
A MULTI-LAYER MRF MODEL FOR OBJECT-MOTION DETECTION IN UNREGISTERED
AIRBORNE IMAGE-PAIRS
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ABSTRACT

In this paper, we give a probabilistic model for automatic
change detection on airborne images taken with moving cam-
eras. To ensure robustness, we adopt an unsupervised coarse
matching instead of a precise image registration. The chal-
lenge of the proposed model is to eliminate the registration
errors, noise and the parallax artifacts caused by the static ob-
jects having considerable height (buildings, trees, walls etc.)
from the difference image. We describe the backgroundmem-
bership of a given image point through two different features,
and introduce a novel three-layerMarkov RandomField (MRF)
model to ensure connected homogenous regions in the seg-
mented image.

Index Terms— Change detection, aerial images, camera
motion, MRF

1. INTRODUCTION

The present paper addresses the problem of extracting the ac-
curate silhouettes of moving objects or object-groups in im-
ages taken by moving airborne vehicles in consecutive mo-
ments. The procedure needs camera motion compensation.
Feature correspondence is widely used for this task, where
we look for corresponding pixels or other primitives such as
edges, corners, contours, shape etc. in the images which we
compare [1]. However, these methods are only usable for im-
age pairs with small differences, and they may fail at occlu-
sion boundaries and within featureless regions. According to
a different approach, the images are matched via a simpler
transformation (similarity [2], affine [3]), for which, we can
find existing robust techniques. Although there are sophisti-
cated ways to enhance the accuracy of these mappings [4], the
purely similarity or affine matching does not fit to the scene
geometry, and causes significant errors, especially at locations
of static scene objects with considerable height (this effect is
called parallax distortion).
For the above reasons, we introduce a two stage algorithm
which consists of a coarse (but robust) image registration for
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camera motion compensation, and an error-eliminating step.
From this point of view, it is similar to [5], where the authors
assume that errors mainly appear near sharp edges. There-
fore, at locations where the magnitude of the gradient is large
in both images, they consider that the differences of the cor-
responding pixel-values are caused with higher probability by
registration errors than by object displacements. However,
this method is less effective, if there are several small objects
(containing several edges) in the scene, because the post pro-
cessing may also remove some real objects, but it leaves errors
in smoothly textured areas (e.g. group of trees).
In this paper, we use a Bayesian approach to tackle the above
problem. The optimal motion map is obtained as a maximum
a posteriori (MAP) estimate like in [5][6]. We derive fea-
tures describing the background membership of a given im-
age point in two independent ways, and develop a three-layer
Bayesian labeling model to integrate the effect of the differ-
ent features. Our model structure is similar to [7], however
the observation processing, the labeling and inter-layer con-
nections are significantly different.

2. REGISTRATION AND FEATURE EXTRACTION

Denote by X1 and X2 the two consecutive frames of the im-
age sequence above the same pixel lattice S. The gray value
of a given pixel s ∈ S is x1(s) in the first image and x2(s) in
the second one.
Our first step is to find the optimal similarity transform be-
tween the images. For that purpose, we will use the Fourier
shift-theorembased method of [2], which yields the registered
second frame, X†

2 . The pixel values of X†
2 are denoted by

{x†
2(s)}. The final goal is to perform a binary segmentation of

the images into foreground (fg) and background (bg) classes.
The feature selection is shown in Fig. 1 using an airborne
photo pair.1 Taking a probabilistic approach, first we extract
features, and then consider the class labels to be random pro-
cesses generating the features according to different distribu-
tions.
The first feature is the gray level difference of the correspond-

1We have also observed similar tendencies regarding the other test im-
ages, provided by the ALFA project.
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Fig. 1. Feature selection. Notations are in the text of Section 2.

ing pixels in the registered images: d(s) = x†
2(s) − x1(s).

We validate this feature through experiments (Fig. 1c): if we
plot the histogram of d(s) values corresponding to manually
marked background points, then we can observe that a Gaus-
sian approximation is reasonable: P (d(s)|bg) = N(d(s), μ, σ).
On the other hand, any d(s) value may occur in the fore-
ground, hence the foreground class is modeled by a uniform
density: P (d(s)|fg) = 1/(bd − ad), if d(s) ∈ [ad, bd], 0 oth-
erwise. Next, we demonstrate the limitations of this feature.
After supervised estimation of the distribution parameters, we
derive D image in Fig. 1d as the maximum likelihood esti-
mate: the label of s is argmaxψ∈{fg,bg}P (d(s)|ψ). We can
observe here that the registration and parallax errors cannot be
filtered out using only d(.), since their d(s) values appear as
outliers with respect to the previously defined Gaussian dis-
tribution.
From another point of view, assuming the presence of er-
rors of a few pixels, we can usually find an os = [ox, oy]
offset vector, for which the rectangular neighborhood of s
in X1 and the same shaped neighborhood of s + os in X†

