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Abstract. We consider the estimation of 2D affine transformations align-
ing a known binary shape and its distorted observation. The classical way
to solve this registration problem is to find correspondences between the
two images and then compute the transformation parameters from these
landmarks. In this paper, we propose a novel approach where the exact
transformation is obtained as a least-squares solution of a linear system.
The basic idea is to fit a Gaussian density to the shapes which preserves
the effect of the unknown transformation. It can also be regarded as a con-
sistent coloring of the shapes yielding two rich functions defined over the
two shapes to be matched. The advantage of the proposed solution is that
it is fast, easy to implement, works without established correspondences
and provides a unique and exact solution regardless of the magnitude of
transformation.

1 Introduction

Image registration is an important step in almost all image processing tasks
where images taken at different time, from different viewpoints, or under differ-
ent modalities need to be compared or combined. Typical applications include
image mosaicing, shape matching [1], super-resolution [2] or medical image anal-
ysis [3]. In a general setting, one is looking for a transformation which aligns two
images such that one image (template) becomes similar to the second one (ob-
servation). There is a rich literature on registration methods, good surveys can
be found in [4,5]. Most of these techniques contain the following four compo-
nents: Easily detectable points of the feature space (e.g. line crossing, corners,
etc.), called landmarks, used for establishing correspondences between the two
images. For matching these points, a similarity metric is defined. The family of
admissible transformations determines the search space and the goal is to find
a transformation by minimizing the distance between the template and obser-
vation. Such methods are often called feature-based. Radiometric information
usually plays a crucial role in establishing correspondences, while the aligning
transformation is often found by the iterative closest point (ICP) algorithm [6].
However, since shapes are represented as binary images, radiometric information
is not available in our case. As a result, the correspondence problem becomes
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quite challenging. One can only use geometric information but invariant geo-
metric features (e.g. corners, junctions) might be difficult to extract (a circu-
lar shape, for instance). Another approach, called area-based registration, works
without detecting landmarks. Instead, the problem is solved by computing global
descriptors [7] or invariants of the objects [8,9]. Featureless methods [10,11] are
able to compose, both geometrically and photometrically, a pair of uncalibrated
images. A common problem with both approaches is that the solution requires
an iterative optimization procedure. A novel segment-based shape matching al-
gorithm is presented in [12] which avoids problems associated with purely global
or local methods. This approach generalizes the idea of finding a point-to-point
correspondence between two shapes to that of finding a segment-to-segment cor-
respondence.

The parametric estimation of 2D affine transformations between gray-level
images has been addressed in [13,14] where an accurate and computationally
simple solution has been proposed avoiding both the correspondence problem as
well as the need for optimization. The basic idea is to reformulate the original
problem as an equivalent linear parameter estimation one which can be easily
solved. This solution, however, makes use of the gray-level values which is not
available in the binary case.

Herein, we will develop a novel method for registering binary images where
the aligning transformation is restricted to the 2D affine group. We will show,
that in spite of the missing radiometric information, we can still formulate the
registration problem as the solution of a linear system of equations. The basic
idea is to generate a pair of covariant functions that are related by the unknown
transformation. The resulting algorithm is fast and provides a direct solution
without making correspondences or optimization. The method has been tested
on a large database of planar shapes. Experimental evidence suggests that our
approach performs well both in terms of quality as well as in terms of computing
time.

2 Problem Statement

Let us denote the coordinates of the template and observation points by x =
[x1, x2]T , y = [y1, y2]T ∈ R

2 respectively. The identity relation between the
shapes is then as follows

y = Ax + t ⇔ x = A−1(y − t) = A−1y − A−1t, (1)

where (A, t) is the unknown affine transformation that we want to recover.
Classical landmark-based approaches would now identify at least 3 point pairs
and solve the system of linear equations obtained from Eq. (1). However, we
are interested in a direct solution without solving the correspondence problem.
For that purpose, shapes will be represented by their characteristic function
� : R

2 → {0, 1}, where 0 and 1 correspond to the background and foreground
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respectively. If we denote the template by �t and the observation by �o, the
following equality also holds

�t(x) = �o(Ax + t) ⇔ �t(A−1(y − t)) = �o(y). (2)

In addition, if we can observe some image features (e.g. gray-levels of the pix-
els [13,14]) that are invariant under the transformation (A, t), then we can define
an additional relation

g(x) = h(Ax + t) ⇔ g(A−1(y − t)) = h(y), (3)

where g, h : R
2 → R are covariant functions under the transformation (A, t),

defined on those observed features. Furthermore, the above relations are still
valid when an invariant function ω : R → R is acting on both sides of the
equation [13,14]. Indeed, for a properly chosen ω

ω(g(x)) = ω(h(Ax + t)) ⇔ ω
(
g(A−1(y − t))

)
= ω(h(y)).

