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Abstract—We propose a novel Markovian segmentation
model which takes into account edge information. By con-
struction, the model uses only pairwise interactions and its
energy is submodular. Thus the exact energy minima is
obtained via a max-flow/min-cut algorithm. The method has
been quantitatively evaluated on synthetic images as well as
on fluorescence microscopic images of live cells.

I. INTRODUCTION

Image segmentation in biomedical imaging is aiming to
find boundaries of various biological structures such as cells,
chromosomes, genes, proteins and other sub-cellular com-
ponents [1], [2], [3]. Due to the highly complex structures,
semi-automatic (or interactive) methods allowing for a min-
imal user interaction are preferable as the identification of
foreground regions requires expert knowledge. Classical so-
lutions, e.g. Cellprofiler [4], adopts either global or adaptive
thresholding followed by a watershed method for separating
adjacent regions. Fluorescence microscopy is a low light
imaging technique broadly used in live cell experiments.
Segmentation of such images require sophisticated methods
as this imaging technique is producing noisy, blurred and
low contrast images.

Markov Random Fields (MRF) provide a powerful tool to
construct segmentation models of degraded images yielding
an energy minimization problem. Unfortunately, the exact
minimization of a general energy function is NP-hard, re-
quiring iterative algorithms [5], which is a major obstacle for
adopting MRF models in interactive segmentation. However,
certain class of energy functions can be exactly minimized
by graph cuts in polynomial time [6].

Herein, we propose an interactive segmentation algorithm
in which a user indicates (e.g. by free-hand painting) an
initial set of pixels as foreground and background. Our
method uses this input, along with a set of gradient vectors,
to initialize an MRF. The optimal foreground/background
assignment is then obtained via graph cut [7]. The minimal
cost for the underlying MRF can be found in real time
thus allowing interactive adjustments by adding additional
patches of foreground or background. The main contribution
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is the efficient use of the full gradient information (i.e.
both magnitude and direction) in our MRF model without
compromising the ability to find an exact solution via
graph cut. The proposed method has been validated on
both synthetic and real microscopic images. Comparative
results with classical MRF models confirmed the increased
segmentation accuracy of the proposed approach.

II. MRF SEGMENTATION MODEL

Segmentation can be considered as a labeling problem:
Given a set of sites (or pixels) S = {s1, s2, . . . , sN} ⊂ �

2

and observed image features (e.g. graylevels) F = {fs}s∈S ,
we want to assign a label ωs ∈ {0, 1} to each site s. Taking
a Bayesian approach, we can factorize the posterior as
P (ω|F) ∝ P (F|ω)P (ω), where the optimal segmentation
ω̂ is obtained as the Maximum a Posteriori (MAP) estimate.
MRFs are broadly used in building probabilistic models for
such labeling problems. The Hammersley-Clifford theorem
provides a convenient way to specify MRFs through clique
potentials. It states the equivalence between MRFs and
Gibbs fields with probability distribution [5]

P (ω|F) =
1
Z

exp

(
−
∑
c∈C

Vc(F , ω)

)
,

where Z is the normalizing constant, C denotes the set of
cliques induced by the neighborhood system (see Fig. 1)
and Vc stands for the clique potential functions. A clique is
defined as the set of sites in which each site is a neighbor of
all the other. The MAP estimate of the hidden labeling field
ω is then found by minimizing the Gibbs energy. Herein,
we consider 8-neighborhood cliques on the image lattice S,
giving rise to cliques up to order 4. However, only pairwise
interactions are considered in order to ensure that the Gibbs
energy can be minimized via standard max-flow/min-cut [7],
[6].

In our case (see Fig. 3), the background/foreground
graylevel distributions can be easily modeled as Gaussian
densities with parameters (μλ, σλ), λ ∈ {0, 1}. In order to
ensure object coherence, P (ω) is usually chosen to be the
Ising prior consisting of pairwise clique potentials

∀(s, r) ∈ C : βδ(ωs, ωr) (1)
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Figure 1. Neighborhood and cliques.

with δ(ωs, ωr) = −1 for homogeneous and +1 for in-
homogeneous arguments. Indeed, this prior will enforce
homogeneity everywhere. A more efficient prior would be
to encourage coherence only where intensity gradient is low.
The idea of taking into account intensity edges has appeared
as early as in [5], while recently, in the context of graph cut,
a contrast-sensitive Gaussian Mixture MRF model has been
proposed in [8]. However, [5] defines a separate line process
with higher order interactions which are difficult to handle
in a graph-cut framework. On the other hand, [8] uses a so
called contrast term in the data likelihood, which is related
to the squared intensity difference between interacting pixel
pairs but ignores gradient direction.

