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Abstract

Herein, we propose a new Markov random field (MRF)
image segmentation model which aims at combining color
and texture features. The model has a multi-layer struc-
ture: Each feature has its own layer, called feature layer,
where an MRF model is defined using only the correspond-
ing feature. A special layer is assigned to the combined
MRF model. This layer interacts with each feature layer
and provides the segmentation based on the combination of
different features. The uniqueness of our algorithm is that it
provides both color only and texture only segmentations as
well as a segmentation based on combined color and texture
features. The number of classes on feature layers is given
by the user but it is estimated on the combined layer.

1. Introduction

Image segmentation is an important early vision task
where pixels with similar features are grouped into homo-
geneous regions. There are many features that one can
take into account during the segmentation process: gray-
level, color, motion, texture features, etc. However, most
of the segmentation algorithms presented in the literature
are based on only one of the above features. Recently,
the segmentation of color images received more atten-
tion [2, 5, 10, 9, 11, 8]. In this paper, we are interested
in the segmentation of color textured images. Basically,
there are two approaches to this problem: One approach
deals directly with color textures [10, 9]. In [10], an un-
supervised segmentation algorithm is proposed which uses
Gaussian MRF models for color textures. These models are
defined in each color plane with interactions between dif-
ferent color planes. The segmentation algorithm is based
on agglomerative hierarchical clustering. A different ap-
proach is presented in [9] which uses a multiband smooth-
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ing algorithm to generate a multiscale representation of an
image. The smoothing is based on human psychophysi-
cal measurements of color appearance. First the coarsest
level is clustered to isolate core clusters. Other pixels are
then reassigned to these core clusters using a probabilis-
tic assignment. Another frequently used approach tries to
combine traditional gray level texture features together with
pure color features [11, 8]. Our approach falls into this cat-
egory.

The novelty of our model can be summarized as follows:
First, we use different features at different layers. This
allows us to work with different models or to have vary-
ing number of regions at different layers, choosing the one
which describes the best our feature data at a given layer.
In addition, we have a special layer, called combined layer,
which does not correspond to any feature but provides a way
to combine different features. Second, the layers are fully
connected: each pixel interacts with the corresponding pixel
at other layers. A similar, fully connected pyramidal model
is used in [7]. Multiscale pyramids have also been success-
fully applied for image segmentation [4]. In these models,
each layer usually contains the same image data at differ-
ent resolutions. However, we use different data at different
layers and we do not perform subsampling, therefore our
model is not a pyramid. Each layer is of the same size. In
this respect, our model is similar to [10, 9].

2. Multi-Layer Segmentation Model

We use perceptually uniform CIE-L � u � v � color values
and texture features derived from the Gabor filtered gray-
level image. Segmentation requires simultaneous measure-
ments in both spatial and frequency domain. However, spa-
tial localization of boundaries requires larger bandwidths
whereas smaller bandwidths give better texture measure-
ments. Fortunately, Gabor filters have optimal joint local-
ization in both domains [6]. In addition, when we are com-
bining texture features with color, the spatial resolution is
considerably increased.

Our model consists of 3 layers. At each layer, we use



a first order neighborhood system and higher order inter-
layer cliques (Fig. 1). The image features are represented
by multi-variate Gaussian distributions. Herein, we do not
address parameter estimation but we note that the task can
be solved using an adaptive segmentation technique [12].

