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ABSTRACT

A novel approach is proposed to estimate the parameters of a
diffeomorphism that aligns two binary images. Classical ap-
proaches usually define a cost function based on a similarity
metric and then find the solution via optimization. Herein,
we trace back the problem to the solution of a system of non-
linear equations which directly provides the parameters of the
aligning transformation. The proposed method works without
any time consuming optimization step or established corre-
spondences. The advantage of our algorithm is that it is easy
to implement, less sensitive to the strength of the deforma-
tion, and robust against segmentation errors. The efficiency
of the proposed approach has been demonstrated on a large
synthetic dataset as well as in the context of an industrial ap-
plication.

Index Terms— Registration, nonlinear deformation, bi-
nary image, industrial inspection.

1. INTRODUCTION

Image registration is a fundamental problem for various im-
age processing tasks (e.g. change detection, visual inspection,
or medical image analysis). In many cases, nonlinear trans-
formation models [1] (e.g. polynomial, elastic, thin plate)
are assumed between the images. Most nonrigid registration
methods first extract a set of corresponding landmarks and
then use information about the correspondences to find the
aligning transformation between the images [2]. However,
the correspondence problem itself is challenged by strong
deformations. Furthermore, many approaches define a cost
function based on a similarity metric which is then opti-
mized [3]. Another class of methods adopt a variational
approach [4]. Both approaches have a rather high computa-
tional cost. Francos et al. [5] proposed an elegant solution
for estimating a homeomorphism between graylevel images
by transforming the matching problem into the solution of
a linear system of equations. Although this solution doesn’t
use point correspondences nor optimization, it relies on the
availability of rich radiometric information.
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In many cases, however, radiometric information is lim-
ited (e.g. document images, prints. . . ) or intensity values are
heavily distorted (e.g.X-ray images). In such cases, assuming
segmentation of the objects is available, binary image regis-
tration is a valid alternative. Belongie et al. proposed a novel
similarity metric [6], called shape context, which can be used
to establish correspondences between contour points and then
use them to align shapes by a general thin plate spline model.
Another approach, similar to [5], has been proposed to re-
cover affine deformations [7] and planar homographies [8] of
binary shapes. The basic idea of [8] is to set up a system
of nonlinear equations by integrating a set of nonlinear func-
tions over the image domains and then solve it by classical
Levenberg-Marquardt algorithm. In this paper, by extending
the ideas in [5, 8], a novel method is proposed to estimate the
parameters of a diffeomorphism that aligns two binary shapes
avoiding both establishing correspondences and the optimiza-
tion step. We tested the performance and robustness of the
algorithm on a large set of synthetic images. Furthermore,
the proposed method has been successfully used for visual
inspection of signs printed on hoses in a real industrial appli-
cation.

2. REGISTRATION FRAMEWORK

In the general case, we are looking for the parameters of a ϕ :
R

2 → R
2 diffeomorphism aligning a pair of binary shapes.

Let us denote the coordinates of the template and observation
by x = [x1, x2]T ∈ R

2 and y = [y1, y2]T ∈ R
2, respectively.

We then have the following identity relation

y = ϕ(x) ⇔ x = ϕ−1(y), (1)

where ϕ−1 : R
2 → R

2 is the corresponding inverse trans-
formation. The deformation field ϕ can be decomposed as
ϕ(x) = [ϕ1(x), ϕ2(x)]T , where ϕ1, ϕ2 : R

2 → R. Since
we are interested in a direct solution without solving the cor-
respondence problem, we will integrate both sides of Eq. (1)
over the foreground regions Ft and Fo [8]:∫

Fo

ydy =
∫
Ft

ϕ(x) |Jϕ(x)| dx, (2)

where the integral transformation y = ϕ(x), dy = |Jϕ(x)| dx
has been applied with |Jϕ| : R

2 → R denoting the Jacobian
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Fig. 1. The effect of the ω functions. Top: the generated
coloring of a binary shape for various functions. Bottom: the
corresponding volumes over the shape.
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2 + x1, x

2
1 + x2]T

Fig. 2. Various deformation fields (G is a Gaussian function).

of the transformation. Unfortunately, the above two equations
alone are not enough to solve for k > 2 unknowns.
In order to generate more equations, let us remark that

the identity relation in Eq. (1) remains valid when a function
ω : R

2 → R is acting on both sides of the equation [7, 8]. We
thus obtain the following integral equation from Eq. (2)

∫
Fo

ω(y)dy =
∫
Ft

ω
(
ϕ(x)

) |Jϕ(x)| dx. (3)

