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Abstract

In this short thesis, we summarize the main results of our work related to Markovian image modeling:

1) We have proposed a novel hierarchical MRF model and applied it to graylevel image segmentation [1]–[6].
2) We have proposed a new annealing schedule for Simulated Annealing: Multi-temperature annealing allows

to assign different temperatures to different cliques during the minimization of the energy of a MRF model.
The convergence of the new algorithm has also been proved toward a global optimum [6], [7].

3) We have solved the estimation of the hierarchical model parameters and applied it to remote sensing image
segmentation [8]–[11].

4) We have proposed a monogrid MRF model which is able to combine color and texture features in order to
improve the quality of unsupervised segmentations [12], [13].

5) We have proposed a novel RJMCMC sampling method which is able to identify multi-dimensional Gaussian
mixtures. This technique has been applied to fully automatic color image segmentation [14], [15].

6) A new multilayer MRF model has been proposed which is able to segment an image based on multiple cues
(such as color, texture, or motion) [16]–[21].

Our other contributions not discussed in this thesis are as follows:

• We have developed a monogrid MRF model for graylevel image segmentation and applied the model for
remote sensing imaging. For this model, we have proposed a novel pseudo-stochastic relaxation algorithm,
called Modified Metropolis Dynamics (MMD) [22]–[24].

• We have studied different optimization techniques in the context of MRF energy minimization [22], [23], [25],
[26]. As a result, we also developed a demo program implementing most of these algorithms. The program
is freely downloadable from our website [27].

• In collaboration with SZTAKI, our monogrid MRF model and MMD algorithm [22]–[24] has been successfully
adopted for the CNN (Cellular Neural Network) architecture [28], [29].
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• We have developed a monogrid MRF model for color image segmentation [30] as well as for motion-based
video object segmentation [31].

• We have successfully applied a non-photorealistic rendering technique, called Stochastic Paintbrush Transfor-
mation, to the problem of content based image retrieval [32], [33].

I. I NTRODUCTION

T HE primary goal of any segmentation algorithm is to divide the domainR of the input image into
the disjoint partsRi such that they belong to distinct objects in the scene. The solution of this

problem sometimes requires high level knowledge about the shape and appearance of the objects under
investigation [34]–[37]. In many applications, however, such information is not available or impractical
to use. Hence low-level features of the surface patches are used for the segmentation process [38]–
[40]. Herein, we are interested in the latter approach. In either case, we have to summarize all relevant
information in a model which is then adjusted to fit the image data.

One broadly used class of models is the so calledcartoon model, which has been extensively studied
from both probabilistic [41] and variational [42], [43] viewpoints. The model assumes that the real world
scene consists of a set of regions whose observed low-level features changes slowly, but across the
boundary between them, these features change abruptly. What we want to infer is acartoonω consisting
of a simplified, abstract version of the input imageI: regionsRi has a constant value (called alabel in
our context) and the discontinuities between them form a curveΓ - the contour. The pair(ω, Γ) specifies
a segmentation. Region based methods are mainly focusing onω while edge based methods are trying to
determineΓ directly.

Taking the probabilistic approach, one usually wants to come up with aprobability measureon the
set Ω of all possible segmentations ofI and then select the one with the highest probability. Note that
Ω is finite, although huge. A widely accepted standard, also motivated by the human visual system [44],
[45], is to construct this probability measure in a Bayesian framework [46]–[48]: We shall assume that we
have a set of observed (Y ) and hidden (X) random variables. In our context, any observed valuey ∈ Y
represents the low-level features used for partitioning the image, and the hidden entityx ∈ X represents
the segmentation itself. First, we have to quantify how well any occurrence ofx fits y. This is expressed
by the probability distributionP (y|x) - the imaging model. Second, we define a set of properties that any
segmentationx must posses regardless the image data. These are described byP (x), the prior, which
tells us how well any occurrencex satisfies these properties. Factoring these distributions and applying
the Bayes theorem gives us theposteriordistributionP (x|y) ∝ P (y|x)P (x). Note that the constant factor
1/P (y) has been dropped as we are only interested inx̂ which maximizesthe posterior,i.e. the Maximum
A Posteriori (MAP) estimate of the hidden fieldX.

The models of the above distributions depend also on certain parameters that we denote byΘ. Supervised
segmentation assumes that these parameters are either known or a set of joint realizations of the hidden
field X and observationsY (called a training set) is available [41], [49]. This is known in statistics
as thecomplete dataproblem which is relatively easy to solve using Maximum Likelihood (ML) [46].
Although the prior knowledge of the parameters is a strong assumption, supervised methods are still useful
alternatives when working in a controlled environment. Many industrial applications, like quality inspection
of agricultural products [50], fall into this category. In the unsupervised case, however, we know neither
Θ nor X. This is called theincomplete dataproblem where bothΘ andX has to be inferred from the
only observable entityY . Hence our MAP estimation problem becomes(x̂, Θ̂) = arg maxx,Θ P (x, Θ|y).
Expectation Maximization(EM) [51] and its variants (Stochastic EM [52], [53], Gibbsian EM [54]), as
well as Iterated Conditional Expectation(ICE) [9], [55] are widely used to solve such problems. It is
important to note, however, that these methods calculate a local maximum [46].

Due to the difficulty of estimating the number of pixel classes (or clusters), unsupervised algorithms
often suppose that this parameter isknown a priori [40], [53], [56]–[58]. When the number of pixel
classes is also being estimated, the unsupervised segmentation problem may be treated as amodel selection
problem over a combined model space.
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Cliques:

Fig. 1. First order neighborhood system with corresponding cliques.

A. Markovian Approach

In real images regions are usually homogeneous, neighboring pixels have similar properties. Markov
Random Fields (MRF) are often used to capture such contextual constraints in a probabilistic framework.
MRFs are well studied with a strong theoretical background hence providing a tool for rigorous and
concise image modeling. Furthermore, they allow Markov Chain Monte Carlo (MCMC) sampling of the
(hidden) underlying structure which greatly simplifies inference and parameter estimation.

Formally, a simple MRF image model is constructed as follows: we are given a set of sites (usually
corresponding to pixels)S = {s1, s2, . . . , sN}. For each sites, the region-type (or class) that the site
belongs to is specified by a class label,ωs, which is modeled as a discrete random variable taking values
in Λ = {1, 2, . . . , L}. The set of these labelsω = {ωs, s ∈ S} is a random field, called thelabel
process. Furthermore, the observed image features (e.g. graylevel, color, texture,. . . ) are supposed to be
a realizationF = {fs|s ∈ S} from another random field, which is a function of the label processω.
Basically, theimage processF represents the manifestation of the underlying label process. Thus, the
overall segmentation model is composed of the hidden label processω and the observable noisy image
processF . If each pixel class is represented by a different model then the observed image may be viewed
as a sample from a realization of the underlying label field.

(ω,F) is then regarded as a MRF with respect to an appropriate neighborhood-systemG = {Gs}s∈S .
The simplest example of such a neighborhood can be seen in Fig. 1. According to the Hammersley-
Clifford theorem [59],(ω,F) must then follow a Gibbs distribution with an energy functionU(ω,F) =∑

C∈C VC(ω,F), whereC denotes a clique ofG, andC is the set of all cliques. The restriction ofω to
the sites of a given cliqueC is denoted byωC . The potential functionVC(ωC) is defined for everyC ∈ C
and everyω ∈ Ω, whereΩ = ΛN is the set of all possibleLN discrete labelings. The advantage of such
a decomposition is that these potentials are a function of the local configuration of the field making it
possible to define the Gibbs distribution directly in terms of local interactions.

The MAP estimatêω of the label field is then obtained by minimizing the non-convex energy function,
which can be solved by stochastic or deterministic relaxation [22], [23], [25], [26].