Let us denote the color layer by ��� , the texture layer
by ��� and the combined layer by ��� . All layers are of
the same size. Our MRF model is defined over the lattice�����	��
�� � 

� � . For each site � , the region-type (or
class) that the site belongs to is specified by a class label,��� , which is modeled as a discrete random variable tak-
ing values in ��������������������� ��! . The set of these labels� �"� ��� �#�%$&�'! is a random field, called the label process.
Furthermore, the observed image features (color and tex-
ture) are supposed to be a realization ()�"�+*, �.- �/$0� � 
'� � !
from another random field, which is a function of the la-
bel process � . Basically, the image process ( represents
the deviation from the underlying label process. Thus, the
overall segmentation model is composed of the hidden la-
bel process � and the observable noisy image process ( .
Our goal is to find an optimal labeling 1� which maximizes
the a posteriori probability 243 �5- (46 , that is the maxi-
mum a posteriori (MAP) estimate [3]: 798�:<;47.=�>@?BA%243 �C-(D6E�F798�:<;47.=�>@?BAHG � ?9I 243 *, �J-	�K� 6L243 � 6 , where M de-
notes the set of all possible labelings. We use the ICM algo-
rithm [1] to obtain a suboptimal MAP estimate. According
to the Hammersley-Clifford theorem [3], 243 �N- (46 follows
a Gibbs distribution:

243 �O- (46<�QP =�RS3LTVUD3 � 6W6X 3ZY[6 � G]\ ?9^ P =�R_3WTa` \ 3 � \ 6W6X 3bY[6 (1)

where UD3 � 6 is called an energy function,
X 3bY[6c�d >@?BA P =�R_3WTVUD3 � 6 6 is the normalizing constant and ` \ de-

notes the clique potential of clique ef$�g having the label
configuration � \ . Note that the energies of singletons (ie.
cliques of single sites �/$0� ) directly reflect the probabilis-
tic modeling of labels without context, while higher order
clique potentials express relationship between neighboring
pixel labels. In the remaining part of this section, we will
define these clique potentials for each layer.

hKikj_iml&n�opn[q�rVsut[v@q
On the color layer, the observed image ( � �w� *, �� - �x$�	��! consists of three spectral component values (L � u � v � )

at each pixel � denoted by the vector *, �� . We assume that243 *, �� -D� � 6 follows a Gaussian distribution, the classesy $
�	�'�)���B�#�������������z�{! are represented by the mean vec-
tors *|~}.� and the covariance matrices � } � . The class label
assigned to a site � on the color layer is denoted by � � . The
energy function UD3b�V�W(���6 of the so defined MRF layer has
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Figure 1. Multi-layer MRF model.

the following form:�� ?9I�� � � 3 *, �� � � � 6��]Y �� �#� �#� ?9^
� 3b� � �W� � 6u��� � �� ?9I�� ` � 3b� � �W� �� 6

Since we assume that 243 *, �� -]� � 6 is Gaussian, it fol-
lows from Eq. (1) that the corresponding energy potentials� ��3 *, �� � � � 6 should be log Gaussians:

��� 3W� 3��9�_6L� - � }�����- 6_� �� 3 *, �� T *|~} ��� 6 � }B�~��+� 3 *, �� T *|~} ��� 6W�
(2)� 3b� � � � � 6��"� if � � and � � are different and T%� otherwise.Y���  is a parameter controlling the homogeneity of the

regions. As Y increases, the resulting regions become more
homogeneous. The last term ( `¡�¢3b� � �W�£�� 6 ) is the inter-layer
clique potential which will be defined later and �_� is a pa-
rameter controlling the influence of the combined layer. As�~� increases, the influence is higher.

hKiZhKi�¤mvu¥K¦�§zq�v¨rms�t©vuq
On the texture layer, the observation consists of a set

of Gabor image features. To obtain these features, we
use the multi-channel filtering approach [6]: The channels
are represented by a bank of real-valued, even-symmetric
Gabor filters. In our tests, we used four orientations: �ª�� «­¬�ª�� ®� �ª�����¯�¬�ª and the radial frequencies °²± were 1
octave apart: ³ �+��³ ��´9�£�#³ �B´�«u�#³ ��´9µ£������� . We automati-
cally select 6 of these filtered images such that they cover
more than ®�®­¶ of the image’s intensity variations (see [6]
for more details). From each filtered image · , we com-
pute a feature image using the nonlinear transformation-¢¸ 7 �£¹ 3�ºS· � 6 - ���/$»� � followed by a Gaussian blurring with
a deviation proportional to the center frequency of the Ga-
bor filter: ¼½�¿¾�´.° ± . In our experiments, the Gabor filtered
images are scaled to the interval ÀÁT%������Â and we set ºÃ�¿«� 
and ¾D�Ä� .



