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Abstract

The problem of simultaneously estimating affine de-
formations between multiple objects occur in many ap-
plications. Herein, a direct method is proposed which
provides the result as a solution of a linear system
of equations without establishing correspondences be-
tween the objects. The key idea is to construct enough
linearly independent equations using covariant func-
tions, and then finding the solution simultaneously for
all affine transformations. Quantitative evaluation con-
firms the performance of the method.

1. Introduction

We consider the following general problem: Given
a binary template image with a set of objects, and
their affine distorted versions on the observation image,
we want to establish the geometric correspondence be-
tween these images. The overall distortion is a global
nonlinear transformation with the following constraint:
the objects are distinct, i.e. either disconnected or sepa-
rated by segmentation (e.g. an articulated object), each
of them being subject to a different affine deformation.
Such problems arise in various application domains like
object matching or robot vision [2]. Classical feature
based approaches consist in identifying point corre-
spondences between the images using corners, lines
crossing, control points, and then the solution of a sys-
tem of equations, constructed using these point pairs,
provides the parameters of the unknown transformation.
On the other hand, area-based approaches make use of
intensity correlation between image patches, where, in
general, the transformation parameters are provided by
an iterative optimization procedure. These methods are
relying on rich discriminative and invariant radiometric
information. Unfortunately, these requirements are dif-
ficult to satisfy in real applications due to low discrim-

∗Partially supported by the grants CNK80370 of NIH & OTKA;
the European Union and the European Regional Development Fund
within the project TÁMOP-4.2.1/B-09/1/KONV-2010-0005.

inative features (e.g. industrial parts with highly homo-
geneous surface intensities) or illumination variations.
On the other hand, segmentation of these images is usu-
ally available in many applications thus shape registra-
tion is a valid alternative too. A closely related prob-
lem, mainly occuring in medical imaging [6, 1], is the
approximation of a nonlinear deformation by piecewise
affine transformations. In [6], the distortion is mod-
eled as a locally affine but globally smooth transfor-
mation, which accounts for local and global variations
in image intensities. The algorithm is built on a dif-
ferential multiscale framework and incorporates the ex-
pectation maximization algorithm. In [1], a novel gen-
eral framework (called log-Euclidean polyaffine) is pro-
posed which provides a way of fusing local rigid or
affine deformations into a global invertible transforma-
tion. However, these approaches have limited applica-
bility on binary images as they are based on an opti-
mization procedure, where the cost function is defined
upon image intensity. In [5], an elegant linear solution
is presented to solve a similar problem, where the seg-
mentation of the observation into the distinct objects is
avoided. This approach, however, makes use of inten-
sity information hence its extension to binary images is
far from trivial. Another possibility is to use affine mo-
ment invariants [7] to find the correspondences between
objects. However, this would require to compute higher
order (≥ 4) moments, which are numerically unstable.

Herein, we propose a linear solution based on con-
structing relations between the images [3], where the
only available geometric information is used. The main
contribution is the construction of these relations be-
tween shapes without establishing correspondences of
any kind. The unknown transformation parameters are
then obtained as the least-squares solution of an overde-
termined linear system of equations.

2. Problem statement

Let us denote the template and observation points
by x = [x1, x2] and y = [y1, y2] ∈ R2, respectively.
Furthermore, let n ≥ 2 denote the number of shapes
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on the template and observation, related by n affine
transformations. The ith transformation, denoted by
(Ai, ti) ∈ R2×2 × R2×1, aligns the ith template ob-
ject with the corresponding object on the observation.
Would these object-correspondences be known, a sim-
ple pairwise alignment could be easily recovered by any
standard binary registration method like [4]. Establish-
ing the correspondence between the objects is not triv-
ial, however. Therefore we are interested in a direct
solution without identifying corresponding object-pairs.
The labeling of objects on the input images are given by
the functions ℓ, ℓ′ : R2 → {0, 1, . . . , n}.