II. H IERARCHICAL MRF MODELS AND MULTI -TEMPERATUREANNEALING

It is well known that multigrid methods can improve significantly the convergence rate and the quality
of the final results of iterative relaxation techniques. Herein, we propose a new hierarchical model [1]–
[6], which consists of a label pyramid and a single observation field. The parameters of the coarse grid
can be derived by simple computation from the finest grid. In addition, we have introduced a new local
interaction between two neighboring grids which allows to propagate information more efficiently giving
estimates closer to the global optimum for deterministic as well as for stochastic relaxation schemes. For
the hierarchical model, we also propose a novel Multi-Temperature Annealing (MTA) algorithm [6]–[8].
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Fig. 2. The isomorphismΦi betweenBi andSi.
Fig. 3. The neighborhood system̄G and the cliques
C̄1, C̄2 and C̄3.

The convergence towards the global optimum is proven by the generalization of the annealing theorem
of Geman and Geman [41].

A. Multiscale and Hierarchical Model

In the following, we will focus on a MRF with a first order neighborhood (see Fig. 1) whose energy
function is given by:

U(ω,F) = U1(ω,F) + U2(ω) (1)

where U1 (resp.U2) denotes the energy of the first order (resp. second order) cliques. To generate a
multigrid MRF model, let us divide the initial grid into blocks ofn× n, typically 16 (4× 4) neighboring
pixels. We consider that the same label is assigned to each pixels of a given block. These configurations
will describe the MRF at scale 1. Scalei is defined similarly by considering labels which are constant
over blocks of sizeni × ni.

Let Bi = {bi
1, . . . , b

i
Ni
} (Ni = N/n2i) denote the set of blocks andΩi the configuration-space at scalei

(Ωi ⊂ Ωi−1 ⊂ · · · ⊂ Ω0 = Ω). The label associated with blockbi
k is denoted byωi

k. We can define the
same neighborhood structure onBi as onS:

bi
k and bi

l are neighbors⇐⇒
{

bi
k ≡ bi

l or
∃C ∈ C: C ∩ bi

k 6= ∅ andC ∩ bi
l 6= ∅ (2)

Let us partition the original setC into two disjoint subsetsCi
k (cliques which are included inbi

k) and
Ci

k,l(cliques which sit astride two neighboring blocks{bi
k, b

i
l}). It is obvious from this partition that our

energy function can be decomposed in the following way:

U1(ω,F) =
∑
s∈S

V1(ωs, fs) =
∑

bi
k∈Bi

∑

s∈bi
k

V1(ωs, fs)

︸ ︷︷ ︸
V Bi
1 (ωi

k,F)

=
∑

bi
k∈Bi

V Bi

1 (ωi
k,F) (3)

U2(ω) =
∑
C∈C

V2(ωc) =
∑

bi
k∈Bi

∑

C∈Ci
k

V2(ωc)

︸ ︷︷ ︸
V Bi

k (ωi
k)

+
∑

{bk,bl}neighbors

∑

C∈Ci
k,l

V2(ωc)

︸ ︷︷ ︸
V Bi

k,l (ωi
k,ωi

l )

=
∑

bi
k∈Bi

V Bi

k (ωi
k) +

∑

{bk,bl}neighbors

V Bi

k,l (ω
i
k, ω

i
l) (4)
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Now, we define a pyramid (see Figure 2) where leveli contains the coarse gridS i which is isomorphic to
the scaleBi. The coarse grid has a reduced configuration spaceΞi = ΛNi. The isomorphismΦi : S i → Bi

is just a projection of the coarse label field to the finest gridS0 ≡ S. The energy function on the grid
S i (i = 0, . . . , M) is derived from Eq. (3)–(4):

U i(ωi,F) = U i
1(ω

i,F) + U i
2(ω

i) = U1(Φ
i(ωi),F) + U2(Φ

i(ωi))

whereU i
1(ω

i,F) =
∑

k∈Si

(V Bi

1 (ωi
k,F) + V Bi

k (ωi
k)) =

∑

k∈Si

V i
1 (ωi

k,F) (5)

andU i
2(ω

i) =
∑

{k,l}neighbors

V Bi

k,l (ω
i
k, ω

i
l) =

∑

Ci∈Ci

V i
2 (ωi

C) (6)

whereCi is a second order clique corresponding to the definition in Eq. (2) andCi is the set of cliques
on grid i.

Let S̄ = {s̄1, . . . , s̄N̄} =
⋃M

i=0 S i (N̄ =
∑M

i=0 N i) denote the sites of the pyramid. We define the
following function Ψ between two neighboring levels, which assigns to a site its descendants (that is the
sites of the corresponding block):

Ψ : S i −→ S i−1, Ψ(s̄) = {r̄ | s̄ ∈ S i ⇒ r̄ ∈ S i−1 and bi−1
r̄ ⊂ bi

s̄} (7)

It is clear thatΨ−1 will assign to a site its ancestor (that is the site at the upper level corresponding to
the block of this site). Now we can define on these sites the following neighborhood-system (see Fig. 3):

Ḡ = (
M⋃
i=0

Gi) ∪ {Ψ−1(s̄) ∪Ψ(s̄) | s̄ ∈ S̄} (8)

whereGi is the neighborhood structure of theith level. We will consider only the first and second order
cliques, potentials for other cliques are supposed to be0. Let C̄ denote the set of these cliques which
can be partitioned into three disjoint subsetsC̄1, C̄2, C̄3 corresponding to first order cliques, second order
cliques which are on the same level and second order cliques which sit astride two neighboring levels
(see Figure 3). Let̄Ω denote the configuration-space of the pyramid:

Ω̄ = Ξ0 × Ξ1 × · · · × ΞM = {ω̄ | ω̄ = (ω0, ω1, . . . , ωM)} (9)

The model on the pyramid defines a MRF, whose energy function is given by:

Ū(ω̄,F) = Ū1(ω̄,F) + Ū2(ω̄) (10)

Ū1(ω̄,F) =
∑

s̄∈S̄
V̄1(ω̄s̄,F) =

M∑
i=0

∑

si∈Si

V i
1 (ωi

si ,F) =
M∑
i=0

U i
1(ω

i,F)

Ū2(ω̄) =
∑

C∈C̄2
V̄2(ω̄C) +

∑

C∈C̄3
V̄2(ω̄C) =

M∑
i=0

U i
2(ω

i) +
∑

C∈C̄3
V̄2(ω̄C) =

M∑
i=0

∑

C∈Ci

V i
2 (ωi

c) +
∑

C∈C̄3
V̄2(ω̄C)

The above energy of the hierarchical model can be minimized using classical combinatorial optimization
algorithms [22], [23], [25], [26], [61]. The only difference is that we work on a pyramid here and not on a
rectangular lattice as in the case of classical monogrid models. We have applied the model for supervised
image segmentation and compared the segmentation results of the classical monogrid [22]–[24], [26],
multiscale and hierarchical models on synthetic (Fig. 4) and real (Fig. 5) images. For both images, the
label pyramid has been generated with4 levels. The detailed equations can be found in [1], [6]. All tests
have been conducted on a Connection Machine CM200 with8K processors. In terms of segmentation
quality, the hierarchical model clearly outperforms the other methods. Further results can be found in [1],
[6].
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model num. of iter. CPU time time/iter. error rate β γ

monogrid 89 10.39 sec. 0.117 sec. 2576 1.0 —
multiscale 146 14.7 sec. 0.1 sec. 2118 1.0 —
hierarchical 42 460.9 sec. 10.97 sec. 1231 1.0 0.2

Noisy image (SNR = 10dB) Monogrid Multiscale Hierarchical

Fig. 4. Results obtained by the Gibbs Sampler [41] on a noisy synthetic image (128× 128, SNR = 10dB) with 16 classes [1]–[6]. In the
table, we show for each model the number of iterations, the CPU time, the error rate of the segmentation (= the number of misclassified
pixels) and the inter- and intra-clique potentialsβ andγ.

Original image Monogrid Multiscale Hierarchical

Fig. 5. Results obtained by ICM [60] on a (256× 256) SPOT image with4 classes [1]–[6].