Nat-8( ������������� ) texture(12.9%) color(7.5%) texture layer(4.3%) color layer(1.2%) combined(1.6%)

Nat-12( ���	�
�����	� ) texture(7.5%) color(6.7%) texture layer(4.2%) color layer(0.8%) combined(3.0%)

monkey( �	���
���	��� ) texture color texture layer color layer combined

Figure 2. Results and misclassification rate of color only, texture only, and combined models

The MRF model itself is quite similar to the one outlined
in the previous section. The only difference is that the ob-
servation consists of � dimensional texture feature vectors( � � � *, �� - �O$)� � ! . The energy of higher order cliques
is � d � ��� ��� ?9^ � 3�� � ��� � 6V� � � d � ?9I�� ` � 3�� � �W� �� 6 , where �
(resp. � � ) has the same role as Y (resp. �_� ) in the color layer.
Furthermore, � � denotes the label assigned to a site � . As in
the previous case, classes are represented by the mean vec-
tors *|�� � and the covariance matrices � � � . The inter-layer
clique potential ( ` � 3�� � �W� �� 6 ) will be defined later.

hKi��Kiml&n���� ��!zv#" rms�t©vuq
The combined layer only uses the texture and color

features indirectly, through inter-layer cliques. A label
consists of a pair of color and texture labels such that�N�%$b�£���W� �'& , where �£�Ã$Q��� and � � $Q� � . The set of
labels is denoted by � � � ���)(J� � and the number of
classes � � � �z� � � . Obviously, not all of these labels are
valid for a given image. Therefore the combined layer
model also estimates the number of classes and chose
those pairs of texture and color labels which are actually
present in a given image. The energy function U43b�£6 �d � ?9I+* 3k` � 3b� � 6S�-,���`¡�¢3b� � �W�£�� 6_�-, � ` � 3�� � �W� �� 6 6 �º d � ��� ��� ?9^ � 3Z� � �W� � 6 where ` � 3b� � 6 denotes singleton
energies, `¡�¢3b� � � ���� 6 (resp. ` � 3�� � � � �� 6 denotes inter-layer
clique potentials. The last term corresponds to second
order intra-layer cliques which ensures homogeneity of the
combined layer. º has the same role as Y in the color layer
model and

� 3b� � � � � 6z�ÄT%� if � � �O� � , 0 if � �/.�O� � and 1 if

�£�� �Ä�£�� and � �� .� � �� or �£�� .� �£�� and � �� �"� �� . The idea
is that region boundaries present at both color and texture
layers are preferred over edges that are found only at one of
the feature layers. Inter-layer interactions are as follows:

` � 3b� � � � �� 6<� �� ��� �#� ?9^�0 1 �	2 � 3b� � � � �� 6
where 2 �¢3b� � � �£�� 6F� - � �¢3L*, �� �W� � 60T � �¢3L*, �� �W�£�� 6 - (see
Eq. (2)). ` � 3�� � � � �� 6 and 2 � 3�� � � � �� 6 are defined in a similar
way using texture features. At any site � , we have a clique
between two layers containing 6 sites (the set of these inter-
layer cliques is denoted by g+3 ), which implements 5 inter-
layer interactions: Site � interacts with the corresponding
site on the other layer as well as with the 4 neighboring
sites two steps away (see Fig. 1).