In contrast to previous approaches, we propose to exploit
the full gradient information (i.e. magnitude and direction)
while keeping the ability to find an exact MAP solution
via standard max-flow/min-cut. Obviously, the prior cannot
depend on the data, hence we have to include the additional
gradient terms in our data likelihood. Given the gradient vec-
tor field ∇F with normalized magnitudes |∇F(s)| ∈ [0, 1]
and quantized edge directions θ(s) ∈ {0◦, 45◦, 90◦, 135◦}
perpendicular to the gradient direction, we define the gra-
dient strength M(s, r) and edge direction Θ(s, r) for all
doubletons (s, r) ∈ C as

M(s, r) = min{Mmax,

− min {log(1 − |∇F(s)|), log(1 − |∇F(r)|)}} (2)

Θ(s, r) =
{

θ(s) if |∇F(s)| > |∇F(r)|
θ(r) otherwise

where Mmax is the maximum allowed value for M(s, r)
(i.e. we clip M(s, r) at Mmax). Furthermore, we define an
indicator function

F (s, r) = H((μωs − μωr )(fs + fj − fr − fi)), (3)

where H is the Heaviside function and the location of sites
j and i is shown in Fig. 1. Clearly, F will return 0 whenever
the labels ωs and ωr are on the wrong side of the contour,
because in such situations the difference in graylevel values
fs + fj and fr + fi will have an opposite sign than that
of the corresponding mean values. This function allows
us to enforce object coherence around contours. The new

doubleton potential added to the likelihood is then defined
as

G(s, r) = (1 − F (s, r))M

−F (s, r)H(δ(Θ(s, r), Φ(s, r)))M(s, r) (4)

where M � Mmax corresponds to a large constant
penalty preventing wrong label assignments around object
boundaries. Otherwise, the energy is decreased by M(s, r)
whenever the edge direction Θ(s, r) doesn’t match with the
clique direction Φ(s, r) (see Fig. 1), meaning that there is an
intensity edge passing between s and r. The data likelihood
MRF energy is then composed of singleton and doubleton
potentials as follows

U(F , ω) =
∑
s∈S

log(
√

2πσωs) +
(fs − μωs)2

2σ2
ωs

+α
∑

(s,r)∈C
H(δ(ωs, ωr))G(s, r) (5)

Putting together Eq. (1) and Eq. (5), the Gibbs energy to be
minimized can be written as

ω̂ = argmin
ω

⎛⎝U(F , ω) + β
∑

(s,r)∈C
δ(ωs, ωr)

⎞⎠ (6)

III. EXACT MAP SOLUTION VIA GRAPH CUT

Herein, we will show that the Gibbs energy of Eq. (6)
can be represented by a graph G and hence an exact
MAP solution is found in polynomial time by computing
the minimum s-t-cut on G [6]. The vertices include the
terminals s (source) and t (sink) as well as sites S. Since our
model uses pairwise interactions and binary labels, it can
be naturally translated into a graph representation where,
in addition to edges corresponding to doubletons, edges
connecting vertices from S with the terminals s and t are
also defined (see [6] for details). A cut on G corresponds
to a binary partitioning S, T of the vertices such that s ∈ S
and t ∈ T , which can be described by the binary variables
ωs, s ∈ S. Each cut has also a cost corresponding to the
sum of edge weights that go from S to T , thus the energy
represented by G can be seen as a function E(ω) equal to
the cost of the cut defined by ω. In our case, E(ω) is as
follows:

E(ω) =
∑
s∈S

Es(ωs) +
∑

(s,r)∈C
Es,r(ωs, ωr), (7)

where Es corresponds to the Gaussian term from Eq. (5),
while Es,r includes both the Ising prior and the gradient
term of Eq. (5):

Es,r(ωs, ωr) = βδ(ωs, ωr) + αH(δ(ωs, ωr))G(s, r).
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The main theoretical result of [6] states that a necessary
and sufficient condition for graph-representability of E is
the following submodularity condition:

Es,r(0, 0) + Es,r(1, 1) ≤ Es,r(0, 1) + Es,r(1, 0). (8)

It is easily seen that the left hand side is always −2β for all
(s, r), as the gradient term vanishes. On the right hand side,
we have a constant 2β from the Ising term, αM from one
of the inhomogeneous label configurations and either 0 or
−αM(s, r) from the other depending on the edge direction.
Thus for all (s, r) ∈ C, we have

Es,r(0, 1) + Es,r(1, 0) ≥ 2β + α(M− Mmax)

since, according to Eq. (2), Mmax ≥ M(s, r) always holds.
Therefore submodularity is satisfied for β, α > 0 if

−4
β

α
≤ M− Mmax,

which is always true as we have chosen M � Mmax.
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Figure 2. Results on synthetic images.