2

is strongly correlated. In Fig 1e/f, we plot the correlation
values over the search window of the offset os around two
given pixels (marked with the beginning of the arrows in Fig
1d). The upper pixel corresponds to a parallax error in the
background, while the lower one is part of a real object dis-
placement. The correlation plot has high peak only in the
upper case. We use c(s), the maxima in the local correla-
tion function around pixel s as second feature. By examining
the histogram of c(s) values in the background (Fig 1g), we
find that it can be approximated with a beta density function:
P (c(s)|bg) = B(c(s), α, β). As for the foreground class we
will use a uniform probability P (c(s)|fg) with ac and bc pa-
rameters. We see in Fig. 1h (C image) that the c(.) descriptor
causes also poor result in itself. Even so, if we consider D

and C as a Boolean lattice, where ’true’ corresponds to the
foreground label, the logical AND operation onD and C im-
proves the results significantly (Fig. 1j). We note that this
classification is still quite noisy. Therefore, we introduce a
robust segmentation model in the following section.

3. MULTI-LAYER SEGMENTATION MODEL

In the proposed approach, we construct a Markov random
field (MRF) model on a graph G whose structure is shown in
Fig. 2. In the previous section, we segmented the images in
two independent ways, and derived the final result by a label
fusion using the two segmentations. Therefore, we arrange
the sites of G into three layers Sd, Sc and S∗, each layer has
the same size as the image lattice S. We assign to each pixel
s ∈ S a unique site in each layer: e.g. sd is the site corre-
sponding to pixel s on the layer Sd. We denote sc ∈ Sc and
s∗ ∈ S∗ similarly.
We introduce a labeling process, which assigns a label ω(.)
to all sites of G from the label-set: L � {fg, bg}. The la-
beling of Sd/Sc corresponds to the segmentation based on
the d(.)/c(.) feature, respectively; while the labels at the S∗

layer present the final change mask. A global labeling of G is
ω =

{
ω(si)|s ∈ S, i ∈ {d, c, ∗}

}
.

In our model, the labeling of an arbitrary site depends directly
on the labels of its neighbors (MRF condition). For this rea-
son, we must define the neighborhoods (i.e. the edges) in G
(see Fig. 2). To ensure the smoothness of the segmentations,
we put edges within each layer between site pairs correspond-
ing to neighboring pixels of the image lattice S.2 On the other
hand, the sites corresponding to the same pixel must interact
to proceed the fusion of the two different segmentations’ la-

2We use first order neighborhoods in S, where each pixel has 4 neighbors.
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Fig. 2. Structure of the proposed three-layer MRF model

bels in the S∗ layer. Hence, we introduce ’inter-layer’ edges
between sites si and sj : ∀s ∈ S; i, j ∈ {d, c, ∗}, i �= j.
Therefore, the graph has doubleton ’intra-layer’ cliques (their
set is C2) which contain pairs of sites, and ’inter-layer’ cliques
(C3) consisting of site-triples. We also use singleton ’intra-
layer’ cliques (C1), which are one-element sets containing the
individual sites: they will link the model and the local obser-
vations. Hence, the set of cliques is C = C1 ∪ C2 ∪ C3.
Denote the observation process by F = {f(s)|s ∈ S}, where
f(s) = [d(s), c(s)]. Our goal is to find the optimal labeling ω̂,
which maximizes the a posteriori probabilityP (ω|F) that is a
maximum a posteriori estimate [8]: ω̂ = argmaxω∈ΩP (ω|F),
where Ω denotes the set of all the possible global labelings.
Based on the Hammersley-Clifford Theorem [8] the a pos-
terior probability of a given labeling follows Gibbs distribu-
tion: P (ω|F) = 1

Z
exp

(
−

∑
C∈C VC(ωC)

)
, where VC is the

clique potential of C ∈ C, which is ’low’ if ωC (the label-
subconfiguration corresponding to C) is semantically correct,
’high’, if not. Z is a normalizing constant, which does not
depend on ω.
In the following part of this section, we define the clique po-
tentials. We refer to a given clique as the set of its sites (in
fact, each clique is a subgraph of G), e.g. we denote the dou-
bleton clique containing site sd and rd with {sd, rd}.
The observations affect the model through the singleton po-
tentials. As we stated previously, the labels in the Sd and
Sc layers are directly influenced by the d(.) and c(.) val-
ues, respectively, while the labels at S∗ have no direct links
with these measurements. For this reason, V{sd}

