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ABSTRACT
We consider the problem of planar object registration on binary im-
ages where the aligning transformation is restricted to the group
of affine transformations. Previous approaches usually require es-
tablished correspondences or the solution of nonlinear optimization
problems. Herein we show that it is possible to formulate the prob-
lem as the solution of a system of up to third order polynomial equa-
tions. These equations are constructed in a simple way using some
basic geometric information of binary images. It does not need es-
tablished correspondences nor the solution of complex optimization
problems. The resulting algorithm is fast and provides a direct solu-
tion regardless of the magnitude of transformation.

Index Terms— Image registration, affine transformation,
binary image.

1. INTRODUCTION

Registration is a crucial step in almost all image processing
tasks where images of different views or sensors of an ob-
ject need to be compared or combined. Typical application
areas include visual inspection, target tracking, super resolu-
tion, shape modeling, object recognition, or medical image
analysis. In a general setting, one is looking for a transforma-
tion which aligns two images such that one image (template)
becomes similar to the second one (observation). Due to the
large number of possible transformations, there is a huge vari-
ability of the object signature. Hence the problem is inher-
ently ill-defined unless this variability is taken into account.
A good survey of affine registration methods can be found

in [1, 2]. Basically these algorithms fall into two main cate-
gories: feature-based methods aim at establishing point cor-
respondences between the two images. For that purpose, they
extract some easily detectable landmarks (e.g. contours, in-
tersection of lines, corners, etc.) from the images and then
use these landmarks to establish correspondences based on a
similarity metric. A common assumption needed to find good
matches is that the unknown transformation is close to iden-
tity (i.e. the strength of the deformation is limited). On the
other hand area-based methods treat the problem without at-
tempting to detect salient objects. It searches the position on
the observation where the matching of the two object is the

best and based on this looks for sufficient alignment between
the images.
The parametric estimation of two-dimensional affine

transformations between two gray-level images has been
addressed by Hagege and Francos in [3] which provides an
accurate and computationally simple solution avoiding both
the correspondence problem as well as the need for optimiza-
tion. The basic idea is to reformulate the original problem as
an equivalent linear parameter estimation one which can be
easily solved. This solution, however, makes use of the radio-
metric information which is not available in binary images.
Herein we propose an extension of these ideas to the binary
case.

2. ESTIMATION OF AFFINE TRANSFORMATIONS

Let us denote the points of the template and the observation
by x,y ∈ P

2 respectively (i.e. we use homogeneous coordi-
nates). A is the unknown affine transformation that we want
to recover. We can define the identity relation as follows

Ax = y ⇔ x = A−1y. (1)

If we can observe some image features (e.g. gray-level of the
pixels) that are invariant under the transformationA then the
following equality also holds

g(x) = h(Ax) ⇔ g(A−1y) = h(y). (2)

Furthermore, the above equations still hold when an invariant
function ω : R

n → R
n is acting on both sides of the equa-

tions. Indeed, for a properly chosen ω

ω(x) = ω(A−1y), and (3)
ω(g(x)) = ω(h(Ax)) = ω(h(y)). (4)

The basic idea of the proposed approach is to generate enough
linearly independent equations by making use of the relations
in Eq. (1)–(4). Since A has 6 unknown elements, we need at
least 6 equations.
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2.1. Basic solution using polynomial equations

Since binary images do not contain radiometric information,
they can be represented by their characteristic function � :
P

2 → {0, 1}, where 0 and 1 correspond to the background
and foreground respectively. Therefore in the binary case
Eq. (2) becomes

�t(x) = �o(Ax) ⇔ �t(A
−1y) = �o(y), (5)

whereA is the transformation aligning the template (denoted
by �t) and observation (denoted by �o). It is clear that a char-
acteristic function is not rich enough so we cannot use Eq. (5)
to generate new equations. Hence we have to use the identity
relation to impose new constraints by applying ω : P

2 → P
2

to the coordinates of the points like in Eq. (3). Thus multi-
plying both sides of Eq. (5) by ω(x) yields a new equation.
Furthermore, because of the lack of point correspondences,
we have to integrate over R

2 yielding∫
R2

ω(x)�t(x)dx =
1

|A|

∫
R2

ω(A−1y)�o(y)dy, (6)

where we have used the integral transformation x = A−1y,
dx = |A|−1dy. The Jacobian |A| (i.e. the measure of the
transformation A) can then be evaluated through Eq. (5),
hence∫

R2

�t(x) = |A−1|

∫
R2

�o(y) ⇒ |A| =

∫
R2 �o(y)∫
R2 �t(x)

. (7)

