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ABSTRACT

We propose a binary Markov Random Field (MRF) model
that assigns high probability to regions in the image domain
consisting of an unknown number of circles of a given radius.
We construct the model by discretizing the ‘gas of circles’
phase field model in a principled way, thereby creating an
‘equivalent’ MRF. The behaviour of the resulting MRF model
is analyzed, and the performance of the new model is demon-
strated on various synthetic images as well as on the problem
of tree crown detection in aerial images.

Index Terms— segmentation, Markov random field,
shape prior

1. INTRODUCTION

When people interpret images, they take into account not only
the image data, but also their prior knowledge about the phe-
nomena that generated the image. If machine methods are
ever to duplicate human performance, they must be able to
include this knowledge in mathematical models. In particu-
lar, for the segmentation of entities in an image, the shape of
the entity involved plays an essential role, and in consequence
various approaches to the modelling of prior shape knowl-
edge have been studied. Many incorporate shape knowledge
by weighting different regions according to their ‘proximity’
to one or more template shapes [1, 2]. However, in many ap-
plications, there is an a priori unknown number of instances
of an entity in the image, all of which must be segmented, a
problem that is difficult to address using templates. On the
other hand, Markov random fields are well suited to segment-
ing multiple instances, but little work has been done on in-
cluding prior shape knowledge in such models [3].

Higher-order active contours (HOACs) [4] can incorpo-
rate sophisticated prior shape knowledge without using tem-
plates. They can therefore be used to segment multiple in-
stances of an entity. In particular, in [5], a stability analysis
was used to tune the parameters of the model in [4] so as to
make regions consisting of an arbitrary number of circles of
a given radius into local energy minima. This ‘gas of circles’

This research was partially supported by the Hungarian Scientific Re-
search Fund (OTKA) – K75637. The authors would like to thank the Central
Agricultural Office of Hungary for the aerial images.

model is useful for several applications, notably to the seg-
mentation of tree crowns from aerial images [5].

HOACs are described by energy functionals, and energy
minimization is performed via gradient descent. A probabilis-
tic version of these models, although implicit in the use of an
energy, has not yet been formulated explicitly, but would open
the door to learning shape model parameters and to using
stochastic descent algorithms to make estimates. This means
discretizing the space of regions so that everything is well-
defined, and in a way that preserves the information content of
the model: the discretized model should be ‘equivalent’ to the
continuum model. This is complicated in terms of contours,
but fortunately, HOACs can be reformulated as ‘phase field’
models [6]. Phase field models can naturally be viewed as the
Gibbs energies of continuum Markov random fields, and can
be discretized on a spatial grid, thereby greatly simplifying
both the discretization and its subsequent implementation.

In this paper, we describe a Markov random field model
that is approximately equivalent to the phase field HOAC
model described in [7], including the ‘gas of circles’ pa-
rameter constraints. We test the performance of the model,
minimized using simulated annealing with a standard Gibbs
sampler, on synthetic images, and apply it to tree crown
extraction from aerial images. The main contributions of
the work are the construction of a probabilistic model of
HOACs, the incorporation of prior shape knowledge into an
MRF model, and the subsequent improvement in applica-
tions when compared to classical MRFs, including increased
robustness to clutter and noise.

1.1. The ’gas of circles’ phase field model

The phase field framework represents a region R by a function
Φ � φ : D → R defined on the image domain D ⊂ R

2, and
a threshold z: R = ζz(φ) = {x ∈ D : φ(x) ≥ z}. The func-
tion is controlled by an energy, which imposes both a form on
φ and energetic constraints on the corresponding region. We
start from the phase field energy E(φ) of [4]:

E(φ) =
∫
D

Df

2
|∇φ|2 + λf

(φ4

4
− φ2

2

)
+ αf

(
φ − φ3

3

)
− βf

2

∫
D×D′

∇φ · ∇′φ′ Ψ((x − x′)/d) , (1)
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where d controls the range of interaction, and

Ψ(z) =

{
1
2

(
2 − |z| + 1

π sin(π|z|)) if ||z| − 1| < 1,
1 − H(|z| − 1) otherwise.

(2)

where H is the Heaviside step function. It is convenient to
integrate the non-local term in E by integration by parts:

− βf

2

∫
D×D′

∇φ · ∇′φ′ Ψ((x − x′)/d)

=
βf

2

∫
D×D′

φ φ′ ∇2Ψ((x − x′)/d)︸ ︷︷ ︸
G((x−x′)/d)

.