B. Multi-Temperature Annealing

In the following we will focus on Simulated Annealing (SA) [41], where the temperature-change is
controlled by the so-calledannealing schedule. There are two well known schemes,homogeneousand
inhomogeneousannealing [61], which works also on the hierarchical model. Herein, we propose a new
annealing schedule, calledMulti-Temperature Annealing(MTA), which is the most efficient with the new
model. The basic idea is to associate higher temperatures to coarser levels in the pyramid which makes
the algorithm less sensitive to local minima. However at a finer resolution, the relaxation is performed at
a lower temperature (at the bottom level, it is close to0). For the cliques siting between two levels, we
use either the temperature of the finer level or the one of the coarser level (but once chosen, we always
keep the same choice throughout the algorithm). More generally, we have the following problem:

Let S = {s1, . . . , sN} be a set of sites,G some neighborhood system with cliquesC and ω a MRF
over these sites with energy functionU . π0 denotes the uniform distribution on the set of globally optimal
configurations, and defineU sup = maxω U(ω), U inf = minω U(ω) and ∆ = U sup − U inf . Furthermore,
let us suppose that the sites are visited for updating in the order{n1, n2, . . .} ⊂ S. We now define an
annealing scheme where the temperatureT depends on the iterationk and on the cliquesC. For that
purpose, let® denotes the following operation:

P (X = ω) = πT (k,C)(ω) =
exp(−U(ω)® T (k, C))

Z
(11)
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whereU(ω)® T (k, C) =
∑
C∈C

VC(ω)

T (k, C)
. (12)

As usual with SA [41], [61], the transition from one configuration to another is governed by the energy
change between the two states. Assumingω′ ∈ Ωopt is a globally optimal configuration,U(ω′) − U inf

equals to0 (i.e. there is no more energy change, the system is frozen). In the case of a classical annealing,
dividing by a constant temperature does not change this relation (obviously,∀k: (U(ω′)−U inf )/Tk is still
0). But it is not necessarily true that(U(ω′) − U inf ) ® T (k, C) is also0! Because choosing sufficiently
small temperatures for the cliques whereω′C is locally not optimal (i.e. strengthening the non-optimal
cliques) and choosing sufficiently high temperatures for the cliques whereω′C is locally optimal (i.e.
weakening the optimal cliques), we obtain(U(ω′) − U inf ) ® T (k, C) > 0, meaning thatω′ is no longer
globally optimal (i.e. in such cases, SA may not be able to reach a global optimum).

Thus, we have to impose further conditions on the temperature to guarantee the convergence toward
global optimum. First, let us examine the decomposition over the cliques ofU(ω)−U(η) for arbitraryω
andη, ω 6= η:

U(ω)− U(η) =
∑
C∈C

(VC(ω)− VC(η)). (13)

Indeed, there may be negative and positive members in the decomposition. According to this fact, we
have the following subsums:
∑
C∈C

(VC(ω)− VC(η)) =
∑

C∈C:(VC(ω)−VC(η))<0

(VC(ω)− VC(η))

︸ ︷︷ ︸
Σ−(ω,η)

+
∑

C∈C:(VC(ω)−VC(η))≥0

(VC(ω)− VC(η))

︸ ︷︷ ︸
Σ+(ω,η)

. (14)

Furthermore, let us defineΣ+
∆ as:

Σ+
∆ = min

ω′ ∈ Ωsup

ω′′ ∈ Ωopt

Σ+(ω′, ω′′). (15)

Then the following theorem gives an annealing schedule, wherethe temperature is a function ofk and
C ∈ C [6]:

Theorem 1 (Multi-Temperature Annealing):Assume that there exists an integerκ ≥ N such that for
everyk = 0, 1, 2, . . ., S ⊆ {nk+1, nk+2, . . . , nk+κ}. For all C ∈ C, let T (k, C) be any decreasing sequence
of temperatures ink for which

1) limk→∞ T (k, C) = 0.
Let us denote respectively byT inf

k andT sup
k the maximum and minimum of the temperature function

at k (∀C ∈ C: T inf
k ≤ T (k, C) ≤ T sup

k ).
2) For all k ≥ k0, for some integerk0 ≥ 2: T inf

k ≥ NΣ+
∆/ ln(k).

3) If Σ−(ω, ω′) 6= 0 for someω ∈ Ω \ Ωopt, ω′ ∈ Ωopt then a further condition must be imposed:

For all k: T sup
k −T inf

k

T inf
k

≤ R with

R = min
ω ∈ Ω \ Ωopt

ω′ ∈ Ωopt

Σ−(ω, ω′) 6= 0

U(ω)− U inf

| Σ−(ω, ω′) | . (16)

Then for any starting configurationη ∈ Ω and for everyω ∈ Ω:

lim
k→∞

P (X(k) = ω | X(0) = η) = π0(ω). (17)

The complete proof of this theorem can be found in [3], [6].
Remarks:
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Fig. 6. Energy decrease and segmentation results of the Gibbs sampler on a synthetic image with the inhomogeneous and MTA schedules. In
both cases, the parameters were strictly the same, the only difference is the applied schedule. We also show the global energy plot (computed
at a fixed temperature on the finest level) versus the number of iterations. Note that both schedules reach practically the same minimum
(53415.4 for the inhomogeneous and 53421.4 for the MTA), however the inhomogeneous schedule requires238 iterations (796.8 sec. CPU
time) while the MTA schedule requires only100 iterations (340.6 sec. CPU time) for the convergence [3], [6], [7].

1) In practice, we cannot determineR andΣ+
∆, as we cannot compute∆ neither.

2) ConsideringΣ+
∆ in condition 2, we have the same problem as in the case of a classical annealing.

The only difference is that in a classical annealing, we have∆ instead ofΣ+
∆. Consequently, the

same solutions may be used: an exponential schedule with a sufficiently high initial temperature.
3) The factorR is more interesting. We propose herein two possibilities which can be used for practical

implementations of the method: Either we choose a sufficiently small interval[T inf
0 , T sup

0 ] and
suppose that it satisfies the condition 3 (we have used this technique in the simulations), or we use
a more strict but easily verifiable condition instead of condition 3, namely:

lim
k→∞

T sup
k − T inf

k

T inf
k

= 0. (18)

4) What happens ifΣ−(ω, ω′) is zero for allω andω′ in condition 3 and thusR is not defined? This is
the best case because it means that allglobally optimal configurations are alsolocally optimal. That
is we have no restriction on the interval[T inf

k , T sup
k ], thus anylocal temperature schedule satisfying

conditions 1–2 is good.
In Fig. 6, we compare the inhomogeneous and MTA schedules on a noisy synthetic image using the

Gibbs sampler. Since each site interacts with its ancestor and its descendants, the hierarchical model
usually requires more computing time than a monogrid model. However, as we have shown in [3], [6],
[7], experiments prove that this model with the MTA schedule yields faster convergence (with respect to
the number of iterations) for the stochastic relaxation algorithms and gives estimates which are closer to
the global optimum. Other tests can be found in [3], [6], [7].

III. PARAMETER ESTIMATION

In real life applications, the model parameters are usually unknown, one has to estimate [62] them from
the observable image. Here we develop an algorithm for hierarchical Markovian models [8]–[11]. Our
approach is similar in spirit to Iterative Conditional Estimation [53], [63] as well as to the Estimation-
Maximization algorithm: we recursively look at the Maximum a Posteriori (MAP) estimate of the label
field given the estimated parameters then we look at the Maximum Likelihood (ML) estimate of the
parameters given a tentative labeling obtained in the previous step. The only parameter supposed to be
known is the number of labels, all the other parameters are estimated.
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When both the model parametersΘ andω are unknown, the estimation problem becomes [11], [40],
[64]

(ω̂, Θ̂) = arg max
ω,Θ

P (ω,F | Θ). (19)

The pair(ω̂, Θ̂) is the global maximum of the joint probabilityP (ω,F | Θ). If we regardΘ as a random
variable, the above maximization is an ordinary MAP estimation in the following way [64]: Let us suppose,
that Θ is restricted to a finite volume domainDΘ and suppose thatΘ is uniform onDΘ (that isP (Θ) is
constant). Then, we get [11], [64]:

arg max
ω,Θ

P (ω, Θ | F) = arg max
ω,Θ

P (ω,F | Θ)P (Θ)

P (F)
= arg max

ω,Θ

P (ω,F | Θ)∫
DΘ

∑
ω∈Ω P (ω,F | Θ)dΘ

(20)

= arg max
ω,Θ

P (ω,F | Θ). (21)

However, this maximization is very difficult, having no direct solution. Even Simulated Annealing (SA) is
not implementable because the local characteristics with respect to the parametersΘ cannot be computed
from P (ω,F | Θ). One possible solution is to adopt the following criterion instead [11], [40], [64]:

ω̂ = arg max
ω

P (ω,F | Θ̂) (22)

Θ̂ = arg max
Θ

P (ω̂,F | Θ) (23)

Clearly, Eq. (22) is equivalent to Eq. (19) forΘ = Θ̂ and Eq. (23) is equivalent to Eq. (19) withω = ω̂.
Furthermore, Eq. (22) is equivalent to the MAP estimate ofω in the case of known parameters:

arg max
ω

P (ω,F | Θ̂) = arg max
ω

P (ω | F , Θ̂)P (F | Θ̂) = arg max
ω

P (ω | F , Θ̂).