Let us now consider the ith object, where Di =
{x|ℓ(x) = i} and D′

i = {y|ℓ′(y) = i} denote the
points of the ith template object and its distorted ob-
servation, respectively. They are related as

Aix+ ti = y ⇔ x = A−1
i (y − ti). (2)

Furthermore, if we could observe image features that
are invariant under the transformation (Ai, ti) (e.g.
gray-levels [5]) then additional relations can be stated
by defining a covariant function pair Pi, Si : R2 → R
satisfying

Pi(x) = Pi

(
A−1

i (y − ti)
)
= Si(y). (3)

Following [3], such functions can be constructed in the
binary case using the Mahalanobis-distance (i.e. the first
and second order statistics of the coordinates): Pi(x) =

(x−µi)
TΣ−1

i (x−µi) and Si(y) = (y−µ′
i)

TΣ
′−1
i (y−

µ′
i), where µi, µ

′
i and Σi,Σ

′
i are the means and covari-

ance matrices of the ith object and its distorted version,
respectively. Notice that Eq. (3) remains valid, when an
arbitrary ω : R → R function acts on the both sides of
the equation [3]:

ω
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= ω
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)
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Hence, applying linearly independent ω functions to the
covariant functions, we can generate as many relations
as needed. Finally, multiplying Eq. (2) and Eq. (4) and
then integrating out individual point correspondences
over the domain Di, we get [3]∫
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where the integral transformation x = A−1
i (y − ti),

dx = |Ai|−1dy has been applied. Furthermore, as
shown in [3], Σ′

i = AiΣiA
T
i yielding the formula

|Ai| =
√
|Σ′

i|/
√
|Σi|.

Now we know relations between the ith object-pair,
but we do not know the correspondence between the
objects.

3. Direct solution

Based on Eq. (5), we can construct as many equa-
tions as needed by making use of a set of linearly inde-
pendent functions {ωj}mj=1. However, since object pairs
are not available, we have to sum all equations and solve
the problem simultaneously, estimating all parameters
in one system of equations. Thus Eq. (5) becomes
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For each ωj , we have two equations: one for the first
and another for the second point coordinate. More-
over, to solve for n affine transformations having 6n un-
knowns, we need at least 6n equations, hence m ≥ 3n.

The terms
∫
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)
dx on the left

hand side of Eq. (6) can be rewritten for k = 1, 2 as
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where Aik and tik denote the kth row of Ai =
(aikl)2×2 and kth component of ti, respectively. Hence
Eq. (6) can be expressed in matrix form using the defi-
nition of the coefficient matrix C from Eq. (1)
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Figure 1. The contour of the objects (blue) and the
points

√
|Σ|−1

∫
xω

(
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)
dx in the case of a sym-

metric and non-symmetric objects.

The solution of the above system provides all the un-
known parameters of the overall deformation. If m >
3n then the system is over-determined and a least
squares solution is obtained. It is important to note, that
the parameters of the Mahalanobis-distances µi,Σi and
µ′
i,Σ

′
i can directly be computed from the input images

and the coefficient matrix C needs to be computed only
once! The size of C depends on the number of the ob-
jects. The time complexity of the proposed algorithm
is thus O

(
n2(M +N)

)
, where M,N is the number of

pixels of the template and observation. Since in practice
n ≪ M +N the complexity is almost linear.

Let us now examine the structure of coefficient ma-
trix C: Each object generates 3 columns and each ω
adds one row to C yielding a m× 3n matrix. The set of
nonlinear {ω}mj=1 functions can be arbitrary as long as
they generate linearly independent equations. The more
objects are on the images the method requires more ω
functions. Intuitively, each ω generates a consistent
coloring of the objects [3] and then Eq. (5) matches
the center of mass of the objects with density given by
ω. Obviously, different ωs generate different coloring,
hence the center of mass of the “colored” object will
also be different. Consequently, 3 numbers in the jth

row of C, belonging to the jth object, relate the center
of mass coordinates for the given object after applying
ωj .

Since in practice we only have a limited precision
digital image, the elements of the matrix C can only
be approximated by a discrete sum over the foreground
pixels introducing an inherent, although negligible er-
ror into our computation. However, these errors may
accumulate in a larger system of equations causing less
accurate registrations for an increasing number of ob-
jects. Nevertheless, such coarse registrations can be
easily and efficiently refined by applying the affine reg-
istration method of [4].

