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ABSTRACT

A direct approach for parametric estimation of 2D affine de-
formations between compound shapes is proposed. It pro-
vides the result as a least-square solution of a linear system
of equations. The basic idea is to fit Gaussian densities over
the objects yielding covariant functions, which preserves the
effect of the unknown transformation. Based on these func-
tions, linear equations are constructed by integrating nonlin-
ear functions over appropriate domains. The main advantages
are: linear complexity, easy implementation, works without
any time consuming optimization or established correspon-
dences. Comparative tests show that it outperforms state-of-
the-art methods both in terms of precision, robustness and
complexity.

Index Terms— Compound shape, Affine registration,
Gaussian distribution, Mahalanobis distance

1. INTRODUCTION

Image registration is an important step for various problems
in computer vision, object matching and medical image pro-
cessing. The basic problem is to find an unknown transfor-
mation between two images of the same scene [1]. Classical
approaches fall into two main categories: point-based meth-
ods try to determine point correspondences between the im-
ages using interest point coordinates (e.g. corners, lines cross-
ing, control points), then a system of equations is constructed
using these point pairs. However, finding reliable correspon-
dences is a hard problem in itself, which is further challenged
by the lack of radiometric information in the binary case.
Therefore most of the methods assume that the true distor-
tion is close to identity. Finding an optimal aligning trans-
formation usually requires an iterative procedure. Other type
of approaches, called area-based methods, use a similarity
measure (usually based on cross-correlation or mutual infor-
mation) to estimating the transformation parameters provided
by an optimization procedure. In this case, it is also important
to restrict the admissible transformations as much as possible
in order to speed-up the optimization procedure.
Recently, affine registration of binary shapes received

more attention. The binary registration algorithm proposed
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in [2] constructs a system of equations by basically looking at
the images at 3 different scales. Although the resulting sys-
tem is linear, the solution is inherently less precise as in each
equation they can only use part of the available information.
In [3] a novel image normalization method is proposed with
respect to unknown affine transformations based on affine im-
age moments. The transformation is decomposed into basic
transformations, which are subsequently eliminated one by
one. In our previous work [4], we have proposed a method
for estimating the parameters of an affine transformation by
constructing covariant functions and then tracing back the
original estimation problem to the solution of a linear sys-
tem of equations. Unfortunately, the method requires an
almost perfect segmentation in order to achieve satisfactory
alignment.
In this paper, we show how this requirement can be re-

laxed in the case of compound shapes. An elegant, fast and
robust solution is proposed, where linear equations are con-
structed by integrating nonlinear functions over correspond-
ing domains derived from compound shapes. The perfor-
mance of the proposed method has been tested on a large syn-
thetic dataset as well as on real images.

2. ESTIMATION OF AFFINE DEFORMATIONS

We are interested in the general problem of finding an un-
known affine transformation (denoted by (A, t) ∈ (R2×2 ×
R

2×1)) aligning a template shape and its distorted observa-
tion, such that the following relation is satisfied:

y = Ax+t ⇔ x = A−1(y−t) = A−1y−A−1t, (1)

where x = [x1, x2]T , y = [y1, y2]T ∈ R
2 denote the coordi-

nates of the template and observation points, respectively. If
we can observe some image features (e.g. gray-levels of the
pixels [5]) that are invariant under the transformation (A, t),
then an additional relation can be stated:

g(x) = h(Ax + t) ⇔ g(A−1(y − t)) = h(y), (2)

where g, h : R
2 → R are covariant functions under the trans-

formation (A, t), defined on those observed features. Further-
more, the above relations are still valid when an ω : R → R

function is acting on both sides of the equation [5]. Indeed,
for a properly chosen ω

ω(g(x)) = ω(h(Ax+t)) ⇔ ω
(
g(A−1(y−t))

)
= ω(h(y)).
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The basic idea of [4, 5] is to use nonlinear ω functions. This
way, we can generate as many linearly independent equations
as needed. Note that these equations doesn’t contain new in-
formation, they simply impose new linearly independent con-
straints allowing for a unique solution.

