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Abstract. We consider the estimation of linear transformations align-
ing a known binary shape and its distorted observation. The classical
way to solve this registration problem is to find correspondences be-
tween the two images and then compute the transformation parameters
from these landmarks. Here we propose a unified framework where the
exact transformation is obtained as the solution of either a polynomial
or a linear system of equations without establishing correspondences.
The advantages of the proposed solutions are that they are fast, easy to
implement, have linear time complexity, work without landmark corre-
spondences and are independent of the magnitude of transformation.
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1 Introduction

Registration is a crucial step in almost all image processing tasks where images of
different views or sensors of an object need to be compared or combined. Typical
application areas include visual inspection, target tracking in video sequences,
super resolution, or medical image analysis. In a general setting, one is looking
for a transformation which aligns two images such that one image (called the
observation) becomes similar to the second one (called the template). Due to
the large number of possible transformations, there is a huge variability of the
object signature. In fact, each observation is an element of the orbit of the
transformations applied to the template. Hence the problem is inherently ill-
defined unless this variability is taken into account.

Several techniques have been proposed to address the affine registration prob-
lem, a good survey of these methods can be found in [1]. Basically registration
algorithms fall into two main categories: Feature-based and Area-based methods.
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the project TÁMOP-4.2.1/B-09/1/KONV-2010-0005.

A. Campilho and M. Kamel (Eds.): ICIAR 2012, Part I, LNCS 7324, pp. 277–284, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

http://www.inf.u-szeged.hu/~kato


278 Z. Kato

Feature-based methods [2] aim at establishing point correspondences between
two images. For that purpose, they extract some easily detectable features (e.g.
intersection of lines, corners, etc.) from the images and then use these points
to compute the closest transformation based on a similarity metric. Searching
for the best transformation usually requires an iterative algorithm like the itera-
tive closest point (ICP) algorithm, which requires that the deformation be close
enough to identity. The main drawback of these methods is thus the assumption
of a limited deformation and high computational cost. Their main advantage
is that as long as a sufficient number of point matches are available, one can
usually find an optimal aligning transformation implying that these algorithms
are less sensitive to occlusions.

Area-based methods [3,4] treat the problem without attempting to detect
salient objects. These methods are sometimes called correlation-like methods
because they use a rectangular window to gain some preliminary information
about the distortion. They search the position in the observation where the
matching of the two windows is the best and then look for sufficient alignment
between the windows in the template and in the observation. The drawback of
this family of methods is also the high computational cost and the restricted
range of distortions.

In many situations, the variability of image features is so complex that the only
feasible way to register such images is to reduce them to a binary representation
and solve the registration problem in that context. X-ray images are good exam-
ples as they usually exhibit highly nonlinear radiometric distortions [5] making
registration hard to solve. Therefore binary registration (i.e. shape alignment)
is an important problem for many complex image analysis tasks.

2 Correspondence-Less Alignment Framework

Let us denote the points of the template and the observation by x,y ∈ P
2 re-

spectively (i.e. we use homogeneous coordinates).A is the unknown non-singular
linear transformation that we want to recover. We can define the identity relation
as follows

Ax = y ⇔ x = A−1y. (1)

If we can observe some image features (e.g. gray-level of the pixels [4]) that are
invariant under the transformation A then the following equality also holds

g(x) = h(Ax) ⇔ g(A−1y) = h(y). (2)

Furthermore, the above equations still hold when an invariant function ω : Rn →
R

n is acting on both sides of the equations. Indeed, for a properly chosen ω

ω(x) = ω(A−1y), and (3)

ω(g(x)) = ω(h(Ax)) = ω(h(y)). (4)

The basic idea of the proposed approach is to generate enough linearly indepen-
dent equations by making use of the relations in Eq. (1)–(4). Furthermore, we
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can get rid of the need for point correspondences by integrating both sides of
the equations over the corresponding segmented domains.

Recently, similar ideas have been successfully applied to graylevel image regis-
tration [4], where one can make use of rich radiometric features to build a system
of linear equations. However, these approaches cannot be used in the binary case
due to the missing radiometric information. Therefore the main challenge of the
proposed approach is to find a way to construct a direct method to estimate
linear deformations without making use of feature correspondences or complex
optimization algorithms. In this project, we propose two ways to tackle this
fundamental problem.