The least-squares solution of the system Eq. (7) pro-
vides the best algebraic solution. When the system has
a unique solution then this is also the geometrically

observation template difference image

Figure 2. Registration results on a synthetic image
(δ = 5.59%). The difference image shows the overlap-
ping areas in gray while misregistered areas in dark.

correct solution. What happens if there are more geo-
metrically correct solutions (e.g. there are two identical
objects in the image or one of the objects is symmet-
ric)? Eq. (7) becomes underdetermined and the best al-
gebraic solution may be geometrically invalid. When
we have two identical objects, then the unique solu-
tion is lost because the same three columns will appear
twice in C, which provide constraints just for one ob-
ject. As for symmetric objects, since the applied covari-
ant functions are inherently symmetric (they are based
on the Mahalanobis-distance), the center of mass gener-
ated by various ω functions will be located on a single
line (see Fig. 1) yielding only two constraints for the 3
unknowns.

4. Experimental results

The proposed method has been quantitatively eval-
uated on a large synthetic dataset containing 1500 im-
ages. The templates have 2,3 and 4 objects randomly
chosen from a set of 14 different shapes. The obser-
vations were generated by applying a random trans-
formation to each object composed of translation and
skewing with parameters chosen from [−100, 100] and
[−0.2, 0.2], respectively, along both axes; scaling with
factors from [0.5, 2]; and and arbitrary rotation. A typi-
cal example can be seen in Fig. 2.

For the evaluation of registration results, we defined
two kind of error measures: The first one (denoted by ϵ)
measures the average distance between the true (Ai, ti)
and the estimated (Ãi, t̃i) transformation for all object.
The second one is the absolute difference (denoted by
δ) between the observation and the registered image:

ϵ=
∑
p∈Fi
1≤i≤n

∥(Ai−Ãi)p+ti−t̃i∥
|F |

, δ=
|F̃ △ F ′|
|F̃ |+ |F ′|

· 100%,

where △ means the symmetric difference, while F , F ′

and F̃ denote the set of pixels of the template, obser-
vation, and the registered shape. Note that ϵ can only



Proposed method After refining
# δ (%) ϵ (px) time (s) δ (%) ϵ (px) time (s)
2 2.2 3.67 4.65 0.04 0.06 7
3 6.45 11.01 6.07 0.05 0.06 9.07
4 14 24.29 7.18 0.05 0.06 10.78
Σ 6.55 13.8 6.07 0.05 0.06 9.08

Table 1. Median of error measures and runtime on
images containing 2,3 and 4 objects.

be used when the true transformations are also known,
while δ can always be computed.

The proposed method was implemented in Matlab
and ran under Linux with 3GHz CPU and 3GB memory.
In our experiments, we found that the {ω} set consisting
of the identity function together with the trigonomet-
ric family provides satisfactory results: {x, sinx, cosx,
sin 2x, cos 2x, . . . , sin lx, cos lx}, where l ∈ N and
m = 3n+2 is fixed, i.e. the system is over-determined,
hence the solution is obtained as a least-squares solu-
tion. Table 1 shows the registration results. Increasing
the number of objects results in a larger coefficient ma-
trix C yielding less accurate alignments. However, as
noted in Section 3, the coarse registration results can be
be easily refined by applying the method of [4]. It can
be seen in Table 1, that independently of the number
of the objects, we got excellent registration results after
refining, at the price of a slight increase in computing
time.

4.1. Real Images

In Fig. 3, we present some registration results on
real images. The main challenges were segmentation
errors (the objects are segmented via simple threshold-
ing), symmetry and modelling error due to slight projec-
tive distortions. The results illustrate that the proposed
method provides good results under real-life conditions.
We note that there are many application of this problem
in robot vision systems [2], e.g. when a robot should
navigate or choose an object of unknown position. Al-
though the second image contains symmetric objects,
which may cause numerical instability in theory, our
method provides good solution, since the symmetry is
broken by segmentation errors in practice. Finally, the
last image pair shows that our method can successfully
recover articulated deformations.

5. Conclusion

We have proposed a novel approach to estimate mul-
tiple affine deformations between binary images. The

δ = 1.64% δ = 1.09% δ = 2.41%

Figure 3. The registered contour of the images in the
first row are overlayed on the observations.

main contribution is a direct solution without corre-
spondences. We constructed a linear system of equa-
tions where relations between the images have been es-
tablished using covariant functions defined on the only
available geometric information of the input shapes.
Quantitative evaluation on a large syntehtic dataset con-
firms the efficiency and accuracy of the proposed algo-
rithm. The main advantages are that it does not require
any correspondences or time consuming optimization
step; it is fast and easy to implement while being insen-
sitive to the strength of defomrations.
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