2.1. Construction of Covariant Functions

The key challenge is to construct appropriate covariant func-
tions satisfying Eq. (2). Since we do not have any radiometric
information, these functions must be defined using the only
available geometric information. The solution proposed in
our previous work [4] relies on fitting Gaussian densities over
the template and observation shapes. We thus consider the
points of the template as a sample from a bivariate normally
distributed random variableX ∼ N(μ, Σ) with

p(x) =
1

2π
√|Σ| exp

(
− 1

2
(x − μ)T Σ−1(x − μ)

)
(3)

probability density function (PDF). For any affine transfor-
mation Y = AX + t is also normally distributed with Y ∼
N(μ′,Σ′) = N(Aμ + t,AΣAT ) and s(y) PDF. It is then
easy to see that p(x) and s(y) are covariant [4]:

p(x) = |A|s(y), (4)

where |A| =
√|Σ′|/|Σ| is the Jacobian of the transformation.

Without loss of generality, we can assume that |A| > 0, since
A is clearly non-singular, and a negative determinant would
mean flipping of coordinates which is usually excluded by
physical constraints in real applications.
It is well known, that the normalizing constant 1/(2π

√|Σ|)
in Eq. (3) ensures that the integral of the PDF evaluates to 1.
It is also the maximum value of the density function, which
is inversely proportional to the area of the shape. This de-
pendence on the shape size may cause numerical instabilities
hence we rewrite Eq. (5) in the following form:

P(x) ≡ 2π
√

|Σ|p(x) = 2π
√

|Σ′|s(y) ≡ S(y),with (5)

P(x) = exp
(
− 1

2
(x − μ)T Σ−1(x − μ)

)
.

2.2. Compound Objects

Image analysis often deals with the matching of objects com-
posed of several parts, yielding a group of disjoint shapes
when segmented. The topology of such compound shapes
will not change under the action of the affine group. Thus,
assuming the template object consists of m ≥ 2 disjoint
shapes, each component has exactly one corresponding shape
on the observation, i.e. there exist a bijective mapping be-
tween the template and observation components under the
transformation (A,t). As a consequence, we can construct
covariant functions Pi(x), Si(y) for each pair of shapes sat-
isfying Eq. (5). Furthermore, the overall shape (i.e. the whole

foreground region) also gives rise to a pair of covariant func-
tions P0(x), S0(y). Thus we have m + 1 relations. If the
correspondence between components would be known then
we could simply construct a system of m + 1 equations and
solve for the unknowns. As such a matching is usually not
known, we will sum these relations yielding

P (x) ≡
m∑

i=0

Pi(x) =
m∑

i=0

Si(y) ≡ S(y). (6)

Note that these sums are mixtures of unnormalized Gaussian
densities which can also be interpreted as a consistent color-
ing of the template and observation respectively (see Fig. 1).
By consistent coloring, we mean that these functions preserve
the effect of the unknown transformation. Furthermore, these
functions can be constructed exactly and uniquely from the
object points alone without any knowledge about the aligning
transformation. As a result, we can transform the original bi-
nary images into graylevel ones, where corresponding pixels
have exactly the same gray value.
We thus have Eq. (1) and Eq. (6) as the only relations be-

tween the two objects. Since nothing is known about the cor-
respondence between the template and observation, we will
multiply these equations and integrate out individual point
matches [5, 4]:
∫
�2

x
m∑

i=0

Pi(x)dx = |A|−1

∫
�2

A−1(y − t)
m∑

i=0

Si(y)dy,

(7)
where we have used the integral transformation x = A−1(y−
t), dx = |A|−1dy.