The value φR that minimizes E for a fixed region R takes
the values +1 inside R and −1 outside, away from the bound-
ary ∂R, while changing smoothly from −1 to +1 in a narrow
interface region around ∂R. In the ‘gas of circles’ model, the
parameters of E are adjusted so that a circle of the desired
radius is a local minimum and therefore stable [5, 7].
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Fig. 1. The higher order interaction function G for d = 2.

2. DISCRETIZATION

We discretize D as a finite rectangular lattice S ⊂ Z
2 ⊂ R

2.
Each lattice site s ∈ S corresponds in the standard fashion to
a rectangular cell cs ⊂ D. A region will be represented by a
function Ω � ω : S → {±1}. There is a map W : Φ → Ω:

ωs = W (φ)s = 2H
(∫

cs

φ
)
− 1 . (3)

Using W , we want to construct an MRF that is ‘equivalent’
to the phase field model. Since we will compute MAP esti-
mates, and since we wish to preserve the property that circles
of a given radius have higher probability than neighbouring
configurations, we define the MRF energy to be

U(ω) = min
φ:W (φ)=ω

E(φ) = E(φω) .

Note that φω may not be unique due to the translation invari-
ance of E. The nature of φω can be deduced from the de-
scription of φR in the previous section. Were Df = βf = 0,

we would have φω(x) = ως(x), where ς is define by x ∈
cς(x). This value can be substituted into E. Writing

∫
D =∑

s∈S
∫

cs
, and using the fact that ς(x) is constant on each

cell, we then find that, up to an additive constant,

E(φω) =
∑

s

{
2αf

3
ωs +

Df

2

∫
cs

|∇ως(x)|2
}

+
βf

2

∑
s,s′

Fss′ ωs ωs′ ,

where Fss′ =
∫

cs×cs′
G((x − x′)/d). Note that Fss′ = 0 if

|s− s′| > 2d, and that the derivative term is not well-defined.
For non-zero Df and βf , but far from ∂R, we will still

have φω = ως(x); indeed Df �= 0 reinforces this. Near ∂R,
there will be a smooth transition between ±1, controlled by
the constraint (3). Due to the parameter settings used for the
phase field model, and the resulting width of the boundary
layer, the most significant deviations from ως(x), and hence
the largest gradients, will be at the interfaces between pairs
of nearest neighbour cells of opposite sign. These deviations
will have little effect on the nonlocal term, since it is a sum
over a large region, and so we can leave φω = ως(x) in this
term. Consider now the derivative term. It can be rewritten∑

s

∫
cs

|∇φω|2 =
1
8

∑
s

∑
s′∼s

∫
cs∪cs′

|∇φω|2 .

where ∼ is the nearest neighbour relation. As just stated, the
integrals will be small unless (ωs − ωs′)2 �= 0. We assume
that the integrals for each pair of such neighbours will be the
same. The final MRF energy can therefore be written

U(ω) = α
∑

s

ωs +
D

2

∑
s

∑
s′∼s

(ωs − ωs′)2

+
β

2

∑
s,s′

Fss′ ωs ωs′ . (4)

where α = 2αf

3 , β = βf , and D ∝ Df incorporates the
integral over pairs of boundary cells.

3. MARKOVMODEL

The discrete energy functional in Eq. (4) defines an MRF with
respect to an appropriate neighbourhood system. In Eq. (4),
there are two type of interactions: the finite difference ap-
proximation of the gradient term, corresponding to classi-
cal nearest neighbours (doubleton interactions); and the in-
teractions governed by kernel Fsr, corresponding to a neigh-
bourhood of diameter 2d (long-range interactions). Since the
size of the neighbourhood is dominated by the latter (d ≥ 2
in practice), the neighbourhood of a site s ∈ S is the set
{s′ ∈ S : |s − s′| < 2d}. In addition, we have the singleton
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Fig. 2. MRF neighbourhood (d = 2, i.e. |s − s′| < 4).

terms. These structures are illustrated in Fig. 2. We now dis-
cuss the singleton, doubleton, and long-range clique poten-
tials and their effects in more detail.

The first term in equation (4) has the form
∑

s Vs, where
Vs = αωs is thus the singleton potential. Its effect depends
on the sign of α. Setting α > 0 favours ωs = −1 every-
where. Thus as α is increased, typical configurations have
less foreground pixels, yielding less circles. This is illustrated
in Fig. 3), where samples from the MRF are shown for differ-
ent α.

α = 0.1863 α = 0.21 α = 0.24 α = 0.27

Fig. 3. Typical samples from the MRF defined by U : the
effect of altering α (d = 8, β = 0.096, D = 0.1545).