Hence in the following we will concentrate on Eq. (23) which gives the ML estimate of the parameters.
Considering the hierarchical MRF segmentation model (see Fig. 3), we have the following logarithmic
likelihood function [8]–[11]:

M∑
i=0

∑

si∈Si

∑

s∈bi
si

(
− ln(

√
2πσω̂s)−

(fs − µω̂s)
2

2σ2
ω̂s

)
− β

M∑
i=0

qi
∑

Ci∈Ci

δ(ω̂Ci)

︸ ︷︷ ︸
N ih(ω̂)

−γ
∑

C∈C̄3
δ(ω̂C)

︸ ︷︷ ︸
N̄ ih(ω̂)

− ln(Z(β, γ)) (24)

whereqi is the number of cliques between two neighboring blocks at scaleBi, N ih(ω̂) denotes the number
of inhomogeneous cliques siting at the same scale andN̄ ih(ω̂) denotes the number of inhomogeneous
cliques siting astride two neighboring levels in the pyramid. Considering the first term, we get

M∑
i=0

∑

si∈Si

∑

s∈bi
si

(
− ln(

√
2πσω̂s)−

(fs − µω̂s)
2

2σ2
ω̂s

)
=

∑

λ∈Λ

M∑
i=0

∑

si∈Si
λ

∑

s∈bi
si

(
− ln(

√
2πσλ)− (fs − µλ)

2

2σ2
λ

)
(25)

whereS i
λ is the set of sites at leveli where ω̂si = λ. Derivating with respect toµλ and σλ, we get a

closed form solution for the ML estimates of the Gaussian parameters:

∀λ ∈ Λ: µλ =
1∑M

i=0 | S i
λ |

M∑
i=0

∑

si∈Si
λ

∑

s∈bi
si

fs, σ2
λ =

1∑M
i=0 | S i

λ |
M∑
i=0

∑

si∈Si
λ

∑

s∈bi
si

(fs − µλ)
2 (26)

Notice that a grey-level valuefs may be considered several times. More precisely,fs is consideredm-
times in the above sum for a givenλ if there arem scales wherêω assigns the labelλ to the sites. m
can also be seen as a weight. Obviously, the mores has been labeled byλ at different levels, the more is
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probable thats belongs to classλ and hence its grey-level valuefs characterizes better the classλ. The
derivates of the logarithmic likelihood function with respect toβ andγ are given by:

∂

∂β

(−βN ih(ω̂)− ln(Z(β, γ))
)

= −N ih(ω̂)− ∂

∂β
ln(Z(β, γ)) (27)

∂

∂γ

(−γN̄ ih(ω̂)− ln(Z(β, γ))
)

= −N̄ ih(ω̂)− ∂

∂γ
ln(Z(β, γ)) (28)

From which, we get

N ih(ω̂) =

∑
ω∈Ω N ih(ω) exp(−βN ih(ω)− γN̄ ih(ω))∑

ω∈Ω exp(−βN ih(ω)− γN̄ ih(ω))
(29)

N̄ ih(ω̂) =

∑
ω∈Ω N̄ ih(ω) exp(−βN ih(ω)− γN̄ ih(ω))∑

ω∈Ω exp(−βN ih(ω)− γN̄ ih(ω))
(30)

The solution of the above equations can be approximated using the following algorithm.
Algorithm 1 (Hyperparameter Estimation):

©1 Setk = 0 and initializeβ̂0 andγ̂0. Furthermore, letN ih(ω̂) denote the number of inhomogeneous cliques
at the same scale and̄N ih(ω̂) denotes the number of inhomogeneous cliques between levels.

©2 Using SA at a fixed temperatureT , generate a new labelingη sampling from

P (X = ω) =
exp

(
− β̂k

T

∑M
i=0

∑
{s,r}∈Ci δ(ωs, ωr)

)

Z(β̂k, γ̂k)
+

exp
(
− γ̂k

T

∑
{s,r}∈C̄ δ(ωs, ωr)

)

Z(β̂k, γ̂k)
. (31)

Compute the number of inhomogeneous cliquesN ih(η) and N̄ ih(η) in η.
©3 If N ih(η) ≈ N ih(ω̂) and N̄ ih(η) ≈ N̄ ih(ω̂) then stop, elsek = k + 1. If N ih(η) < N ih(ω̂) then decrease

β̂k, if N ih(η) > N ih(ω̂) then increasêβk. γ̂k is obtained in the same way. Continue Step©2 with
(β̂k, γ̂k).

This algorithm completes the computation of the ML estimate of the parameters givenω̂. The unsupervised
segmentation is then carried out usingAdaptive Simulated Annealing[11], [64], which is an iterative
algorithm generating tentative labelings based on current parameter estimates (i.e. solving Eq. (22)) then
updating the parameter values to their ML estimate based on the current labeling (i.e. solving Eq. (23) by
making use of Eq. (26) and Algorithm 1). In fact, it is a classical Simulated Annealing with an additional
step to reestimate model parameters during segmentation. The convergence of ASA has been proven
in [40].

The algorithm has been tested on several synthetic and real images [9]–[11]. In Fig. 7, we show one
of these results. In summary, the presented unsupervised algorithm provide results comparable to those
obtained by supervised segmentations, but of course at the price of higher computing time.

IV. U NSUPERVISEDSEGMENTATION OF COLOR TEXTURED IMAGES

The proposed segmentation model [12], [13] consists of a monogrid MRF defined over a nearest
neighborhood system (see Fig. 1) with pixel classes represented by multivariate Gaussian distributions.
This kind of modelization corresponds well to our features: Texture feature images (extracted by Gabor
filters) are constructed in such a way that similar textures map to similar intensities. Hence pixels with
a given texture will be assigned a well determined value with some variance. Furthermore, pixels with
similar color map to their average color. Putting these feature distributions into one multivariate Normal
mixture, the modes will correspond to clusters of pixels which are homogeneous in both color and texture
properties. Therefore regions will be formed where both features are homogeneous while boundaries will
be present where there is a discontinuity in either color or texture. Applying these ideas, theimage process
F can be formalized as follows:P (~f s | ωs) follows a Normal distributionN(~µ,Σ), each pixel class
λ ∈ Λ = {1, 2, . . . , L} is represented by its mean vector~µλ and covariance matrixΣλ. The whole posterior
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Fig. 7. Supervised and unsupervised segmentation results and misclassification rate with the Gibbs Sampler. We also compare the parameters
obtained by the unsupervised algorithm to the ones used for the supervised segmentation [8]–[11].

can now be expressed as a first order MRF by including the contribution of the likelihood term via the
singletons (i.e. pixel sitess ∈ S). Indeed, the singleton energies directly reflect the probabilistic modeling
of labels without context, while doubleton clique potentials express relationship between neighboring pixel
labels. Thus the energy function of the so defined MRF image segmentation model has the following form:

∑
s∈S

(
ln(

√
(2π)n | Σωs |) +

1

2
(~f s − ~µωs

)Σ−1
ωs

(~f s − ~µωs
)T

)
+ β

∑

{s,r}∈C
δ(ωs, ωr) (32)

where β > 0 is a weighting parameter controlling the importance of the prior. Asβ increases, the
resulting regions become more homogeneous.