The basic idea of the proposed approach is to generate enough
linearly independent equations by making use of nonlinear ω
functions. Clearly, each applied ω generates one nonlinear
equation. Let ωi : R

2 → R (i = 1, . . . , �) denote the set
of adopted nonlinear functions. In order to solve for all un-
knowns, we need at least k equations, hence � ≥ k. Intu-
itively, ω generates a consistent coloring of the binary shapes
as shown in Fig. 1. From a geometric point of view, Eq. (2)
simply matches the center of mass of the template and ob-
servation while Eq. (3) matches the volumes over the shapes
constructed by the nonlinear functions ω (see Fig. 1).
While gray-level images allow for a wide range of defor-

mation fields, not every transformation model causes visible
distortion on a binary image. For example, the effect of a
localized deformation is not always observable (see Fig. 2).
Therefore in the remaining part of this paper, we will focus on
two important class of deformations (polynomial and cylin-
dric) for which distortions are noticeable on binary shapes.

3. POLYNOMIAL DEFORMATIONS

A broadly used class of deformations is the polynomial fam-
ily. Let ϕ(x) ≡ p(x) = [p1(x), p2(x)]T be a polynomial
deformation field. Without loss of generality, we can assume
that d = deg(p1) = deg(p2), furthermore

p1(x) =
d∑

i=0

d−i∑
j=0

aijx
i
1x

j
2, and p2(x) =

d∑
i=0

d−i∑
j=0

bijx
i
1x

j
2.

Note that aij and bij are the unknown parameters of the trans-
formation and the number of these parameters is k = (d +
2)(d + 1). The Jacobian of the transformation |Jp| : R

2 → R

used in Eq. (3) is given by

|Jp(x)| =
( d∑

i=1

d−i∑
j=0

iaijx
i−1
1 xj

2

)( d∑
j=1

d−j∑
i=0

jbijx
i
1x

j−1
2

)

−
( d∑

j=1

d−j∑
i=0

jaijx
i
1x

j−1
2

)( d∑
i=1

d−i∑
j=0

ibijx
i−1
1 xj

2

)
,

which is clearly a polynome. The parameters of the aligning
transformation are then simply obtained as the solution of the
nonlinear system of equations from Eq. (3). Theoretically any
nonlinear function could be applied for constructing our sys-
tem, but the solution of a system of polynomial equations is
numerically more stable. If we use the polynomial transfor-
mation

ωi(x) = xni
1 xmi

2 (ni,mi ∈ N0), (4)

then we will get a system of polynomial equations. Hence
Eq. (3) can be written as for all i = 1, . . . , �∫

Fo

yni
1 ymi

2 dy =
∫
Ft

p1(x)nip2(x)mi |Jp(x)| dx. (5)

Note, that the left hand side of the equations are constant and
can be computed directly using the coordinates of the obser-
vation. In practice, these integrals are approximated via finite
sums, i.e.

∫
Fo

yq
1y

r
2dy ≈ ∑

y∈Fo
yq
1y

r
2 , where Fo denotes the

set of the foreground pixels of the observation. Since both
p1(x) and p2(x) as well as |Jp(x)| are polynomes, obviously
their multiplication is also a polynome. Thus, the integrals on
the right hand side can be written as
∫
Ft

p1(x)nip2(x)mi |Jp(x)| dx =
ci∑

q=0

ci−q∑
r=0

hiqr

∫
Ft

xq
1x

r
2dx,

where ci = d(ni + mi) + d(d − 1) is the degree of the poly-
nome in the ith equation, and hiqr are nonlinear terms consist-
ing of the unknown parameters of the transformation. As we
noted before, the integrals

∫
Ft

xq
1x

r
2dx are constants and can

be computed directly using the coordinates of the template. In
fact the ith equation in Eq. (5) is a polynomial equation with
degree ci and the unknowns are the parameters of the aligning
transformation.
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Runtime (sec.) δ (%)
m μ σ m μ σ

SC [6] 79.75 85.08 30.06 2.48 2.92 1.78
Proposed 15.32 15.62 6.99 0.35 2.14 6.29

Table 1. Registration results (m denotes the median while μ
and σ denotes the mean and standard deviation of the values).

Removed pixels (%) 5 10 15 20
Shape Context [6] 25.07 27.03 27.96 28.62
Proposed method 5.62 8.95 11.88 14.45

Size of occlusion (%) 1 2.5 5 10
Shape Context [6] 10.54 10.89 11.32 13.08
Proposed method 3.56 6.32 9.27 14.12

Table 2. Median of δ measures versus amount of randomly
removed pixels (top) and size of random occlusions (bottom).