2.3. Selecting the Integration Domains

One obvious approach to restrict the integration in Eq. (7) to
a finite domain is to use the segmented shape itself as the do-
main [5, 4]. However, a clear disadvantage of this approach
is that any segmentation error will inherently result in erro-
neous integrals causing misalignment. Furthermore, even if
the segmentation is perfect, the precision of these domains is
always compromised by discretization error. Herein, we will
take another approach to select appropriate domains D and
D′ satisfying the following properties: 1) they are related by
the unknown transformation AD + t = D′ and 2) the inte-
grands are rich enough (i.e. has a characteristic pattern) within
the selected regions. Since the equidensity contours of a two-
variate Gaussian PDF are ellipsoids centered at the mean, it is
natural to chose one of the ellipses of the density fitted to the
overall shape as the domain D. To satisfy 2), we may choose
an ellipse according to the two sigma rule, which guarantees
that about 95% of values are within the enclosed ellipsoid. To
satisfy 1), we have to select a pair of corresponding ellipses
from the template and observation. This can be obtained by
selecting points whose Mahalanobis distance are less than r2

from μ: D = {x ∈ R
2|(x − μ)T Σ−1(x − μ) ≤ r2} and
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Fig. 1. Gaussian PDFs fitted over a binary shape yields consistent coloring. First pair: template and observation compound
object. Second pair: Isovalue lines show P (x) and S(y) over the selected elliptic domains. The white curves show the objects’
contour. Last pair: 3D plot of P (x) and S(y).

D′ = {y ∈ R
2|(y − μ′)T Σ′−1(y − μ′) ≤ r2} (see Fig. 1).

These domains are analytical and less dependent on segmen-
tation errors, thus the integration in Eq. (7) can be restricted
to these finite domains. Experiments show that good results
can be achieved by settings ranging from r = 1 to r = 3.

2.4. Linear Solution

Now we can adopt the idea from [5, 4] and generate a set
of linear equations to solve for the unknown transformation
(A, t). The basic idea is to apply nonlinear ω : R → R func-
tions to both sides of Eq. (6) yielding linearly independent
equations:∫

D
xω

(
P (x)

)
dx = |A|−1

∫
D′

A−1(y − t)ω
(
S(y)

)
dy.

This way, we can generate as many linearly independent
equations as needed (at least 6 as we have 6 unknowns for
(A, t)). If qki denotes the elements of A−1 (for i = 1, 2)
and −A−1t (for i = 3); and by adopting a set of functions
{ωi}n

i=1, the above linear system can be written in matrix
form [5, 4]:⎡
⎢⎣

∫
D′ y1ω1

(
S(y)

) ∫
D′ y2ω1

(
S(y)

) ∫
D′ ω1

(
S(y)

)
...

...
...∫

D′ y1ωn

(
S(y)

) ∫
D′ y2ωn

(
S(y)

) ∫
D′ ωn

(
S(y)

)

⎤
⎥⎦×

⎡
⎣ qk1

qk2

qk3

⎤
⎦ = |A|

⎡
⎢⎣

∫
D xkω1

(
P (x)

)
...∫

D xkωn

(
P (x)

)

⎤
⎥⎦ , k = 1, 2. (8)

The solution of this linear system provides the parameters
of the transformation. If n > 3 then the system is over-
determined and the solution is obtained as a least squares so-
lution. The parameters of the probability densities N(μ, Σ)
and N(μ′,Σ′) can directly be computed from the images and
this is all what is needed for our method. Once these param-
eters are computed, we can construct covariant functions and
select appropriate integration domains. A clear advantage of
the proposed approach is that theoretically, the most accu-
rate and less sensitive feature of the objects are their statis-
tics, i.e. their sample means and covariances. Although we
should compute the integrals over an elliptic domain, in prac-
tice, we can easily approximate these integrals by finite sums

Template Kannala
et al. [2]

Suk&
Flusser [3]

Single
density [4] Proposed

Fig. 2. Registration results: Overlapping areas are shown in
dark while misregistered areas in gray.

over a grid with sufficient resolution. In our experiments an
1500 × 1500 grid gave satisfactory results. The set of non-
linear ω functions can be arbitrary as long as they gener-
ate linearly independent equations. In our experiments we
found that the trigonometric family provides satisfactory re-
sults: {x, sinx, cos x, sin 2x, cos 2x}.