The proposed segmentation model has the following parameters:
1) The weightβ of the prior term,
2) the number of pixel classesL,
3) the mean vector~µλ and covariance matrixΣλ of each classλ ∈ Λ.
The automatic determination ofL will be addressed in Section V. WhileL strongly depends on the

input image data,β is largely independent of it. Experimental evidence suggests that the model is not
sensitive to a particular setting ofβ [12], [13]. We found that settingβ ≥ 2.0 gives satisfactory and
stable segmentations. Unlike the first two parameters, the mean and covariance of the Gaussians must
be computed directly from the input image. Our solution to this problem [13] adopts a general iterative
algorithm, known as theEM algorithm, to compute the maximum likelihood estimates of the parameters
of a mixture density. Basically, we will fit a Gaussian mixture ofL components to the histogram of the
image features. The observations consist of the histogram data~di(i = 1, . . . , D) of the feature images.
D denotes the number of histogram points and the dimension of a data point equals to the dimension of
the combined color-texture feature space. Assuming there areL classes, we want to estimate the mean
values~µλ and covariance matricesΣλ for each pixel classλ ∈ Λ.

The EM algorithm aims at finding parameter values which maximize the normalized log-likelihood
function:

L =
1

D

D∑
i=1

log

(∑

λ∈Λ

P (~di | λ)P (λ)

)
(33)
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The underlying model is that thecomplete dataincludes not only the observable~di but also thehidden
data labels~̀

i specifying which Gaussian process generated the data~di. Actually, ~̀i is also a vector of
dimensionL and~̀λ

i = 1 if ~di belongs to classλ and 0 otherwise. The idea is that if labels were known,
the estimation of model parameters would be equivalent to the supervised case. Hence the following
algorithm is alternating two steps: The estimation of a tentative labeling of the data followed by updating
the parameter values based on the tentatively labeled data.

Algorithm 2 (EM for Gaussian mixture identification):
©1 [Estimation] Replace~̀

i with its conditional expectation based on the current parameter estimates.
Since the labels may only take values0 or 1, the expectation is basically equivalent to the posterior
probability:

P (λ | ~di) =
P (~di | λ)P (λ)∑

λ∈Λ P (~di | λ)P (λ)
, (34)

whereP (λ) denotes the component weight.
©2 [Maximization] Then, using the current expectation of the labels~̀

i as the current labeling of the data,
the estimation of the parameters is simple:

P (λ) =
Kλ

D
(35)

~µλ =
1

Kλ

D∑
i=1

P (λ | ~di)~di (36)

Σλ =
1

Kλ

D∑
i=1

P (λ | ~di)(~di − ~µλ)
T (~di − ~µλ) (37)

whereKλ =
∑D

i=1 P (λ | ~di). Basically the posteriorsP (λ | ~di) are used as a weight of the data
vectors. They express the contribution of a particular data point~di to the classλ.

©3 Go to Step©1 until convergence. Each iteration is guaranteed to increase the likelihood of the estimates.
The algorithm is stopped when the change of the log-likelihoodL is less than a predetermined threshold
(our test cases used10−7).

The proposed algorithm has been tested on a variety of color images. We compared segmentation
results using color-only, texture-only and combined (color+texture) features [12], [13] and found in all
test-cases that segmentation based purely on texture gives fuzzy boundaries but usually homogeneous
regions, whereas segmentation based on color is more sensitive to local variations but provides sharp
boundaries. As for the combined features, the advantages of both color and texture based segmentation
have been preserved: we obtained sharp boundaries and homogeneous regions. Results has also been
compared to those obtained by the JSEG algorithm [65], a recent unsupervised method for color textured
image segmentation. Our method clearly outperforms JSEG (see Fig. 8) but JSEG’s advantage is that we
do not have to specify the image dependent parameterL.

V. SEGMENTATION OF COLOR IMAGES VIA REVERSIBLE JUMP MCMC SAMPLING

Our problem becomes much harder when the number of labelsL is also unknown. We have addressed
this problem in the context of color-based image segmentation [14], [15]. When this parameter is also
being estimated, the unsupervised segmentation problem may be treated as amodel selectionproblem
over a combined model space. From this point of view,L becomes amodel indicatorand the observation
F is regarded as a three-variate Normalmixture with L components corresponding to clusters of pixels
which are homogeneous in color.

The goal of our analysis is inference about the numberL of Gaussian mixture components (each one
corresponds to a label), the component parametersΘ = {Θλ = (~µλ, Σλ) | λ ∈ Λ}, the component weights
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Fig. 8. Unsupervised segmentation results on color textured images, each with 5 classes [13].
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Fig. 9. ψ is adiffeomorphismwhich transforms back and forth between parameter subspaces of different dimensionality [14], [15].Dimension
matchingcan be implemented by generating a random vectoru such that the dimensions of(X, u) andX ′ are equal.

pλ summing to 1, the inter-pixel interaction strengthβ, and the segmentationω. A broadly used tool to
sample from the posterior distribution is the Metropolis-Hastings method. Classical methods, however,
can not be used due to the changing dimensionality of the parameter space. To overcome this limitation,
a promising approach, called Reversible Jump MCMC (RJMCMC), has been adopted [14], [15]. When
we have multiple parameter subspaces of different dimensionality, it is necessary to devise differentmove
typesbetween the subspaces. These will be combined in a so calledhybrid sampler. For the color image
segmentation model, the following move types are needed [14], [15]:

1) sampling the labelsω (i.e. re-segment the image);
2) sampling Gaussian parametersΘ = {(~µλ, Σλ)};
3) sampling the mixture weightspλ(λ ∈ Λ);
4) sampling the MRF hyperparameterβ;
5) sampling the number of classesL (splitting one mixture component into two, or combining two

into one).
The only randomness in scanning these move types is the random choice between splitting and merging
in move (5). One iteration of the hybrid sampler, also called asweep, consists of a complete pass over
these moves. The first four move types are conventional in the sense that they do not alter the dimension
of the parameter space. Hereafter, we will focus on move (5), which requires the use of the reversible
jump mechanism. This move type involves changingL by 1 and making necessary corresponding changes
to ω, Θ andp.

The split proposalbegins by randomly choosing a classλ with a uniform probabilityP split
select(λ) = 1/L.

Then L is increased by1 and λ is split into λ1 and λ2. In doing so, a new set of parameters need to
be generated. AlteringL changes the dimensionality of the variablesΘ and p. Thus we shall define a
deterministic functionψ as a function of these Gaussian mixture parameters:

(Θ+, p+) = ψ(Θ, p, u) (38)

where the superscript+ denotes parameter vectors after incrementingL. u is a set of random variables
having as many elements as the degree of freedom of joint variation of the current parameters(Θ, p) and
the proposal(Θ+, p+). Note that this definition satisfies thedimension matchingconstraint (see Fig. 9),
which guarantees that one can jump back and forth between different parameter sub-spaces [14], [15].
This is needed to ensure the convergence of simulated annealing towards a global optimum. The new
parameters ofλ1 andλ2 are assigned by matching the0th, 1th, 2th moments of the component being split
to those of a combination of the two new components [14], [15]:

pλ = p+
λ1

+ p+
λ2

(39)

pλ~µλ = p+
λ1

~µ+
λ1

+ p+
λ2

~µ+
λ2

(40)

pλ(~µλ~µT
λ + Σλ) = p+

λ1
(~µ+

λ1
~µ+T

λ1
+ Σ+

λ1
) + p+

λ2
(~µ+

λ2
~µ+T

λ2
+ Σ+

λ2
) (41)

There are 10 degrees of freedom in splittingλ since covariance matrices are symmetric. Therefore, we
need to generate a random variableu1, a random vector~u2 and a symmetric random matrixu3. We
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Fig. 10. Segmentation of imagerose41and the estimated Gaussian mixture [14], [15].

can now define the diffeomorphismψ which transforms the old parameters(Θ, p) into the new(Θ+, p+)
using the above moment equations and the random numbersu1, ~u2, andu3 [14], [15]:

p+
λ1

= pλu1 (42)

p+
λ2

= pλ(1− u1) (43)

