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Abstract
This paper deals with the problem of unsupervised

classification of images modeled by Markov Random
Fields (MRF). If the model parameters are known
then we have various methods to solve the segmen-
tation problem (simulated annealing, ICM, etc. . . ).
However, when they are not known, the problem be-
comes more difficult. One has to estimate the hid-
den label field parameters from the only observable
image. Our approach consists of extending a recent
iterative method of estimation, called Iterative Con-
ditional Estimation (ICE) to a hierarchical marko-
vian model. The idea resembles the Estimation-
Maximization (EM) algorithm as we recursively look
at the Maximum a Posteriori (MAP) estimate of the
label field given the estimated parameters then we look
at the Maximum Likelihood (ML) estimate of the pa-
rameters given a tentative labeling obtained at the pre-
vious step. We propose unsupervised image classifica-
tion algorithms using a hierarchical model. The only
parameter supposed to be known is the number of re-
gions, all the other parameters are estimated. The
presented algorithms have been implemented on a Con-
nection Machine CM200. Comparative tests have been
done on noisy synthetic and real images (remote sens-
ing).
Key Words: hierarchical Markovian model, param-
eter estimation, unsupervised image classification.

1 Introduction
In real life applications, the model parameters are

usually unknown, one has to estimate [1] them only
from the observable image. From a statistical view-
point, this means that we want to estimate parameters
from random variables whose joint distribution is a
mixture of distributions. If we have a realization of the
label field then the problem is relatively easy, we have
many standard methods to do parameter estimation
(Maximum Likelihood, Coding method [2], etc. . . ).
Unfortunately, such a realization is not known, so the
direct use of such estimation algorithm is impossible.
We have to approximate it by some function of the
image data, which is the only observable attribute.

Some nowadays used algorithms are iterative [3, 14,
15], subsequently generating a labeling, estimating pa-
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rameters from it, then generating a new labeling us-
ing these parameters, etc . . . For such a method, we
need a reasonably good initial value for each parame-
ter. Since the classes of a labeling problem are mostly
represented by a Gaussian distribution, the initializa-
tion of the mean and the variance of each class is very
important because of its influence on subsequent label-
ings and hence on the final estimates. On the other
hand, it is a classical problem, namely the determina-
tion of the modes of a Gaussian mixture without any a
priori information. There are many approaches in this
domain: Method of moments [6], Prony’s Method [5]
or geometrical analysis of the histogram [16], for in-
stance.

Herein, we will present a parameter estimation
method applied to hierarchical MRF models. The pro-
posed algorithm has been tested on image segmenta-
tion problems. Comparative test have been done on
noisy synthetic and real satellite images.

2 The Parameter Estimation Problem
Let us briefly review some notations. F = {Fs :

s ∈ S} denotes a set of image data on the sites (or
pixels) S = {s1, s2, . . . , sN}. Furthermore, each of
these sites may take a label from Λ = {0, 1, . . . , L −
1}. The configuration space Ω is the set of all global
discrete labelings ω = (ωs1 , . . . , ωsN ), ωs ∈ Λ. The
label process is denoted by X .

In parameter estimation problems, F is also called
the observed image and X denotes the unobserved im-
age attributes (labels). Furthermore, we are given n
parameters forming a vector Θ which appears in the
MRF model:

Θ =




ϑ1
...

ϑn


 (1)

Usually, Θ is considered to be known. Therefore, one
is looking for the labeling which maximizes the a pos-
teriori distribution

ω̂ = arg max
ω∈Ω

PΘ(ω | F , Θ). (2)

where ω̂ is the MAP estimate of the label field, given
F , under the model PΘ (in the followings, the index
Θ will be omitted). If both Θ and ω are unknown, the



maximization problem in Equation (2) becomes [7, 12]

(ω̂, Θ̂) = arg max
ω,Θ

P (ω,F | Θ). (3)

The pair (ω̂, Θ̂) is the global maximum of the joint
probability P (ω,F | Θ). If we regard Θ as a random
variable, the above maximization is an ordinary MAP
estimation in the following way [7]: Let us suppose,
that Θ is restricted to a finite volume domain DΘ and
suppose that Θ is uniform on DΘ (that is P (Θ) is
constant). Then, we get [7]:

arg max
ω,Θ

P (ω, Θ | F)