3. EXPERIMENTAL RESULTS

The proposed method has been quantitatively evaluated on
a set of ≈ 1500 synthetically generated observations for
60 different compound shapes. The applied transforma-
tions were randomly composed of 0◦, 10◦, . . . , 350◦ rota-
tions; 0, 0.4, . . . , 1.2 shearings; 0.5, 0.7, . . . , 1.9 scalings,
and −20, 0, 20 translations along both axes. The resulting
images are of size ≈ 1400 × 1400, some typical examples
can be seen in Fig. 2. For the evaluation of registration re-
sults, we defined two kind of error measures: The first one
(denoted by ε) measures the average distance between the
true (A, t) and the estimated (Ã, t̃) transformation. The sec-
ond one is the absolute difference (denoted by δ) between the
observation and the registered image:

ε =
1
|F |

∑
p∈F

‖(A− Ã)p‖, and δ =
|F̃ � F ′|
|F̃ | + |F ′| · 100%,

where�means the symmetric difference, while F , F ′ and F̃
denote the set of pixels of the template, observation, and the
registered shape.
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Method and runtime 0% 10% 50% 90%
Kannala et al. [2] ε 2.7 3.65 7.37 26.44

29.79 sec. δ 1.65 2.35 4.77 14.39
Suk&Flusser [3] ε 0.43 19.25 109.85 258.34

3.91 sec. δ 0.06 9.91 51.16 92.11
Single density [4] ε 0.64 82.65 407.31 748.95

0.48 sec. δ 0.31 35.11 84.01 100
Proposed ε 0.58 2.64 7.7 23.66
4.65 sec. δ 0.25 1.55 4.59 13.23

Table 1. Median of error measures and runtime.

In practice, segmentation never produces perfect shapes.
Therefore we also evaluated the robustness of the proposed
approach when 10%, 20%, . . . , 90% of the foreground pix-
els has been removed from the observation before registra-
tion. Evaluation results are summarized in Table 1 and some
registration results are shown in Fig. 2. It is clear that our
method provides good results up to as high as 50% removed
pixels, and results for 90% are also acceptable. In general,
our method will perform well as long as the first and second
order statistics of shapes does not change dramatically. The
proposed approach has also been compared to some recent
binary registration approaches [2, 3], including our previous
method using a single density [4]. The method of Kannala
et al. [2] is clearly outperformed in both quality, robustness
and computing time. On the other hand, the method of Suk
and Flusser [3] achieves slightly better results. In terms of ro-
bustness, however, our method clearly dominates [3], which
already performs poorly for 10% removed pixels and fails
completely for 50%. Finally, our previous method [4] per-
forms quite well when there are no segmentation errors, but it
also fails for 50% missing pixels.
In Fig. 3, we present some registration results on real im-

ages of traffic signs. Automatic traffic sign recognition [6] is
a hot topic, which usually requires the registration of a refer-
ence shape to an observed one. There are many methods to
automatically detect and segment signs [6], but in our experi-
ments we simply performed this task manually via threshold-
ing. The results illustrate that the proposed method provides
good results under real-life conditions.

4. CONCLUSION

In this paper we proposed a novel approach to estimate 2D
affine transformations between compound shapes. The main
novelty of our method is that, in contrast to our previous
work [4], this approach selects consistent domains under the
unknown affine transformation instead of the segmentation.
Therefore it is more robust against segmentation errors. It
makes use of all available information in the input images
and provides the transformation parameters as a solution of a
linear system of equations. It works without established point

δ = 4.44% δ = 1.61% δ = 9.05%

Fig. 3. The registered contour of the images in the first row
are overlayed on the observations in the second row.

pairs or optimization step; furthermore it has a linear time
complexity and is easy to implement.
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