The sign ambiguity of the determinant can be easily elimi-
nated: A negative Jacobian would mean that the transforma-
tion is not orientation-preserving. In practice, however, such
transformations are usually excluded by physical constraints.
Since the characteristic functions take only values from

{0, 1}, we can further simplify the integrals in Eq. (6):∫
R2

ω(x)�(x) =

∫
F

ω(x)�(x) =

∫
F

ω(x),

where the domain F consists of the foreground regions: F =
{x ∈ P

2|�(x) = 1}. Therefore evaluating the integrals in
Eq. (7) yields the area of the foreground regions. From this
point of view, the measure of the transformation |A| corre-
sponds to the ratio of the observation and template objects’
area. In the remaining part of this paper, we will always in-
tegrate over the respective domain F unless otherwise noted.
So we get the simplified version of Eq. (6)

|A|

∫
ω(x) =

∫
ω(A−1y). (8)

In order to obtain a polynomial system from Eq. (8), the
applied ω functions should be carefully selected. We found
that if there exists a set of three-variate polynoms {pi|pi ∈

R[x1, x2, x3] and deg(pi) ≥ 1, i = 1, . . . , n} and a set of
functions {fi}

n
i=1 : P

2 → R such that∫
ω(k)(x) =

n∑
i=1

pi(A
−1
k )

∫
fi(y), k = 1, 2

is satisfied then the resulting equations are polynomials.
ω(k)(x) is the kth coordinate of ω(x) and A−1

k is the kth
row of A−1. It is easy to see that the class of xn(n ∈ N)
functions and their linear combinations achieve this property.
Thus setting ω(k)(x) = xn

k , Eq. (8) becomes

|A|

∫
xn

k =
n∑

i=0

(
n

i

) i∑
j=0

(
i

j

)
qn−i
k1 q

i−j
k2 q

j
k3

∫
yn−i
1 y

i−j
2 ,

(9)
where k = 1, 2; n = 1, 2, 3 and qki denotes the unknown
elements of the inverse transformation A−1. Note that in the
coefficients we can recognize the first, second and third order
moments of the template and observation.
The system of Eq. (9) contains six polynomial equations

up to order three which is enough to solve for all unknowns.
In fact there are two independent systems (k = 1, 2), each
consisting of three equations. Unlike in [3], however, this is
not a linear system thus we have up to six possible solutions
for each unknown qki due to the cubic polynomial equations.
Out of these potential solutions, we can get the right one by
dropping the complex roots and selecting the transformation
whose determinant matches the Jacobian computed in Eq. (7).
The uniqueness of the solution is then guaranteed as long as
the observation and template are not affine symmetric [3]. We
also remark that the integrals in Eq. (9) need to be evaluated
only once hence the complexity of the algorithm depends lin-
early on the size of the objects.

3. NUMERICAL IMPLEMENTATION

We have constructed our polynomial equations in the contin-
uum but in practice we only have a limited precision digital
image. Hence the integral over the domain F can only be ap-
proximated by a discrete sum over the foreground pixels, for
example ∫

y1 ≈
n∑

i=1

y
(i)
1 ,

where n is the number of pixels and y
(i)
1 is the first coordinate

of the ith point. Clearly, the resolution of the images affect
the precision of this approximation. As the mesh size tends to
zero, the finite sums approximate better the integral. There-
fore, our method performs better on higher resolution images.
However, due to its linear time complexity, the algorithm runs
quite fast on huge images thus we do not have to compromise
quality when CPU time is critical.
The numerical error caused by large pixel coordinates can

be an issue, especially in our case where these coordinates
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Fig. 1. Normalization of the template (T ) and observation
(O). First the origin is translated into the center of the image
then the coordinates are scaled to [−1, 1] × [−1, 1].

need to be raised to power three. A standard technique to min-
imize this error is to normalize the image by transforming it
into [−1, 1]× [−1, 1]. Such a transformation is composed of a
translation of the origin into the center of the image followed
by an appropriate scaling. As shown on Fig. 1, applying the
normalizing transformation G to the template and H to the
observation, the algorithm will now recover the transforma-
tionA∗ which aligns the normalized imagesO′ and T ′. Since
our equations are based on integral transform, the normaliza-
tion has to be taken into account as it affects the measure of
integrals. Indeed, x′ = Tx and dx′ = |T|dx, where |T| is
the Jacobian of the transformation (T). Hence∫

ω(x′)dx′ = |T|

∫
ω(Tx)dx,

where the left hand side of the equation is the integral on the
normalized image based on the modified measure. Therefore
when normalizing the images, the left and right hand sides of
the equations in Eq. (9) have to be multiplied by |G| and |H|
respectively and the Jacobian of the transformation is

|A∗| =
|H|

∫
�o(y)

|G|
∫
�t(x)

=
|H|

|G|
|A|.