(
ω(sd)

)
=

− logP (d(s)|ω(sd)), V{sc} (ω(sc)) = − logP (c(s)|ω(sc)),
V{s∗} (ω(s∗)) = 0 : ∀s ∈ S, where the probabilities that the
given foreground or background classes generate the d(s) or
c(s) observation, were already defined in Section 2.
For presenting smooth segmentation in each layer, the poten-
tial of an intra-layer clique C2 = {si, ri} ∈ C2, i ∈ {d, c, ∗}

has the following form: VC2
(ωC2

) = −δi if ω(si) = ω(ri);
+δi if ω(si) �= ω(ri) for a constant δi > 0.
As we concluded from the experiments in Section 2, a pixel
is likely generated by the background process, if and only
if in the Sd and Sc layers, at least one corresponding site
has the label ’bg’. We introduce the Ibg indicator function:
Ibg(s

i) = 1 if ω(si) = bg; Ibg(s
i) = 0 otherwise, for

i ∈ {d, c, ∗}. With this notation the potential of an inter-layer
clique C3 = {sd, sc, s∗} is with ρ > 0:

VC3
(ωC3

) =

{
−ρ if Ibg(s

∗) = max
(
Ibg(s

d), Ibg(s
c)

)
+ρ otherwise.

Therefore, the optimal MAP labeling ω̂, which maximizes
P (ω̂|F) (hence minimizes − log P (ω̂|F)) can be calculated
as:

ω̂ = argminω∈Ω−
∑
s∈S

log P (d(s)|ω(sd))−
∑
s∈S

log P (c(s)|ω(sc))

+
∑
C2∈C2

VC2

(
ωC2

)
+

∑
C3∈C3

VC3

(
ωC3

)
. (1)

The final segmentation is taken as the labeling of the S∗ layer.

4. EXPERIMENTS

The evaluations are done through manually generated ground
truth masks using different aerial image pairs. The model pa-
rameters are estimated over a set of training images and we
examine the quality of the segmentation on different test pairs.
Here, we compute the maximum likelihood estimates of the
distribution parametersN(., μ, σ),B(., α, β), U(., ad, bd) and
U(., ac, bc). The correlation map for the c(.) feature is calcu-
lated with an efficient algorithm using dynamic programming
and multiscaling [9]. To find a good suboptimal labeling ac-
cording to eq. (1), we use the modified Metropolis [10] opti-
mization method. Processing 320×240 images takes approx-
imately 20 seconds on a desktop computer.
We have compared the results of the proposed three-layer
model to the following solutions. The first reference method
(Layer1) is constructed from our model by ignoring the Sc

and S∗ layers: this comparison emphasizes the importance
of using the correlation-peak features. The second reference
is the method of Farin and With [5]. In the third reference
method, the optimal affine transformbetween the frames (which
was estimated in [4] automatically) is determined with su-
pervision, through manually marked matching points, and a
simple MRF model (similar to [5]) decreases the registration
errors. Fig. 3 contains the image pairs, ground truth and the
segmented images with the different methods.
For numerical evaluation, denote the number of correctly iden-
tified foreground pixels of the evaluation images by TP (true
positive). Similarly, we introduce FP for misclassified back-
ground points, and FN for misclassified foreground points.
The evaluationmetric consists of theRecall (R) rate: TP/(TP+
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Fig. 3. Qualitative evaluation: First images of the test pairs, ground truth and segmentation results with different methods.

Fig. 4. Quantitative evaluation: Numerical comparison of
the proposedmethod and the three other ones: Layer1, Farin’s
method and Affine matching. P and R rates are defined in
Section 4.

FN) and the Precision (P) of the detection: TP/(TP +FP ).
The results are in Fig. 4. With respect to (P + R)/2, the gain
of using our method is 25% compared to the Layer1 segmen-
tation and 10% compared to Farin’s method. The results of
the frames’ global affine matching, even with manually deter-
mined control points, is 6% worse than what we got by the
proposed model.

5. CONCLUSION

This paper address the problem of exploiting accurate change
masks from image pairs taken by a moving camera. A novel
three-layer MRF model has been proposed, which integrates
the information from two different observations. The effi-
ciency of the method has been validated through real-world
aerial images, and its behavior versus three reference meth-
ods has been quantitatively and qualitatively evaluated.
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