2.1 Solution via a Polynomial System

The first one [6,7] makes use of Eq. (3) and constructs a system of polynomial
equations ∫

ω(x)dx =
1

|A|
∫

ω(A−1y)dy. (5)

Obviously, the choice of ωs is crucial as our goal is to construct a system which
can be solved. It is easy to see that a polynomial system, which is certainly
straightforward to solve, is obtained when ω(x) = xi. From a geometric point
of view, for ω(x) ≡ x Eq. (5) simply matches the center of mass of the template
and observation while for ω(x) = [xi

1, x
i
2, 1]

T Eq. (5) matches the center of mass
of the shapes obtained by the nonlinear transformations ω. In the affine case, we
have to solve a system of polynomial equations of the following form, where qki
denotes the unknown elements of the inverse transformation A−1

|A|
∫

xk = qk1

∫
y1 + qk2

∫
y2 + qk3

∫
1, (6)

|A|
∫

x2
k = q2k1

∫
y21 + q2k2

∫
y22 + q2k3

∫
1

+ 2qk1qk2

∫
y1y2 + 2qk1qk3

∫
y1

+ 2qk2qk3

∫
y2, (7)

|A|
∫

x3
k = q3k1

∫
y31 + q3k2

∫
y32 + q3k3

∫
1

+ 3q2k1qk2

∫
y21y2 + 3q2k1qk3

∫
y21

+ 3q2k2qk3

∫
y22 + 3qk1q

2
k2

∫
y1y

2
2

+ 3qk2q
2
k3

∫
y2 + 3qk1q

2
k3

∫
y1

+ 6qk1qk2qk3

∫
y1y2. (8)
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The above system of equations can be readily solved either by a direct solver
found e.g. in Matlab [6] or by a classical LSE solver like the Levenberg-Marquardt
algorithm [7].

2.2 Solution via a Linear System Using Covariant Functions

The second solution [8,9] is based on Eq. (4). The advantage of this approach is
that it yields a linear system of equations which is numerically much more stable.
The key idea is to construct two covariant functions satisfying Eq. (2). Once
this is achieved, we can construct a linear system using Eq. (4) to solve for the
unknown transformation A. Since we do not have any radiometric information,
this is a quite challenging task as we have to define these functions based on the
only available geometric information. For example, we can consider the points
of the template as a sample from a normally distributed random variable X ∼
N(μ,Σ). It is well known, that for any linear transformation, when Y = AX
then Y has also a normal distribution

X �→ Y ∼ N(μ′, Σ′) = N(Aμ,AΣAT ), (9)

furthermore

p′(y) =
1

|A|p(x), (10)

where p′ and p are the Gaussian density functions. It is clear that p and p′ are
covariant and the Jacobian can also be computed as |A| = √|Σ′|/|Σ|. Obviously,
the above relation is only valid when A is positive definite. The parameters
of the probability densities N(μ,Σ) and N(μ′, Σ′) can be easily estimated as
the sample means and covariances (i.e. the mean and covariance of the point
coordinates). From a geometric point of view, the mean values μ and μ′ represent
the center of mass of the template and observation respectively, while Σ and Σ′

capture the orientation and eccentricity of the shapes. Note that the densities
p′ and p can be further reduced to the corresponding Mahalanobis distances g
and h

g(x) = (x − μ)TΣ−1(x− μ) and

h(y) = (y − μ′)TΣ′−1(y − μ′). (11)

New equations can then be generated by making use of appropriate invariant
functions ω : R → R. Thus we get

∫
xω(g(x))dx =

∫
xω(h(Ax))dx =

=
1

|A|
∫

A−1yω(h(y))dy. (12)

Theoretically any invariant function could be applied. For example the following
set of functions gave us good results [8]: x, cos(x), cos(2x), sin(x) and sin(2x)
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(see Fig. 2 for another function set). In the affine case, we can write the linear
system in matrix form

⎛
⎜⎝

∫
y1ω1(h(y))

∫
y2ω1(h(y))

∫
ω1(h(y))

...
...

...∫
y1ωn(h(y))

∫
y2ωn(h(y))

∫
ωn(h(y))

⎞
⎟⎠

⎛
⎝ qk1

qk2
qk3

⎞
⎠

= |A|

⎛
⎜⎝

∫
xkω1(g(x))

...∫
xkωn(g(x))

⎞
⎟⎠ . (13)

The solution of the above linear system directly provides the parameters of the
aligning transformation [8,9].