In addition, we will use a data likelihood that represents
the background and foreground pixel classes by Gaussian dis-
tributions. This adds inhomogeneous terms to Vs. The result
is that in the posterior probability for ω, Vs is given by

Vs = αωs + γ

(
ln(

√
(2π)σωs) +

(Is − μωs)
2

2σ2
ωs

)
,

where I : S → R is the image data. The parameters of the
Gaussian distributions μ±1 and σ±1 are learned from repre-
sentative samples provided by the user.

The doubleton potential V{s,s′} is defined on sets {s, s′}.
Since the sum in U is over the nearest neighbours of each s,
each doubleton is counted twice: this eliminates the factor 1

2 .
To fix D, we use the fact that Df is essentially equal to the
contour length parameter in the original higher-order active
contour model [6]. Since

∑
s∼s′(ωs−ωs′)2 measures bound-

ary length in the MRF, we should have D = Df . However,
the MRF length term is bigger than the boundary length of
ζ(φω) due to discretization effects. The ratio between these
contour lengths is ≈ 0.82. Taking into account these correc-

classical MRF gocMRF
Noise FP (%) FN (%)

0 0.3 0.3
-5 1.8 2.0

-10 2.5 7.2
-16 4.2 24.5
-20 9.8 39.6

Noise FP (%) FN (%)
0 0.2 1.0
-5 1.2 1.7
-10 2.1 4.3
-16 3.9 8.5
-20 6.4 16.5

Table 1. Results on synthetic noisy images.

tions, the doubleton potential for s ∼ s′ is

V{s,s′} = D(ωs − ωs′)2 =

{
0.82Df if ωs �= ωs′ ,
0 otherwise.

The long-range potential V ′
{s,s′} introduces the prior

shape knowledge. It is defined for {s, s′} with |s − s′| < 2d:

V ′
{s,s′} = βFss′ ωs ωs′ =

{
−βFss′ if ωs �= ωs′ ,
+βFss′ otherwise.

From Fig. 1, it is clear that V ′ favours the same label when
|s − s′| < d′ (attractive case) and different labels when d′ <
|s − s′| < 2d (repulsive case), where d′ � d is the zero of G.

4. EXPERIMENTAL RESULTS

Original Noisy image Classical gocMRF

Fig. 4. Result on a synthetic image corrupted by additive
noise of −16dB.

We use simulated annealing [8] with a standard Gibbs
sampler [9] to minimize U . The initial temperature was set
to 3 and we used an exponential annealing schedule Tn+1 =
0.97Tn. The iterations were stopped when the temperature
decreased below 0.01.

Table 1 shows the quantitative results obtained on a set
of 160 synthetic noisy images. We compare the segmentation
results to a classical MRF model [10], which doesn’t include a
shape prior. For a fair comparison, the false-positive (FP) and
false-negative (FN) rates were computed while excluding the
small circular regions. This is to avoid biasing the measure:
the classical MRF should detect all regions having a particular
intensity while our model will only detect the desired circles.
Based on these numbers, it is clear that the proposed model is
less sensitive to noise. Fig. 4 shows a sample synthetic image
and demonstrates the results for a −16dB noise level.
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Tree crown detection in aerial images can be used to com-
pute a number of the tree plantation statistics used for efficient
forestry management. The main challenge to successful de-
tection is the cluttered background, which causes traditional
segmentation methods to fail. Fig. 5 and Fig. 6 show some
results. In Fig. 5, the trees are difficult to separate due to
shadows, blur, and vegetation between neighbouring crowns.
In Fig. 6, the classical MRF model fails to separate trees
from background vegetation because they have similar inten-
sity distributions. Obviously, the d parameter of our model,
controlling the approximate radius of the detected trees, must
be set correctly in order to achieve the best performance.

5. CONCLUSION

We have constructed a new binary MRF model that includes
prior information about the shape of the region to be seg-
mented, in this case, that it be composed of an arbitrary num-
ber of circles of a certain radius. In addition to classical ho-
mogeneity terms, the model includes terms that encourage
inhomogeneity at long ranges, in order to capture nonlocal
geometric properties. The model was derived in a princi-
pled fashion from a continuous ’gas of circles’ phase field
model. It is ‘equivalent’ to the continuous model in a well-
defined way, thereby guaranteeing that stability conditions in
the phase field model remain valid in the new model. Experi-
mental tests on various synthetic and real images confirm the
performance of the ‘gas of circles’ MRF model.

Fig. 5. Tree detection result on an aerial image of a regularly
planted pine forest.
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