= arg max
ω,Θ

P (ω,F | Θ)P (Θ)
P (F)

(4)

= arg max
ω,Θ

P (ω,F | Θ)∫
DΘ

∑
ω∈Ω P (ω,F | Θ)dΘ

(5)

= arg max
ω,Θ

P (ω,F | Θ). (6)

However, this maximization is very difficult, having
no direct solution. Even Simulated Annealing (SA)
is not implementable because the local characteristics
with respect to the parameters Θ cannot be computed
from P (ω,F | Θ). One possible solution is to adopt
the following criterion instead [7, 12]:

ω̂ = arg max
ω

P (ω,F | Θ̂) (7)

Θ̂ = arg max
Θ

P (ω̂,F | Θ) (8)

Clearly, Equation (7) is equivalent to Equation (3) for
Θ = Θ̂ and Equation (8) is equivalent to Equation (3)
with ω = ω̂. Furthermore, Equation (7) is equiva-
lent to the MAP estimate of ω in the case of known
parameters:

arg max
ω

P (ω,F | Θ̂) = arg max
ω

P (ω | F , Θ̂)P (F | Θ̂)

= arg max
ω

P (ω | F , Θ̂).

3 Parameter Estimation from Incom-
plete Data

In real life applications, labeled samples are usually
not available. We have to estimate the parameters
from an unlabeled sample. In statistics, the problem
is known as the incomplete data problem. A broadly
applicable algorithm has been proposed by Dempster
et al. [4], called Expectation – Maximization (EM).
The algorithm aims at determining the ML estimate
of the parameters Θ by making use of the estimation
of the missing data (i.e. the label field X ). A few other
iterative estimation methods [7, 14, 15] are available
when dealing with incomplete data.

Another EM-like algorithm has been proposed by
Geman in [7], which is called Adaptive Simulated An-
nealing (ASA). The algorithm was adapted to image
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Figure 1: Hierarchical MRF model.

segmentation problems in [12], where the convergence
of ASA has also been proved. The ASA algorithm is
very similar to the SEM, it may be seen as a special
case where the S-step is implemented by a Simulated
Annealing.

Algorithm 3.1 (ASA)

©1 Set k = 0 and initialize Θ̂0.
©2 Do n iterations (n ≥ 1) of SA sampling from P (ω |

F , Θ̂k). The resulting labeling is denoted by ω̂k+1.
©3 Update the current estimate of the parameters,

Θ̂k+1 to the ML estimate based on the current la-
beling ω̂k+1.

©4 Goto Step ©2 with k = k + 1 until Θ̂ stabilizes.

If ML estimate is not tractable, which is often the
case when dealing with MRF models, one can use an
approximation (Maximum Pseudo Likelihood (MPL),
for instance). We remark that a similar algorithm has
been reported in [2]. It uses ICM instead of SA in
Step ©2 .

4 Unsupervised Segmentation Using a
Hierarchical Model

Considering the segmentation model presented in [9,
10] (see Figure 1), we have the following logarithmic
likelihood function:

M∑

i=0

∑

si∈Si

∑

s∈bi

si

(
− ln(

√
2πσωs)−

(fs − µωs)
2

2σ2
ωs

)

− β

M∑

i=0

qi
∑

Ci∈Ci

δ(ω̂Ci)

︸ ︷︷ ︸
Nih(ω̂)

−γ
∑

C∈C̄3
δ(ω̂C)

︸ ︷︷ ︸
N̄ih(ω̂)

− ln(Z(β, γ))

(9)
where qi is the number of cliques between two neigh-
boring blocks at scale Bi. N ih(ω̂) denotes the number
of inhomogeneous cliques siting at the same scale and
N̄ ih(ω̂) denotes the number of inhomogeneous cliques



siting astride two neighboring levels in the pyramid.
First, let us consider the first term:

M∑

i=0

∑

si∈Si

∑

s∈bi

si

(
− ln(

√
2πσωs)−

(fs − µωs
)2

2σ2
ωs

)

=
∑

λ∈Λ

M∑

i=0

∑

si∈Si
λ

∑

s∈bi

si

(
− ln(

√
2πσλ)− (fs − µλ)2

2σ2
λ

)

(10)
where Si

λ is the set of sites at level i where ω̂si = λ.
Derivating with respect to µλ and σλ, we get:

∀λ ∈ Λ:

µλ =
1∑M

i=0 | Si
λ |

M∑

i=0

∑

si∈Si
λ

∑

s∈bi

si

fs

σ2
λ =

1∑M
i=0 | Si

λ |
M∑

i=0

∑

si∈Si
λ

∑

s∈bi

si

(fs − µλ)2(11)

Notice that a grey-level value fs may be considered
several times. More precisely, fs is considered m-times
in the above sum for a given λ if there is m scales
where ω̂ assigns the label λ to the site s. m can also
be seen as a weight. Obviously, the more s has been
labeled by λ at different levels, the more is probable
that s belongs to class λ and hence its grey-level value
fs characterizes better the class λ. The derivates of
the logarithmic likelihood function with respect to β
and γ are given by:

∂

∂β

(−βN ih(ω̂)− ln(Z(β, γ))
)

= −N ih(ω̂)− ∂

∂β
ln(Z(β, γ)) (12)

∂

∂γ

(−γN̄ ih(ω̂)− ln(Z(β, γ))
)

= −N̄ ih(ω̂)− ∂

∂γ
ln(Z(β, γ)) (13)

From which, we get

N ih(ω̂)

=
∑

ω∈Ω N ih(ω) exp(−βN ih(ω)− γN̄ ih(ω))∑
ω∈Ω exp(−βN ih(ω)− γN̄ ih(ω))

(14)

N̄ ih(ω̂)

=
∑

ω∈Ω N̄ ih(ω) exp(−βN ih(ω)− γN̄ ih(ω))∑
ω∈Ω exp(−βN ih(ω)− γN̄ ih(ω))

(15)

The solution of the above equations can be obtained
using the following algorithm.

Algorithm 4.1 (Hyperparameter Estimation)

©1 Set k = 0 and initialize β̂0 and γ̂0. Furthermore,
let N ih(ω̂) denote the number of inhomogeneous
cliques at the same scale and N̄ ih(ω̂) denotes the
number of inhomogeneous cliques between levels.

©2 Using SA at a fixed temperature T , generate a new
labeling η sampling from

P (X = ω) =

exp
(
− β̂k

T

∑M
i=0

∑
{s,r}∈Ci δ(ωs, ωr)

)

Z(β̂k, γ̂k)

+
exp

(
− γ̂k

T

∑
{s,r}∈C̄ δ(ωs, ωr)

)

Z(β̂k, γ̂k)
. (16)

Compute the number of inhomogeneous cliques
N ih(η) and N̄ ih(η) in η.

©3 If N ih(η) ≈ N ih(ω̂) and N̄ ih(η) ≈ N̄ ih(ω̂) then
stop, else k = k + 1. If N ih(η) < N ih(ω̂) then
decrease β̂k, if N ih(η) > N ih(ω̂) then increase β̂k.
γ̂k is obtained in the same way. Continue Step ©2
with (β̂k, γ̂k).

Hereafter we give the algorithm used for the simula-
tion:

Algorithm 4.2 (Unsupervised Segmentation)
©1 Given an image F , initialize µλ, σλ, β and γ.
©2 (Estimation) Using Algorithm 3.1 (ASA), get an

estimate Θ̂ of the parameters.

©3 (Segmentation) Given the parameters Θ̂, do an
ordinary supervised segmentation to get the MAP
estimate of the label field given F and Θ̂.

We remark, that in Step ©2 , the Gaussian parameters
were computed considering only the finest level and
not the entire pyramid (cf. Equation (11)).

5 Experimental Results
We have tested the proposed hierarchical unsuper-

vised algorithm on noisy synthetic and real images.
The algorithms were implemented on a Connection
Machine CM200 [8]. We have compared the obtained
parameters and segmentation results to the supervised
results already presented in [9]. In general, the qual-
ity of unsupervised results are as good, or sometimes
slightly better, than the results of supervised segmen-
tation. We observed, however, that the unsupervised
algorithm is more sensitive to noise than the super-
vised one. This is due to the initial conditions. In
particular the initialization of the mean and the vari-
ance of the classes (the initialization of β and γ are
not crucial). For example, in the case of the “trian-
gle” image with SNR= 3dB one class has been lost.
But with SNR= 5dB, the result is as good as for the
supervised algorithm.