The basic idea of [13,14] is to use nonlinear ω functions. This way, we can
generate as many linearly independent equations as needed. Note that these
equations doesn’t contain new information, they simply impose new linearly
independent constraints allowing for a unique solution.

3 Estimation of Distortion Parameters

The key idea of the proposed approach is to construct two covariant func-
tions satisfying Eq. (3). Once this is achieved, we can adopt the direct method
from [13,14] to solve for the unknown transformation (A, t). Since we do not
have any radiometric information, this is a quite challenging task. We have to
define these functions based on the only available geometric information.

3.1 Construction of Covariant Functions

We consider the points of the template as a sample from a bivariate normally dis-
tributed random variable X ∼ N(μ, Σ). It is well known, that for any linear trans-
formation, when Y = AX + t then Y has also a bivariate normal distribution

X �→ Y ∼ N(μ′, Σ′) = N(Aμ + t,AΣAT ).

Obviously, the above equation is only valid when A is non-singular and pos-
itive definite. In our case, (A, t) is an affine transformation thus A is clearly
non-singular. On the other hand, a negative determinant would mean that the
transformation is not orientation-preserving. In practice, however, such trans-
formations are usually excluded by physical constraints. The parameters of the
probability densities N(μ, Σ) and N(μ′, Σ′) can be easily estimated as the sam-
ple means and covariances (i.e. the mean and covariance of the point coordi-
nates). From a geometric point of view, the mean values μ and μ′ represent the
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(a) (b)

(c)

Fig. 1. Gaussian density function fitted over the binary shape yields a consistent col-
oring. (a) Original binary image; (b) 3D plot of the Gaussian density function over the
binary shape; (c) Gaussian density as a grayscale image.

center of mass of the template and observation respectively, while Σ and Σ′ cap-
ture the orientation and eccentricity of the shapes. Fig. 1 shows a binary shape
and the fitted Gaussian density.

Now let us examine the relationship between the bivariate Gaussian density
functions p and p′ computed from the template and observation respectively.

p′(y) =
1

2π
√

|Σ′|
exp

(
− 1

2
(y − μ′)T Σ′−1(y − μ′)

)
.

Using (y − μ′) = (Ax + t − (Aμ + t)) = (Ax − Aμ), we get

=
1

2π
√

|AΣAT |
exp

(
− 1

2
(Ax − Aμ)T A−T Σ−1A−1(Ax − Aμ)

)

=
1

2π|A|
√

|Σ|
exp

(
− 1

2
(x − μ)T AT A−T Σ−1A−1A(x − μ)

)

= |A|−1 1
2π

√
|Σ|

exp
(

− 1
2
(x − μ)T Σ−1(x − μ)

)
=

1
|A|p(x), (4)

where |A| can be easily expressed from AΣAT = Σ′ as

|A||Σ||AT | = |Σ′|, hence |A| =
√

|Σ′|/|Σ|. (5)

It is clear from Eq. (4) that p and p′ are covariant. However, we can further sim-
plify Eq. (4) by back substituting |A| into the equations and making necessary
equivalent conversions, yielding

(x − μ)T Σ−1(x − μ) = (y − μ′)T Σ′−1(y − μ′). (6)
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In fact, we get the Mahalanobis-distance which defines a metric over the tem-
plate and another transformed metric over the observation. We then define our
covariant functions P, S : R

2 → R as

P (x) = (x − μ)T Σ−1(x − μ) and S(y) = (y − μ′)T Σ′−1(y − μ′). (7)

From Eq. (6)–(7), we get the desired relation of Eq. (3)

P (x) = S(Ax + t) ⇔ P (A−1(y − t)) = S(y). (8)

Note that both P (x) and S(y) can be computed directly from the input images.
Fig. 2 shows an example of these functions fitted over a binary shape and its
distorted observation.

(a) (b)

Fig. 2. Mahalanobis-distance as covariant function. Level lines are overlayed on the
original graylevel images for easier evaluation. (a) P (x)�t(x): Mahalanobis-distance
over the original image in Fig. 1. (b) S(y)�o(y): Mahalanobis-distance over the trans-
formed image. The transformation was a 1.5× shearing along the x-axis.