µ+
λ1,i = µλ,i + u2 i

√
Σλ,i,i

1− u1

u1
(44)

µ+
λ2,i = µλ,i − u2 i

√
Σλ,i,i

u1

1− u1
(45)

Σ+
λ1,i,j =





u3 i,i

(
1− u2 i

2
)
Σλ,i,i

1

u1
if i = j

u3 i,jΣλ,i,j

√(
1− u2 i

2
)√(

1− u2 j
2
)
u3 i,iu3 j,j if i 6= j

(46)

Σ+
λ2,i,j =





(1− u3 i,i)
(
1− u2 i

2
)
Σλ,i,i

1

u1
if i = j

(1− u3 i,j) Σλ,i,j

√(
1− u2 i

2
) (

1− u2 j
2
)√

(1− u3 i,i) (1− u3 j,j) if i 6= j
(47)

The random variablesu are chosen from the interval(0, 1]. In order to favor splitting a class into roughly
equal portions, beta(1.1, 1.1) distributions are used. The next step is the reallocation of those sitess where
ωs = λ. This reallocation is based on the new parameters and has to be completed in such a way as to
ensure the resulting labelingω+ is drawn from the posterior distribution withΘ = Θ+, p = p+ and
L = L + 1.

Merging of a pair(λ1, λ2) is basically the inverse of the split operation [14], [15].
Finally, the split or merge proposal is accepted with a probability relative to the probability ratio of the

current and the proposed states. The segmentation and parameter estimation is then obtained as a MAP
estimation implemented via simulated annealing:

Algorithm 3 (RJMCMC Segmentation):
©1 Setk = 0. Initialize β̂0, L̂0, p̂0, Θ̂0, and the initial temperatureT0.
©2 A sample(ω̂k, L̂k, p̂k, β̂k, Θ̂k) is drawn from the posterior distribution using thehybrid sampleroutlined

earlier. Each sub-chain is sampled via the corresponding move-type while all the other parameter
values are set to their current estimate.

©3 Goto Step©2 with k = k + 1 andTk+1 until k < K.
As usual, an exponential annealing schedule (Tk+1 = 0.98Tk, T0 = 6.0) was chosen so that the algorithm
would converge after a reasonable number of iterations. In our experiments, the algorithm was stopped
after 200 iterations (T200 ≈ 0.1).

The proposed algorithm has been tested [14], [15] on a variety of real color images and results have
also been compared to those produced by JSEG [65]. In Fig. 11, we show a couple of results obtained
on the Berkeley Segmentation Dataset, and in Fig. 12, we plot the corresponding precision-recall curves.
Note that RJMCMC has a slightly higherF-measurewhich ranks it over JSEG. However, it is fair to
say that both method perform equally well but behave differently: while JSEG tends to smooth out fine
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Fig. 11. Benchmark results on images from the Berkeley Segmentation Dataset [15]
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Fig. 12. Precision-recall curve, F-measure and CPU time comparison for JSEG and RJMCMC [15].

details (hence it has a higher precision but lower recall value), RJMCMC prefers to keep fine details at
the price of producing more edges (i.e. its recall values are higher at a lower precision value).

VI. M ULTILAYER MRF MODELIZATION

The human visual system is not treating different features sequentially. Instead, multiple cues are
perceived simultaneously and then they are integrated by our visual system in order to explain the
observations. Therefore different image features has to be handled in a parallel fashion. We have developed
such a model in a Markovian framework and successfully applied it to color-texture [16], [17] and color-
motion segmentation [18]–[21]. Herein, we present the MRF image segmentation model which aims at
combining color and motion features for video object segmentation [18], [19]. The model has a multi-
layer structure (see Fig. 13): Each feature has its own layer, calledfeature layer, where an MRF model
is defined using only the corresponding feature. A special layer is assigned to the combined MRF model.
This layer interacts with each feature layer and provides the segmentation based on the combination of
different features. Unlike previous methods, our approach doesn’t assume motion boundaries being part
of spatial ones. The uniqueness of the proposed method is the ability to detect boundaries that are visible
only in the motion feature as well as those visible only in the color one.

Perceptually uniform color values and precomputed optical flow data is used as features for the
segmentation. The proposed model consists of 3 layers. At each layer, we use a first order neighborhood
system and extra inter-layer cliques (Fig. 13). The image features are represented by multivariate Gaussian
distributions. For example, on the color layer, the observed imageF c = {~f c

s|s ∈ Sc} consists of three
spectral component values (L∗u∗v∗) at each pixels denoted by the vector~f

c

s. The class label assigned to
a sites on the color layer is denoted byψs. The energy functionU(ψ,F c) of the so defined MRF layer
has the following form:

∑
s∈Sc

Gc(~f
c

s, ψs) + β
∑

{s,r}∈C
δ(ψs, ψr) +

∑
s∈Sc

V c(ψs, η
c
s)

whereGc(~f
c

s, ψs) denotes the Gaussian energy term. The last term (V c(ψs, η
c
s)) is the inter-layer clique

potential. The motion layer adopts a similar energy function with some obvious substitutions (i.e. for
simplicity, we assume a translational motion model here – for a more elaborate model see [19]).

The combined layer only uses the motion and color features indirectly, through inter-layer cliques. A
label consists of a pair of color and motion labels such thatη = 〈ηc, ηm〉, whereηc ∈ Λc andηm ∈ Λm.
The set of labels is denoted byΛx = Λc × Λm and the number of classesLx = LcLm. Obviously, not
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Fig. 13. Multi-layer MRF model [18], [19].

all of these labels are valid for a given image. Therefore the combined layer model also estimates the
number of classes and chose those pairs of motion and color labels which are actually present in a given
image. The energy functionU(η) is of the following form:∑

s∈Sx

(Vs(ηs) + V c(ψs, η
c
s) + V m(φs, η

m
s )) + α

∑

{s,r}∈C
δ(ηs, ηr)

whereVs(ηs) denotes singleton energies,V c(ψs, η
c
s) (resp.V m(φs, η

m
s ) denotes inter-layer clique potentials.

The last term corresponds to second order intra-layer cliques which ensures homogeneity of the combined
layer. α has the same role asβ in the color layer model andδ(ηs, ηr) = −1 if ηs = ηr, 0 if ηs 6= ηr and
1 if ηc

s = ηc
r and ηm

s 6= ηm
r or ηc

s 6= ηc
r and ηm

s = ηm
r . The idea is that region boundaries present at both

color and motion layers are preferred over edges that are found only at one of the feature layers. At any
site s, we have 5 inter-layer interactions between two layers: Sites interacts with the corresponding site
on the other layer as well as with the 4 neighboring sites two steps away (see Fig. 13). This potential
is based on the difference of the first order potentials at the corresponding feature layers. Clearly, the
difference is 0 if and only if both the feature layer and the combined layer has the same label. If the
labels are different then it is proportional to the energy difference between the two labels. Finally, the
singleton energy controls the number of classes at the combined layer by penalizing small classes.

The proposed algorithm has been tested on real video sequences [18], [19]. We also compare the results
to motion only and color only segmentation (basically a monogrid model similar to the one defined for the
feature layers but without inter-layer cliques). The mean vectors and covariance matrices were computed
over representative regions selected by the user. The number of motion and color classes is known a
priori but classes on the combined layer are estimated during the segmentation process. Fig. 14 shows
some segmentation results. Note that the head of the men on this image can only be separated from
the background using motion features. Clearly, the multi-layer model provides significantly better results
compared to color only and motion only segmentations. See Fig. 15 to compare the performance of the
proposed method with the one from [66] on theMother and Daughterstandard sequence. Some of the
contours are lost by [66] (the sofa, for example) while our method successfully identifies region boundaries.
In particular, our method is able to separate the hand of the mother from the face of the daughter in spite
of their similar color. This demonstrates again that the proposed method is quite powerful in combining
motion and color features in order to detect boundaries visible only in one of the features. We can also
handle occlusion and more complex motions using a modified multilayer model presented in [19]. The
model has also been successfully applied to color-textured image segmentation [16], [17] as well as to
change detection in aerial images [20], [21].