1 � is the weight of the
clique �����'4­!Ã$ g 3 . We assign higher weight (  £� � ) to the
corresponding site whereas smaller weights (  £��� each) to
the other 4 neighboring sites. The latter 4 sites help to en-
sure homogeneity on the combined layer. Note that 2 � and2 � corresponds to the difference of the first order potentials
at the corresponding feature layer. Clearly, the difference is
0 if and only if both the feature layer and the combined layer
has the same label. If the labels are different then it is pro-
portional to the energy difference between the two labels.
,+� (resp. , � ) controls the influence of the inter-layer cliques
on the combined layer. A higher value will increase the im-
portance of the information coming from the corresponding
feature layer. Note that we have a similar weight ( �[� , � � ) at
the feature layers. The difference of these weights balances
the influence of the feature layers to the combined layer vs.



combined layer to the feature layers. Therefore, depend-
ing on the value of , � (resp. ,�� ), we can increase ( �]� , ) or
decrease ( � � , ) the influence of a feature layer to the com-
bined layer without changing the influence of the combined
layer to a feature layer. We found this an important issue in
the case of the texture layer.

The singleton energy is defined as ` � 3Z� � 6 �� 3 3L�¢ ���� � 6 � � ���»3Z�	6W6 It controls the number of classes
at the combined layer. 3W�� 	�
� � 6 � � penalizes small classes
( �
� � is the percentage of the sites assigned to class � � ),
while �»3��z6 includes some prior knowledge about the num-
ber of classes. Currently this is expressed by a log Gaussian
term (similar to the one in Eq. (2)) with mean value 1� (ba-
sically an initial guess) and variance ¼ (confidence in the
initial guess).

�
is simply a weight of this term, we set it to £� ¬ in our tests.

3. Experiments

The proposed algorithm has been tested on a variety of
synthetic and real images. The computing time was 2-4
minutes on a Pentium III 933. We also compare the re-
sults to texture only and color only segmentation (basically
a monogrid model similar to the one defined for the feature
layers but without inter-layer cliques). The mean vectors
and covariance matrices were computed over representative
regions selected by the user. The number of texture and
color classes is known a priori but classes on the combined
layer are estimated during the segmentation process. Hyper-
parameters have been trained on a small subset of images:ºN���B�   , Y � ��� �¢ £�   , �S�D��� � ���B� ¬ , ,��D�f �� ¬ , and
, � � T' £� ¯ . These values have been found to provide satis-
factory results on all test images. The values of Y and � are
not crucial, basically any value between 2 and 15 provides
good segmentations. � and , values need slightly higher ac-
curacy. Note that by setting , � �   and ,��'�   , we decrease
the influence of the texture layer and increase the influence
of the color layer on the combined layer. This is neces-
sary because texture features (due to filtering and blurring)
have weaker spatial localization. Hence, we give a higher
weight to the color layer so that edges will be localized
correctly while region homogeneity (where color layer is
slightly weaker, especially in textured regions) is still main-
tained. Fig. 2 shows some segmentation results together
with the measured misclassification rate. Clearly, the multi-
layer model provides significantly better results compared
to color only and texture only segmentations. Nat-12 shows
an image with 4 different textures and 4 different colors. We
can see, that our method provides accurate segmentations
on both feature layers and it is also able to detect 5 classes
on the combined layer. Note that the combined layer pro-
duces slightly higher misclassification rates ( �Ä �� ¬­¶ ) than
the color layer. This is due to sharper boundaries on the

color layer (texture has weaker spatial resolution and the
combined layer is directly influenced by the texture layer).
We have also compared our results to those reported in [9]
and found them equally good. One example is the mon-
key image but more results are available on our website
(www.cs.ust.hk/˜kato/research/icpr2002/).

4. Conclusion

We have proposed a new multi-layer MRF segmentation
model which successfully combines color and texture fea-
tures. However, the model is not restricted to these fea-
tures. It can be applied to multicue segmentation in gen-
eral. Although the current implementation doesn’t estimate
model parameters (except number of classes on the com-
bined layer), it is possible to use an adaptive segmentation
technique [12] to tackle this problem. This issue is currently
under investigation.
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