3.1. Experimental results

The proposed method has been tested on a synthetic database
of 37 different shapes and their deformed versions, a to-
tal of ≈ 1700 images of size 800 × 800. A second or-
der (d = 2) polynomial deformation field with 12 param-
eters has been applied to generate random observations
with a20, a02, a11, b20, b02, b11 parameters chosen randomly
from [−0.5; 0.5]; a10, b01 from [0.5; 1.5]; and a01, b10 from
[−0.25; 0.25]. Since image coordinates were normalized into
[−0.5; 0.5], we set a00 and b00 zero. We adopted the ωi func-
tions in Eq. (4) with exponents {(mi, ni)}12

i=1 = {(a, b)|0 ≤
a, b ≤ 3, 1 < a+b ≤ 4}, resulting in 12 equations of the form
Eq. (5) which was solved by classical Levenberg-Marquardt
algorithm. The registered image was then obtained by ap-
plying the resulting transformation to the template. The
registration error has been quantitatively evaluated based on
the absolute difference of the aligned shapes

δ =
|Fr � Fo|
|Fr| + |Fo| · 100%,

where Fr is the set of foreground pixels of the registered
shape and � denotes symmetric difference.
We have also compared the performance of our method

to that of Shape Context (SC) [6], whose parameters were
set empirically to their optimal value (beta init = 30,
n iter = 30, and annealing rate r = 1). A summary of
these results is presented in Table 1 and in Fig. 3.
The robustness of the proposed approach against two

types of segmentation error has been also tested: In the first
case we removed 5%, . . . , 20% of the foreground pixels from
the observation before registration, while in the second case
we occluded continuous square shaped regions of size equal
to 1%, . . . , 10% of the whole shape (see Fig. 3). Table 2

Template Observation SC [6] Proposed

Fig. 3. Synthetic images and registration results. The last two
rows show examples from the robustness tests. The observa-
tion and registered shapes were overlayed, overlapping pixels
are shown in gray while non-overlapping ones in black.

shows the median of δ measures versus the percentage of
segmentation errors and a comparison to the results of SC.
As almost all registration methods based on point correspon-
dences, SC is less sensitive to segmentation errors, whereas
our method’s error rate increases with the segmentation error.
Nevertheless, it provides good results up to as high as 5%
removed pixels and 2.5% occlusions; and it outperforms SC
up to 20% removed pixels and 5% occlusions.

4. APPLICATION: VISUAL INSPECTION

An important step in hose manufacturing for automotive in-
dustry is to print various signs on the hose surface in or-
der to facilitate installation (see Fig. 4). The quality con-
trol of this process involves visual inspection of the printed
signs. In an automated inspection system, this can be imple-
mented by comparing images of the printed sign to its tem-
plate, which requires the alignment of the template and obser-
vation shapes. The main challenges are segmentation errors
and complex distortions. The physical model of the contact
printing procedure is as follows: (1) the stamp (basically a
planar template of the sign) is positioned on the hose surface;
(2) then it is pressed onto the surface. This can be described
by a 2D rotation and scaling S : R

2 → R
2 of the template

followed by a transformation γ : R
2 → R

3 that maps the
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Fig. 4. Registration results of printed signs. Top: The images used as templates. Bottom: the corresponding observations with
the overlayed contour of the registration results. The first image pair shows the segmented regions used for registration. Note
the typical segmentation errors of the observation. (Images provided by ContiTech Fluid Automotive Hungária Ltd.)

template’s plane to a cylinder with radius r:

γ(x) =
[
r sin

x1

r
, x2,−r cos

x1

r

]T

.

Then a picture is taken with a camera, which is described by
a classical projective transformation P : R

3 → R
2 (basically

the camera matrix). Thus the transformation P ◦ γ ◦ S acting
between a planar template and its distorted observation has
11 parameters: S has 3 parameters, γ has one (r), and P has
7 (six extrinsic parameters and the focal length). We have
empirically tested a number of potential {ωi} sets and found
that the following gives the best result:

ωi(x) = (x1 cos αi − x2 sin αi)ni(x1 sin αi + x2 cos αi)mi

for i = 1, . . . , 12, using all combinations for αi ∈
{
0, π

6 , π
3

}
and (ni,mi) ∈ {(1, 2), (2, 1), (1, 3), (3, 1)}. The method has
been tested on more than 150 real images and it proved to be
efficient in spite of segmentation errors and severe distortions.

5. CONCLUSION

In this paper we have introduced a novel featureless method
to estimate the parameters of a nonlinear transformation that
aligns two binary images. We have demonstrated the perfor-
mance of the method on a large synthetic dataset and ana-
lyzed its robustness against various segmentation errors. The
method has been validated in the context of visual inspection
of printed signs.
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