Before evaluating the results, let us explain some
important points of the implementation. The only



parameter which has to be defined by the user is the
number of classes (or regions). All the other param-
eters are estimated automatically from the data. Es-
sentially, we have followed Algorithm 4.2. First, the
initial values of the mean and variance have been esti-
mated: we have used a method, proposed by Postaire
and Vasseur [16] which consists of the geometrical
analysis of the hystogram, regarded as a Gaussian
mixture, in order to determine its modes. For the
hyperparameters, we have chosen as initial values
β = 0.7 and γ = 0.1. Experiments show that these
initial values are not vital, practically any value be-
tween 0.5 and 1 is good for β and a value close to zero
is good for γ.

In the next step of Algorithm 4.2, we use the ASA
algorithm (see Algorithm 3.1) to iteratively reestimate
the parameters. Using ICM, we maximize the a pos-
teriori probability of ω, given the parameter estimates
Θ̂n. Then, the ML estimate is computed based on
the obtained labeling. Another modification is that
the Gaussian parameters were computed considering
only the finest level and not the entire pyramid as ex-
plained in Section 4. This is because the variances
obtained with the original algorithm were too large.
This modification also reduces the computing time.

Once the sequence Θ̂n becomes steady, the estima-
tion step is finished and one proceeds to the segmen-
tation (with known parameters) using the Gibbs sam-
pler, for instance.

The algorithms were tested on the “checkerboard”
(Figure 3) and “triangle” (Figure 2) images. We also
give the corresponding histogram, since the initial es-
timates are based on it. In Table 1 and Table 2, we
compare the parameters obtained by the unsupervised
algorithm to the ones used for the supervised segmen-
tation. We remark that the parameters of the super-
vised algorithm are not necessarily correct. They have
been computed on training sets selected by an expert.
In Table 4, we give the computer time of the estima-
tion and segmentation. As we can see, the estimation
requires much more time than the segmentation. The
hyperparameter estimation requires the largest part of
the computer time since it consists of generating new
labelings by SA in Step ©2 of Algorithm 4.1.

Table 3 provides an objective comparison of su-
pervised and unsupervised segmentation results based
on the number of misclassified pixels. The ob-
tained results are practically the same for supervised
and unsupervised segmentation. Many tests have
also been conducted for unsupervised classification of
SPOT satellite images given by CNES (French Space
Agency). For more details see [11].

6 Conclusion
Developing a completely data-driven algorithm for

image classification is an extremely difficult problem.
We have presented some iterative unsupervised paral-
lel segmentation algorithm for hierarchical Markovian
models. The first results are encouraging but unsuper-
vised algorithms require much more computing time
due to the hyperparameter estimation (β and γ). In
the current implementation, they are computed using

Unsupervised
Parameter Initial Final Supervised

µ0 123.5 126.7 119.2

σ2
0 256.0 903.4 659.5

µ1 170.0 151.5 149.4

σ2
1 169.0 689.3 691.4

β 0.7 0.7 0.7

γ 0.1 0.1 0.3

Table 1: Parameters of the “checkerboard” image.

Unsupervised
Parameter Initial Final Supervised

µ0 83.5 84.3 85.48

σ2
0 256.0 483.9 446.60

µ1 100.0 115.5 115.60

σ2
1 169.0 444.6 533.97

µ2 152.5 146.7 146.11

σ2
2 676.0 502.1 540.32

µ3 181.5 177.9 178.01

σ2
3 100.0 500.0 504.34

β 0.7 1.0 0.7

γ 0.1 0.1 0.1

Table 2: Parameters of the “triangle” image.

Simulated Annealing, which is very time-consuming.
Mean Field approximation would probably result in a
faster convergence [13, 17].Another important point is
the initialization of the Gaussian parameters for each
class. We have noticed that unsupervised algorithms
are more sensitive to noise than supervised ones. This
sensitivity is due to the bad initialization in the case
of noisy images.

In summary, the presented unsupervised algorithms
provide results comparable to those obtained by su-
pervised segmentations, but they require much more
computing time and they are slightly more sensitive
to noise. The main advantage is, of course, that un-
supervised methods are completely data-driven. The
only input parameter is the number of regions. We be-
lieve that, for unsupervised methods, the main prob-
lem is still the initialization of the Gaussian parame-
ters. Hence, a natural extension of this work would be
to look for more efficient initialization techniques.
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