3.2 Linear Estimation of Affine Parameters

Since point correspondences are not available, we cannot construct a system
directly from Eq. (8). However, multiplying Eq. (2) and Eq. (8), then integrating
over R

2 yields∫
R2

P (x)�t(x)dx =
∫

R2
S(Ax + t)�o(Ax + t)dx = |A|−1

∫
R2

S(y)�o(y)dy,

where we have used the integral transformation x = A−1(y− t), dx = |A|−1dy.
Since the characteristic functions take only values from {0, 1}, we can further
simplify the above integrals by restricting them to the foreground regions Ft =
{x ∈ R

2|�t(x) = 1} and Fo = {y ∈ R
2|�o(y) = 1}∫

Ft

P (x)dx =
∫
Ft

S(Ax + t)dx =
1

|A|

∫
Fo

S(y)dy.

This equation implies that the finite domains Ft and Fo are also related: AFt +
t = Fo, i.e. we match the shapes as a whole instead of point correspondences.
It is clear that both sides of the equation as well as the Jacobian can be easily
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computed from the input images. However, we need an equation which also con-
tains the unknown elements of the affine transformation. This is easily achieved
by multiplying both sides by x. Furthermore, we need more than one linearly
independent equation as we have 6 unknowns. For that purpose, we will adopt
the idea from [13,14] and generate new equations by making use of appropriate
invariant functions ω : R → R. Thus we get∫

Ft

xω(P (x))dx =
∫
Ft

xω(S(Ax + t))dx =
1

|A|

∫
Fo

A−1(y − t)ω(S(y))dy.

Note that in the last step, we have applied the integral transformation x =
A−1(y − t), dx = |A|−1dy. If qki denotes the elements of A−1 and −A−1t, i.e.

A−1 =
(

q11 q12
q21 q22

)
and − A−1t =

(
q13
q23

)
,

we can expand the integrals yielding the following linear system

|A|
∫
Ft

xkω(P (x))dx =
2∑

i=1

qki

∫
Fo

yiω(S(y))dy + qk3

∫
Fo

ω(S(y))dy, k = 1, 2.

Adopting a set of invariant functions {ωi}n
i=1, we can write the linear system in

matrix form⎛
⎜⎝

∫
y1ω1(S(y))

∫
y2ω1(S(y))

∫
ω1(S(y))

...
...

...∫
y1ωn(S(y))

∫
y2ωn(S(y))

∫
ωn(S(y))

⎞
⎟⎠

⎛
⎝ qk1

qk2
qk3

⎞
⎠ = |A|

⎛
⎜⎝

∫
xkω1(P (x))

...∫
xkωn(P (x))

⎞
⎟⎠ ,

(9)
where k = 1, 2 and

∫
f(x) denotes the integral computed over the corresponding

finite domain Ft or Fo. The solution of this linear system provides the param-
eters of the registration. If n > 3 then the system is over-determined and the
solution is obtained as a least squares solution. As shown by Hagege and Fran-
cos [13,14], when the object is not affine symmetric, then this solution is unique.
Note that independently of the number of systems, the coefficient matrix need to
be computed only once. Hence the complexity of the algorithm depends linearly
on the size of the objects.

4 Experimental Results

We have constructed our equations in the continuum but in practice we only
have a limited precision digital image. Hence the integral over the domains Ft

and Fo can only be approximated by a discrete sum over the foreground pixels.
Clearly, the resolution of the images affects the precision of this approximation.
As the mesh size tends to zero, the finite sums approximate better the integral.
Therefore our method performs better on higher resolution images. However,
due to its linear time complexity, the proposed algorithm runs quite fast on
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large images thus we do not have to compromise quality when CPU time is
critical.

Theoretically any invariant function could be applied for constructing the
system in Eq. (9). In practice, however the registration result depends on the
set of ω because of the inherent errors due to discretization. In our experiments,
we found that the following set of functions gives good results (see Fig. 3): x,
cos(x), cos(2x), sin(x) and sin(2x).

(a) ω(x) = x

(b) ω(x) = cos(x) (c) ω(x) = cos(2x)

(d) ω(x) = sin(x) (e) ω(x) = sin(2x)

Fig. 3. The effect of the applied ωs on the image in Fig. 1. Level lines are overlayed
on the original graylevel images for easier evaluation.