Once the transformation A∗ aligning the normalized images
is obtained, the original transformationA is recovered by un-
normalizingA∗:

A = H−1A∗G.

4. EXPERIMENTAL RESULTS

The proposed algorithm has been tested on a large database
of binary images of size 1000 × 1000. The dataset consists
of 39 different shapes and their transformed versions, a total
of more than 40000 images. Some typical examples of these
images can be seen in Fig. 2. In order to quantitatively eval-
uate the results, we have defined two kind of error measures.
The first one (denoted by ε) measures the distance between
the true transformation A and Â obtained by our algorithm.

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 2. Registration results of the proposed algorithm. (a)–(d)
Template images; (e)–(h) Observations of the first row; (i)–
(l) Images obtained by applying the inverse of the recovered
transformation to the observations in (e)–(h).

Another measure is the absolute difference (denoted by δ) be-
tween the observation and the registered image.

ε =
1

m

∑
p

‖(A − Â)p‖

‖Ap‖
, and δ =

|R 	 O|

|R| + |O|
,

where m is the number of template pixels (denoted by p), 	
means the symmetric difference, whileR andO denote the set
of pixels of the registered image and observation respectively.
The smaller these numbers are, the better is the matching. The
median of these errors on the whole database was ε = 2.91
pixels and δ = 0.46%. The algorithm has been implemented
in Matlab 7.2 and ran on a SunFire V490 under Solaris 10 op-
erating system. The average runtime was around one second
including the normalization, the computation of the integrals
and the solution of the polynomial system.
Although we have to solve a nonlinear system of equa-

tions, the proposed method provides the result without any
iterative optimization step or correspondence. The time com-
plexity is O(N), where N is the number of the pixels of the
images. Clearly, most of the time is spent on parsing the
foreground pixels. Note however, that all the integrals can
be computed in a single pass over the images.
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Table 1. Registration results on 1000 randomly chosen im-
ages using the method of Kannala et al. [6] and the proposed
algorithm.

Runtime (sec.) ε (pixel) δ (%)
Kannala et al. [6] 100.87 16.61 13.41

Proposed 1.06 2.87 0.42

4.1. Comparison to previous approaches

Flusser et al. propose an image registration algorithm based
on affine moments in [4]. First they extract some represen-
tative regions and compute their moments, then the regions
from the template and observation are matched based on the
similarity of their moments. Then point correspondences are
established as the centers of the region pairs and the transfor-
mation is recovered in a classical way by solving a system of
equations constructed from the point correspondences. While
both methods make use of moments, the fundamental differ-
ence is that our method provides a direct solution without any
point correspondences.
Another recent approach for binary registration of images

has been presented in [5]. In fact, the method addresses the
registration of images taken under very different lighting con-
ditions or in different seasons. Hence it is not possible to di-
rectly measure an invariant image feature as shown in Eq. (2).
To overcome this difficulty, the authors extract edges from the
images and compute some statistics of the edges which are
used as a similarity metric for matching features. Although
we address a different problem, this approach demonstrates
the importance of the registration of binary images. In many
cases, the variability of the object signatures is so complex
that the only feasible way to register such images is to re-
duce them to a binary representation and solve the registration
problem in that context.
Probably the most closely related approach is the binary

registration algorithm proposed by Kannala et al. [6]. The
fundamental difference is that [6] constructs a system of
equations by looking at the images at 3 different scales. Al-
though the resulting system is linear, the solution is inherently
less precise as in each equation they can only use part of the
available information. On the other hand, our approach con-
structs the equations by making use of the invariant functions
ω hence we always use all the information available in the im-
ages. We have obtained the Matlab implementation from the
authors and conducted a comparative test on 1000 randomly
chosen images from our database. The results presented in
Table 1 and Fig. 3 show that our method outperforms [6] in
both quality and computing time.

5. CONCLUSIONS

In this paper, we have presented a novel approach for binary
image registration. The fundamental difference compared

(a) (b) (c) (d)

Fig. 3. (a) Template image; (b) The observation; (c) Reg-
istration result of [6]; (d) Result obtained by the proposed
method. The latter two images has been obtained by apply-
ing the inverse of the recovered transformation (Â

−1
) to the

observation.

to classical image registration algorithms is that our model
works without any landmark extraction, correspondence, or
iterative optimization. It makes use of all the information
available in the input images and constructs a polynomial
system of equations which can be solved exactly. The com-
plexity of the algorithm is linear hence it is potentially capable
of registering images at near real-time speed.
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