IV. EXPERIMENTAL RESULTS

In our experiments, ∇F was provided by a Sobel op-
erator followed by non-maxima suppression (see Fig. 3
for a typical gradient image) and we set Mmax = 103

and M = 106. Gaussian parameters were learned from
user selected input regions (see Fig. 4), while the param-
eters α and β were set to their optimal value. The MAP
segmentation was then obtained by the max-flow imple-
mentation of Kolmogorov (http://www.cs.ucl.ac.uk/staff/V.
Kolmogorov/software.html) [7]. We have also compared
results obtained by two classical MRF models: The first
one uses an Ising prior (equivalent to removing the gradient
term by setting α = 0); and 2) a MRF model where the
gradient term is replaced by the boundary term from [9],
which penalizes discontinuities inversely proportional to
differences in pixel intensity.

For quantitative evaluation, a set of synthetic images of
size 140× 140 has been generated from four binary images

by Gaussian smoothing with σ′ = {1, 2, 3, 4} and adding
white noise ranging from −15dB to 10dB (see Fig. 2).
The segmentation error is calculated as the percentage of
misclassified pixels. Fig. 2 shows the average error w.r.t.
blur and noise. Obviously, error is linearly increasing with
σ′ as blurred regions become bigger. On the other hand,
our method is quite robust up to 0dB noise level, but
becomes quickly unstable above it. We have also evaluated
the separation accuracy of our method on noisy blurred
images and found that even for moderate smoothing, it
outperforms both classical MRF models. Fig. 2 shows the
separation error computed as the percentage of the false
foreground pixels in gap areas w.r.t. the total number of
pixels of the gap areas.

Original Gradient Background subtraction

Cellprofiler [4] Classical MRF Boundary [9] Proposed

Figure 3. Comparison on a TIRF image.

User interaction and segmentation After further user interaction

Figure 4. The effect of user interaction.

A. Application in TIRF microscopy

The proposed approach has also been validated on images
taken in Total Internal Reflection Fluorescence (TIRF) mi-
croscopy mode, which is an elegant optical technique that
provides for the excitation of fluorophores in an extremely
thin axial region (optical section) [10]. Images in Fig. 3 and
Fig. 5 were taken by a CytoScout fluorescent microscope
system using the 488-nm argon-ion laser line for the excita-
tion of fluorescein. They show the plasma membrane of B16
mouse melanoma cells labeled with the fluorescence choles-
terol analogue fPEG-Chol which specifically recognizes
cholesterol-rich membrane domains [11]. Higher intensity
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Figure 5. Results on TIRF images.

regions indicate cholesterol-rich membrane rafts, which are
signaling platforms in the plane of biological membranes
playing important roles in many cellular functions.

The quantitative analysis of these sub-cellular structures
requires an accurate segmentation. Due to the rather low
contrast, a standard background subtraction (available in
Matlab) preprocessing step has been applied before segmen-
tation (see Fig. 3). The user interaction consists in simple
mouse operated brush strokes of blue (object) or yellow (for
background) as shown in Fig. 4. Based on these samples, the
foreground/background Gaussian parameters are computed
and an initial segmentation is created. If the segmentation
is not accurate, then the user may brush part of a wrongly
labeled area. In addition to update the Gaussian parameters,
it is also possible to constrain these marked regions either
to be firm foreground or firm background, then a new
segmentation is generated.

In Fig. 3, we compare results obtained by Cellprofiler [4]
and classical MRF models. Each method’s parameters have
been manually fine-tuned to get the best result. Notice that
Cellprofiler tends to produce rather ”blocky” boundaries,
while the classical MRF model misses some foreground
regions as well as merges nearby regions due to the lack
of gradient information. Although the classical MRF model
with boundary term [9] achieves slightly better separation,
our method clearly provides the most accurate segmentation.
We remark that the same watershed-based postprocessing
step used in Cellprofiler can also be applied in our method
to further cut larger regions into smaller patches. Additional
results can be seen in Fig. 5. These segmentation results
have been validated by expert biologists who found them
accurate and relevant. The runtime was consistently below
0.07 sec on TIRF images of size 100 × 100.

V. CONCLUSION

We have proposed a novel MRF model which includes
edge information while also satisfying the submodularity
constraint. Therefore, an exact MAP solution can be ob-
tained via standard max-flow/min-cut within fraction of a
second. Quantitative evaluation on synthetic images showed

that objects in blurred noisy images can be accurately seg-
mented. The proposed method has been successfully applied
in TIRF fluorescence microscopy and compared favorably to
state of the art methods.
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