VII. C ONCLUSION

In this thesis, we have summarized our main contributions to MRF image modeling. We have addressed
many aspects of MRF modeling: efficient prior models (multiscale, hierarchical, and multi-layer models);
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Fig. 15. Comparison of the segmentation results obtained by the proposed method [18], [19] and those produced by the
algorithm of Khan & Shah [66].

imaging models for color, texture, motion features, and efficient combination of these segmentation cues;
methods to estimate model parameters as well as different optimization techniques. The proposed methods
have been applied to a variety of image segmentation problems including remote sensing imagery and
change detection. The proposed algorithms proved to be efficient for implementation on special hardware
(like the CNN) as well as on parallel architectures.

It is clear, however, that segmentation based solely on low-level image features is a hard problem. Using
a classicalsmoothnessprior may not be sufficient to achieve good quality results under certain conditions
like blur, high noise or cluttered background. In such situations one needs to adopt more elaborateshape
priors. Indeed, when the form of the regions to be segmented are known a priori (just like for the human
visual system) then dealing with blur or noise becomes much easier. This naturally leads to an interest in
shape modelling and registration techniques – our current research topics.

REFERENCES

[1] Z. Kato, M. Berthod, and J. Zerubia, “Parallel Image Classification using Multiscale Markov Random Fields.” inProc. ICASSP,
Minneapolis, Apr. 1993.

[2] ——, “Multiscale Markov random field models for parallel image classification,” inProceedings of International Conference on
Computer Vision. Berlin, Germany: IEEE, May 1993, pp. 253–257.

[3] ——, “A hierarchical Markov random field model and multi-temperature annealing for parallel image classification,” INRIA, Sophia
Antipolis, France, Research Report 1938, Aug. 1993. [Online]. Available: http://www.inria.fr/rrrt/rr-1938.html

[4] ——, “Parallel image classification using multiscale Markov random fields,” inProceedings of International Conference on Acoustics,
Speech and Signal Processing, vol. 5. Minneapolis, USA: IEEE, Apr. 1993, pp. 137–140.

[5] ——, “A hierarchical Markov random field model for image classification,” inProceedings of International Workshop on Image and
Multidimensional Digital Signal Processing. Cannes, France: IEEE, Sept. 1993.

[6] ——, “A hierarchical Markov random field model and multi-temperature annealing for parallel image classification,”Computer Vision,
Graphics and Image Processing: Graphical Models and Image Processing, vol. 58, no. 1, pp. 18–37, Jan. 1996.



HABILITATION THESIS OCTOBER 30, 2007 20

[7] J. Zerubia, Z. Kato, and M. Berthod, “Multi-temperature annealing: A new approach for the energy-minimization of hierarchical Markov
random field models,” inProceedings of International Conference on Pattern Recognition, vol. 1, IAPR. Jerusalem, Israel: IEEE,
Oct. 1994, pp. 520–522.

[8] Z. Kato, J. Zerubia, and M. Berthod, “Unsupervised parallel image classification using a hierarchical Markovian model,” INRIA,
Sophia Antipolis, France, Research Report 2528, Apr. 1995. [Online]. Available: http://www.inria.fr/rrrt/rr-2528.html

[9] Z. Kato, M. Berthod, J. Zerubia, and W. Pieczynski, “Unsupervised adaptive image segmentation,” inProceedings of International
Conference on Acoustics, Speech and Signal Processing, vol. 4. Detroit, Michigan, USA: IEEE, May 1995, pp. 2399–2402.

[10] Z. Kato, J. Zerubia, and M. Berthod, “Unsupervised parallel image classification using a hierarchical Markovian model,” inProceedings
of International Conference on Computer Vision. Cambridge, MA, USA: IEEE, June 1995, pp. 169–174.

[11] ——, “Unsupervised parallel image classification using Markovian models,”Pattern Recognition, vol. 32, no. 4, pp. 591–604, Apr.
1999.

[12] Z. Kato and T. C. Pong, “A Markov random field image segmentation model using combined color and texture features,” inProceedings
of International Conference on Computer Analysis of Images and Patterns, ser. Lecture Notes in Computer Science, W. Skarbek, Ed.,
vol. 2124. Warsaw, Poland: Springer, Sept. 2001, pp. 547–554.

[13] ——, “A Markov random field image segmentation model for color textured images,”Image and Vision Computing, vol. 24, no. 10,
pp. 1103–1114, Oct. 2006.

[14] Z. Kato, “Reversible jump Markov chain Monte Carlo for unsupervised MRF color image segmentation,” inProceedings of British
Machine Vision Conference, A. Hoppe, S. Barman, and T. Ellis, Eds., vol. 1. Kingston, UK: BMVA, Sept. 2004, pp. 37–46.

[15] ——, “Segmentation of color images via reversible jump MCMC sampling,”Image and Vision Computing, 2007, in press.
[16] Z. Kato, T. C. Pong, and G. Q. Song, “Multicue MRF image segmentation: Combining texture and color,” inProceedings of International

Conference on Pattern Recognition, vol. 1, IAPR. Quebec, Canada: IEEE, Aug. 2002, pp. 660–663.
[17] ——, “Unsupervised segmentation of color textured images using a multi-layer MRF model,” inProceedings of International Conference

on Image Processing, vol. I. Barcelona, Spain: IEEE, Sept. 2003, pp. 961–964.
[18] Z. Kato and T. C. Pong, “Video object segmentation using a multicue Markovian model,” inJoint Hungarian-Austrian Conference

on Image Processing and Pattern Recognition, D. Chetverikov, L. Czuni, and M. Vincze, Eds., KEPAF, OAGM/AAPR. Veszprem,
Hungary: Austrian Computer Society, May 2005, pp. 111–118.

[19] ——, “A multi-layer MRF model for video object segmentation,” inProceedings of Asian Conference on Computer Vision, ser. Lecture
Notes in Computer Science, P. J. Narayanan, S. K. Nayar, and H.-Y. Shum, Eds., vol. 3852. Hyderabad, India: Springer, Jan. 2006,
pp. 953–962.

[20] C. Benedek, T. Sziranyi, Z. Kato, and J. Zerubia, “A multi-layer MRF model for object-motion detection in uregistered airborne
image-pairs,” inProceedings of International Conference on Image Processing, IEEE. San Antonio, Texas, USA: IEEE, Sept. 2007.

[21] C. Benedek, T. Szirnyi, Z. Kato, and J. Zerubia, “A three-layer MRF model for object motion detection in airborne images,” INRIA,
Sophia Antipolis, France, Research Report 6208, June 2007. [Online]. Available: https://hal.inria.fr/inria-00150805

[22] Z. Kato, J. Zerubia, and M. Berthod, “Image classification using Markov random fields with two new relaxation methods:
Deterministic pseudo annealing and modified Metropolis dynamics,” INRIA, Sophia Antipolis, France, Research Report 1606, Feb.
1992. [Online]. Available: http://www.inria.fr/rrrt/rr-1606.html

[23] ——, “Satellite image classification using a modified Metropolis dynamics,” inProceedings of International Conference on Acoustics,
Speech and Signal Processing, vol. 3. San-Francisco, California, USA: IEEE, Mar. 1992, pp. 573–576.

[24] ——, “Bayesian image classification using Markov random fields,” inMaximum Entropy and Bayesian Methods, A. Mohammad-Djafari
and G. Demoment, Eds. Kluwer Academic Publisher, 1993, pp. 375–382.

[25] M. Berthod, Z. Kato, and J. Zerubia, “DPA: A deterministic approach to the MAP,”IEEE Transactions on Image Processing, vol. 4,
no. 9, pp. 1312–1314, Sept. 1995.

[26] M. Berthod, Z. Kato, S. Yu, and J. Zerubia, “Bayesian image classification using Markov random fields,”Image and Vision Computing,
vol. 14, pp. 285–295, 1996.

[27] C. Gradwohl and Z. Kato, “Supervised image segmentation using Markov random fields,” Demo program, Feb 2005. [Online].
Available: http://www.inf.u-szeged.hu/∼kato/software/mrfdemo.html

[28] T. Sziranyi, J. Zerubia, D. Geldreich, and Z. Kato, “Cellular neural network in Markov random field image segmentation,” inProceedings
of International Workshop on Cellular Neural Networks and their Applications. Seville, Spain: IEEE, June 1996, pp. 139–144.

