Fig. 13). The image features are represented by multivariate Gaussi
distributions. For example, on the color layer, the observed infage- {f |s € 8¢} consists of three
spectral component values*{tv*) at each pixek denoted by the vectof The class label assigned to
a sites on the color layer is denoted hy,. The energy functior®/ (v, 7¢) of the so defined MRF layer
has the following form:

YGFov) 8 Y S )+ D VW)

seSe {s,r}eC seS¢

Wheregc(fz,ws) denotes the Gaussian energy term. The last térffy(;, $)) is the inter-layer clique
potential. The motion layer adopts a similar energy function with some obvious substitutienr
simplicity, we assume a translational motion model here — for a more elaborate model see [19]).

The combined layer only uses the motion and color features indirectly, through inter-layer cliques. A
label consists of a pair of color and motion labels such that (n°, ™), wheren® € A¢ andn™ € A™.
The set of labels is denoted by = A¢ x A™ and the number of classds’ = L<L™. Obviously, not
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Fig. 13. Multi-layer MRF model [18], [19].

all of these labels are valid for a given image. Therefore the combined layer model also estimates th
number of classes and chose those pairs of motion and color labels which are actually present in a give
image. The energy functioti (n) is of the following form:

D (Valne) + Vs, nd) + V™ (s, n) + a0 > 6(ne, )

seS” {s,r}ec

whereV;(n,) denotes singleton energids; (v, nS) (resp.V™ (s, ") denotes inter-layer clique potentials.
The last term corresponds to second order intra-layer cliques which ensures homogeneity of the combine
layer. o has the same role asin the color layer model and(ns,n,) = —1 if n, = n,, 0 if s # n, and
1if nS=nSand n* #n" ornt #nt and n* =n. The idea is that region boundaries present at both
color and motion layers are preferred over edges that are found only at one of the feature layers. At an
site s, we have 5 inter-layer interactions between two layers: Sitgeracts with the corresponding site
on the other layer as well as with the 4 neighboring sites two steps away (see Fig. 13). This potentia
is based on the difference of the first order potentials at the corresponding feature layers. Clearly, th
difference is 0 if and only if both the feature layer and the combined layer has the same label. If the
labels are different then it is proportional to the energy difference between the two labels. Finally, the
singleton energy controls the number of classes at the combined layer by penalizing small classes.
The proposed algorithm has been tested on real video sequences [18], [19]. We also compare the resu
to motion only and color only segmentation (basically a monogrid model similar to the one defined for the
feature layers but without inter-layer cliques). The mean vectors and covariance matrices were compute
over representative regions selected by the user. The number of motion and color classes is known
priori but classes on the combined layer are estimated during the segmentation process. Fig. 14 sho\
some segmentation results. Note that the head of the men on this image can only be separated fro
the background using motion features. Clearly, the multi-layer model provides significantly better results
compared to color only and motion only segmentations. See Fig. 15 to compare the performance of th
proposed method with the one from [66] on thther and Daughtestandard sequence. Some of the
contours are lost by [66] (the sofa, for example) while our method successfully identifies region boundaries
In particular, our method is able to separate the hand of the mother from the face of the daughter in spit
of their similar color. This demonstrates again that the proposed method is quite powerful in combining
motion and color features in order to detect boundaries visible only in one of the features. We can als
handle occlusion and more complex motions using a modified multilayer model presented in [19]. The
model has also been successfully applied to color-textured image segmentation [16], [17] as well as t
change detection in aerial images [20], [21].

VII. CONCLUSION

In this thesis, we have summarized our main contributions to MRF image modeling. We have addresse
many aspects of MRF modeling: efficient prior models (multiscale, hierarchical, and multi-layer models);
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Fig. 14. Segmentation results [18], [19].
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Fig. 15. Comparison of the segmentation results obtained by the proposed method [18], [19] and those produced by the
algorithm of Khan & Shah [66].

imaging models for color, texture, motion features, and efficient combination of these segmentation cues
methods to estimate model parameters as well as different optimization techniques. The proposed metho
have been applied to a variety of image segmentation problems including remote sensing imagery an
change detection. The proposed algorithms proved to be efficient for implementation on special hardwar
(like the CNN) as well as on parallel architectures.

It is clear, however, that segmentation based solely on low-level image features is a hard problem. Usin
a classicasmoothnesgprior may not be sufficient to achieve good quality results under certain conditions
like blur, high noise or cluttered background. In such situations one needs to adopt more elgiapate
priors. Indeed, when the form of the regions to be segmented are known a priori (just like for the human
visual system) then dealing with blur or noise becomes much easier. This naturally leads to an interest i
shape modelling and registration techniques — our current research topics.
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