In order to analyze the performance of our algorithm, we have created an
image dataset containing 1000 synthetically generated observations for 37 dif-
ferent binary shapes. The applied transformations were randomly composed
of 0◦, 60◦, . . . , 240◦ rotations; 0, 0.5, 1 shearings; 0, 0.5, . . . , 2 scalings, and 0, 20
translations along both axes. The algorithm has been implemented in Matlab
7.2 and ran on a SunFire V490 with 8192MB memory under Solaris 10. The
average runtime was around 1.5 seconds per image of size 1000×1000. It is clear
from the formulation of Algorithm 1 that its time complexity is O(N), where N
is the number of foreground pixels.

In order to compare registration results, we evaluated two kind of error mea-
sures for each estimated transformation (Â, t̂). Since we know the applied trans-
formation for each synthetic example, we can evaluate the distance (denoted by
ε) between the transformed version of the template by (A, t) (observation) and
by (Â, t̂) (registered) based on all template points x. Another measure is the
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Algorithm 1. Pseudo-code of the proposed algorithm. Note that there is
no iterative step, it provides the solution in a single pass.
input : The template (�t) and observation (�o)
output: Estimated affine transformation (Â, t̂)

Computing the sample means μ, μ′ and covariances Σ, Σ′ from the points of the1

foreground objects
Constructing the covariant functions using Eq. (7):2

P, S : R
2 → R, x �→ (x − μ)T Σ−1(x − μ)

Choosing a set of invariant functions {ωi}n
i=1, n ≥ 33

Estimating the Jacobian |A| using Eq. (5)4

Constructing the system of linear equations Eq. (9)5

Solving the system (with least squares when n > 3) gives (Â−1,−Â−1t̂ )6

absolute difference (denoted by δ) between the observation and the registered
image.

ε =
1
m

∑
x

‖(A − Â)x + t − t̂‖
‖Ax + t‖ , and δ =

|R � O|
|R| + |O| × 100%,

where m is the number of template pixels, � denotes the symmetric difference,
while R and O denote the set of pixels of the registered image and observa-
tion respectively. The smaller these numbers are, the better is the matching. In
summary, these measures give a quantitative characterization of the difference
between the true transformation (A, t) and the estimated (Â, t̂). Fig. 4 shows a
registration result , where the true (A) and estimated (Â) transformations were

A =
(

cos(π
9 ) sin(π

9 )
− sin(π

9 ) cos(π
9 )

) (
1.2 0.3
1.2 0.8

)
=

(
1.538 0.5555
0.7172 0.6491

)
,

Â =
(

1.5266 0.5374
0.7116 0.6389

)
.

4.1 Comparison to Previous Approaches

A recent approach for binary registration of images has been presented in [15]. In
fact, the method addresses the registration of images taken under very different
lighting conditions or in different seasons. Hence it is not possible to directly
measure an invariant image feature as shown in Eq. (3). To overcome this diffi-
culty, the authors extract edges from the images and compute some statistics of
the edges which is used as a similarity metric for matching features. Although
we address a different problem, this approach demonstrates the importance of
the registration of binary images. In many cases, the variability of the object
signatures is so complex that the only feasible way to register such images is
to reduce them to a binary representation and solve the registration problem in
that context.
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(a) (b)

Fig. 4. Registration result. (a) Distorted observation of the sample image in Fig. 1
(rotated, scaled and sheared). (b) Registration result of the proposed method. The
image is obtained by applying the recovered inverse transformation to the observation.
The registration error was δ = 0.95% and ε = 1.59 pixel.

Probably the most closely related approach is the binary registration algo-
rithm proposed by Kannala et al. [8]. The fundamental difference is that [8]
constructs a system of equations by looking at the images at 3 different scales.
Although the resulting system is also linear, the solution is inherently less precise
as in each equation they can only use part of the available information. On the
other hand, our approach constructs the equations by making use of the invari-
ant functions ω hence we always use all the information available in the images.
We have obtained the Matlab implementation from the authors and conducted
a comparative test on our dataset. The results presented in Table 1 show that
our method outperforms [8] in both quality and computing time.

Table 1. Registration results on 1000 images. We show the median of the error mea-
sures and the runtimes for each method.

Method ε (pixels) δ (%) CPU time (sec.)
Proposed method 5.42 2.6 1.5
Kannala et al. [8] 50.92 21.46 107.19

5 Conclusion

In this paper, we have presented a novel approach for binary image registration.
The fundamental difference compared to classical image registration algorithms
is that our method works without any landmark extraction, correspondence,
or iterative optimization. It makes use of all the information available in the
input images and constructs a linear system of equations which can be solved
easily. Although we only considered affine transformations, other commonly used
linear transformations, like rigid-body or Euclidean, are special cases of the affine
family. The complexity of the algorithm is linear hence it is potentially capable
of registering images at near real-time speed.
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