[29] T. Sziranyi, J. Zerubia, L. Czuni, D. Geldreich, and Z. Kato, “Image segmentation using Markov random field model in fully parallel
cellular network architectures,”Real Time Imaging, vol. 6, no. 3, pp. 195–211, June 2000.

[30] Z. Kato, T. C. Pong, and J. C. M. Lee, “Color image segmentation and parameter estimation in a Markovian framework,”Pattern
Recognition Letters, vol. 22, no. 3-4, pp. 309–321, Mar. 2001.

[31] ——, “Motion compensated color video classification using Markov random fields,” inProceedings of Asian Conference on Computer
Vision, ser. Lecture Notes in Computer Science, R. Chin and T. C. Pong, Eds., vol. 1351. Hong Kong, China: Springer, Jan. 1998,
pp. 738–745.

[32] Z. Kato, X. Ji, T. Sziranyi, Z. Toth, and L. Czuni, “Content-based image retrieval using stochastic paintbrush transformation,” in
Proceedings of International Conference on Image Processing, vol. 1. New York, USA: IEEE, Sept. 2002, pp. 944–947.

[33] X. Ji, Z. Kato, and Z. Huang, “Non-photorealistic rendering and content-based image retrieval,” inProceedings of Pacific Conference
on Computer Graphics and Applications. Canmore, Canada: IEEE, Oct. 2003, pp. 153–162.

[34] D. Cremers, F. Tischhauser, J. Weickert, and C. Schnorr, “Diffusion snakes: Introducing statistical shape knowledge into the Mumford-
Shah functional,”International Journal of Computer Vision, vol. 50, no. 3, pp. 295–313, 2002.

[35] C. Kervrann and F. Heitz, “Statistical deformable model-based segmentation of image motion,”IEEE Transactions on Image Processing,
vol. 8, pp. 583–588, 1999.

[36] M. Rochery, I. H. Jermyn, and J. Zerubia, “Higher order active contours and their application to the detection of line networks in



HABILITATION THESIS OCTOBER 30, 2007 21

satellite imagery,” inProceedings of2nd IEEE Workshop on Variational, Geometric and Level Set Methods in Computer Vision, at
ICCV, Nice, France, Oct. 2003.

[37] Z. Tu, X. Chen, A. Yuille, and S.-C. Zhu, “Image parsing: Unifying segmentation, detection, and recognition,”International Journal
of Computer Vision, no. Marr Prize Issue, 2005.

[38] S. C. Zhu and A. Yuille, “Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 18, no. 9, pp. 884–900, 1996.

[39] S. A. Barker and P. J. W. Rayner, “Unsupervised image segmentation using Markov random field models,”Pattern Recognition, vol. 33,
no. 4, pp. 587–602, Apr 2000.

[40] S. Lakshmanan and H. Derin, “Simultaneous parameter estimation and segmentation of gibbs random fields using simulated annealing,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 11, no. 8, pp. 799–813, Aug. 1989.

[41] S. Geman and D. Geman, “Stochastic relaxation, Gibbs distributions and the Bayesian restoration of images,”IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 6, pp. 721–741, 1984.

[42] A. Blake and A. Zisserman,Visual reconstruction. MIT Press, 1987.
[43] D. Mumford and J. Shah, “Optimal approximations by piecewise smooth functions and associated variational problems,”Communica-

tions on Pure and Applied Mathematics, vol. 42, pp. 577–685, 1989.
[44] D. Kersten, P. Mamassian, and A. Yuille, “Object perception as Bayesian inference,”Annual Review of Psychology, vol. 55, pp. 271–304,

2004.
[45] D. Mumford, “Pattern theory: a unifying perspective,” inPerception as Bayesian Inference, D. Knill and W. Richards, Eds. Cambridge

University Press, 1996, pp. 25–62.
[46] B. Chalmond,Modeling and Inverse Problems in Image Analysis. Springer, 2003.
[47] G. Winkler, Image Analysis, Random Fields and Markov Chain Monte Carlo Methods, 2nd ed. Springer, 2003.
[48] D. Mumford, “The Bayesian rationale for energy functionals,” inGeometry-Driven Diffusion in Computer Vision, B. Romeny, Ed.

Kluwer Academic, 1994, pp. 141–153.
[49] N. Vandenbroucke, L. Macaire, and J. Postaire, “Color image segmentation by supervised pixel classification in a color texture feature

space. Application to soccer image segmentation,” inProceedings of the International Conference on Pattern Recognition, vol. III,
Barcelona, Spain, 2000, pp. 621–624.

[50] J. C. Noordam, G. W. Otten, A. J. M. Timmermans, and B. v. Zwol, “High-speed potato grading and quality inspection based on a
color vision system,” inProc. of SPIE Machine Vision Applications in Industrial Inspection, K. W. T. Jr., Ed., vol. 3966, 2000, pp.
206–220.

[51] A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood from incomplete data via the em algorithm,”J. Roy. Statist. Soc.,
ser. B, vol. vol. 39, no. 1, pp. 1–38, 1977.

[52] G. Celeux and J. Diebolt, “The SEM algorithm: a probabilisitic teacher algorithm derived from the EM algorithm for the mixture
problem,” Computational Statistics Quaterly, vol. 2, pp. 73–82, 1985.

[53] P. Masson and W. Pieczynski, “SEM Algorithm and Unsupervised Statistical Segmentation of Satellite Images,”IEEE Geoscience and
Remote Sensing, vol. 31, no. 3, pp. 618–633, May 1993.

[54] B. Chalmond, “An Iterative Gibbsian Technique for Reconstruction of M-ary Images,”Pattern Recognition, vol. 22, no. 6, 1989.
[55] B. Braathen, W. Pieczynski, and P. Masson, “Global and Local Methods of Unsupervised Bayesian Segmentation of Images,”Machine

Graphics and Vision, vol. 2, no. 1, pp. 39–52, 1993.
[56] N. Giordana and W. Pieczynski, “Estimation of generalized multisensor hidden Markov chains and unsupervised image segmentation,”

IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 19, no. 5, pp. 465–475, May 1997.
[57] E. Littmann and H. Ritter, “Adaptive color segmentation–a comparison of neural and statistical methods,”IEEE Trans. on Neural

Networks, vol. 8, no. 1, pp. 175–185, Jan. 1997.
[58] L. Gupta and T. Sortrakul, “A Gaussian-mixture-based image segmentation algorithm,”Pattern Recognition, vol. 31, no. 3, pp. 315–325,

1998.
[59] R. Azencott, “Markov fields and image analysis,”Proc. AFCET, Antibes, 1987.
[60] J. Besag, “On the statistical analysis of dirty pictures,”Journal of the Royal Statistical Society, series B, vol. 48, no. 3, pp. 259–302,

1986.
[61] P. V. Laarhoven and E. Aarts, “Simulated annealing : Theory and applications,”Reidel Pub., Dordrecht, Holland, 1987.
[62] Y. Bard, Nonlinear Parameter Estimation. Academic Press, Inc., 1974.
[63] W. Pieczynski, “Statistical image segmentation,” inMachine Graphics and Vision, GKPO’92, Naleczow, Poland, May 1992, pp. 261–

268.
[64] D. Geman, “Bayesian image analysis by adaptive annealing,” inProc. IGARSS’85, Amherst, USA, Oct. 1985, pp. 269–277.
[65] Y. Deng, , and B. S. Manjunath, “Unsupervised segmentation of color-texture regions in images and video,”IEEE

Transactions on Pattern Analysis and Machine Intelligence, vol. 23, no. 8, pp. 800–810, Aug. 2001. [Online]. Available:
http://vision.ece.ucsb.edu/segmentation/jseg/

[66] S. Khan and M. Shah, “Object based segmentation of video using color, motion and spatial information,” inProceedings of International
Conference on Computer Vision and Pattern Recognition, vol. II. Kauai, Hawaii: IEEE, Dec. 2001, pp. 746–751.