Compound Objects. When we have objects composed of several parts, yield-
ing a group of disjoint shapes when segmented, the topology of such compound
shapes will not change under the action of the affine group. Thus we can con-
struct covariant functions Pi(x), Si(y) for each pair of these shape parts and
then sum these relations yielding [9]

P (x) ≡
m∑
i=0

Pi(x) =

m∑
i=0

Si(y) ≡ S(y). (14)

where Pi(x) = exp
(
− 1

2 (x− μi)
TΣ−1

i (x− μi)
)
are unnormalized Gaussians.

The big advantage of this representation is that we can get rid of the seg-
mented shape used as the integration domain in Eq. (12). A clear disadvantage
of using the segmented shape itself as the domain [4,8] is that any segmentation
error will inherently result in erroneous integrals causing misalignment. In the
case of compound shapes, however, it is natural to chose one of the ellipses of
the density fitted to the overall shape as the integration domain (see Fig. 3). An
additional benefit is that these domains are analytical hence the computation
of the integrals used as coefficients in Eq. (13) can be computed efficiently by a
closed form formula.

3 Experiments and Discussion

The methods have been quantitatively evaluated on a set of more than 1000
synthetically generated observations for 60 different shapes. The applied trans-
formations were randomly composed of 0◦, 10◦, . . . , 350◦ rotations; 0, 0.4, . . . , 1.2
shearings; 0.5, 0.7, . . . , 1.9 scalings, and −20, 0, 20 translations along both axes.
The resulting images are of size ≈ 1400 × 1400. For evaluation, we have com-

puted two error measures: the Dice coefficient as δ = |R�O|
|R|+|O| · 100%, where 	

denotes symmetric difference, while T , R and O are the pixels of the template,
registered object and observation respectively; and ε = 1

|T |
∑

p∈T ‖(A − Ã)p‖,
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which measures the average distance between the true A and the estimated Ã
transformation. All algorithms were implemented in Matlab. These results are
shown in Table 1. Based on these numbers, it is clear that the polynomial so-
lution provides rather good alignments at the price of ≈ 1sec. CPU time. The
linear system based on a single pair of covariant functions given in Eq. (11)
works well when there are no segmentation errors, but deteriorates quickly when
pixels are missing. On the other hand, the linear system with multiple pairs of
covariant functions given in Eq. (14) clearly outperforms the polynomial solution
in terms of CPU time as well as in robustness: even for 90% missing pixels [9],
this method still provides acceptable alignments while the polynomial system
fails over 50% [6]. We also remark, that -like any other area based method- both
approaches are quite sensitive to occlusions as it yields large errors in the system
of equations.

In Fig. 1 and Fig. 2, we show registration results on real X-ray images. These
results also confirm the higher precision of the polynomial system. While the
multiple covariant function approach cannot be applied on these images since we
only have a single shape, Fig. 3 shows the alignment of traffic signes where -due
to the compound shape of these signs- the multiple covariant function approach
works pretty well.

Table 1. Registration results on a benchmark dataset of synthetic shapes

Runtime (sec.) ε (pixel) δ (%)

Polynomial 0.98 0.51 0.15
Linear 1.5 5.42 2.6
Mult. covar. functions 0.33 0.54 0.19

Fig. 1. Alignment of hip prosthesis X-ray images using a polynomial system of equa-
tions with ω functions {x, x2, x3}. Registration results are shown as an overlayed con-
tour on the second image.
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Fig. 2. Alignment of a hip prosthesis X-ray image using a linear system of equations
with ω functions {x, x3, x1/3}. Registration result is shown as an overlayed contour on
the second image.

Fig. 3. Alignment of a traffic sign images using a linear system of equations with
multiple shape parts. The first image shows the elliptic integration domain with the
compound covariant function fitted over the template. Registration results are shown
as an overlayed contour on the second image.

4 Conclusion

We have proposed a unified framework to estimate affine deformations between
binary images. The main contribution here is a generic solution without es-
tablished correspondences and the evaluation and comparison of the related
methods in terms of computational efficiency and registration quality. We have
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also shown results on real images of important application domains. Although
we only considered affine transformations, other commonly used linear trans-
formations, like rigid-body or similarity, are special cases of the affine family.
The main advantages of the proposed framework are that it does not require
any correspondences or time consuming optimization step; it is fast and easy to
implement while being insensitive to the strength of deformations.
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