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Abstract

Reversible jump Markov chain Monte Carlo (RJMCMC) is a recent method which makes it possible to construct reversible Markov
chain samplers that jump between parameter subspaces of different dimensionality. In this paper, we propose a new RJMCMC sampler
for multivariate Gaussian mixture identification and we apply it to color image segmentation. For this purpose, we consider a first order
Markov random field (MRF) model where the singleton energies derive from a multivariate Gaussian distribution and second order
potentials favor similar classes in neighboring pixels. The proposed algorithm finds the most likely number of classes, their associated
model parameters and generates a segmentation of the image by classifying the pixels into these classes. The estimation is done according
to the Maximum A Posteriori (MAP) criterion. The algorithm has been validated on a database of real images with human segmented
ground truth.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

MRF modeling and MCMC methods are successfully
used in different areas of image processing. In fact, the sim-
plest statistical model for an image consists of the probabil-
ities of pixel classes. The knowledge of the dependencies
between nearby pixels can be modeled by a MRF. Such
models are much more powerful [1,2], even if it is not easy
to determine the values of the parameters which specify a
MRF. If each pixel class is represented by a different model
then the observed image may be viewed as a sample from a
realization of an underlying label field. Unsupervised seg-
mentation can therefore be treated as an incomplete data

problem where the color values are observed, the label field
is missing and the associated class model parameters,
including the number of classes, need to be estimated. Such
problems are often solved using MCMC procedures.
Although the general theory and methodology of these
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algorithms are fairly standard, they have their limitations
in case of problems with parameters of varying dimension.
Recently, a novel method, called reversible jump MCMC
(RJMCMC), has been proposed by Green [3]. This method
makes it possible to construct reversible Markov chain
samplers that jump between parameter subspaces of differ-
ent dimensionality. In this paper, we will develop a
RJMCMC sampler for identifying multi-variate Gaussian
mixtures. In particular, we will apply this technique to
solve the unsupervised color image segmentation problem
in a Markovian framework.

Due to the difficulty of estimating the number of pixel
classes (or clusters), unsupervised algorithms often assume
that this parameter is known a priori [4,5]. When the num-
ber of pixel classes is also being estimated, the unsupervised
segmentation problem may be treated as a model selection

problem over a combined model space. Basically, there
are two approaches in the literature. One of them is an
exhaustive search of the combined parameter space [6,7]:
segmentations and parameter estimates are obtained via
an iterative algorithm by alternately sampling the label
field based on the current estimates of the parameters.
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Then the maximum likelihood estimates of the parameter
values are computed using the current labeling. The result-
ing estimates are then applied to a model fitting criterion to
select the optimum number of classes. Another approach
consists of a two step approximation technique [1,8]: the
first step is a coarse segmentation of the image into the
most likely number of regions. Then the parameter values
are estimated from the resulting segmentation and the final
result is obtained via a supervised segmentation.

Our approach consists of building a Bayesian color
image model using a first order MRF. The observed image
is represented by a mixture of multivariate Gaussian distri-
butions while inter-pixel interaction favors similar labels at
neighboring sites. In a Bayesian framework [9], we are
interested in the posterior distribution of the unknowns
given the observed image. Herein, the unknowns comprise
the hidden label field configuration, the Gaussian mixture
parameters, the MRF hyperparameter, and the number
of mixture components (or classes). Then a RJMCMC
algorithm is used to sample from the whole posterior distri-
bution in order to obtain a MAP estimate via simulated
annealing [9]. Until now, RJMCMC has been applied to
univariate Gaussian mixture identification [10] and its
applications in different areas like inference in hidden Mar-
kov models [11], intensity-based image segmentation [12],
and computing medial axes of 2D shapes [13]. The novelty
of our approach is twofold: first, we extend the ideas in
[10,12] and propose a RJMCMC method for identifying
multi-variate Gaussian mixtures. Second, we apply it to
unsupervised color image segmentation. RJMCMC allows
us the direct sampling of the whole posterior distribution
defined over the combined model space thus reducing the
optimization process to a single simulated annealing run.
Another advantage is that no coarse segmentation neither
exhaustive search over a parameter subspace is required.
Although for clarity of presentation we will concentrate
on the case of three-variate Gaussians, it is straightforward
to extend the equations to higher dimensions.

2. Color image segmentation model

The model assumes that the real world scene consists of
a set of regions whose observed color changes slowly, but
across the boundary between them, they change abruptly.
What we want to infer is a labeling x consisting of a sim-
plified, abstract version of the input image: regions has a
constant value (called a label in our context) and the dis-
continuities between them form a curve – the contour. Such
a labeling x specifies a segmentation. Taking the probabilis-
tic approach, one usually wants to come up with a proba-

bility measure on the set X of all possible segmentations
of the input image and then select the one with the highest
probability. Note that X is finite, although huge. A widely
accepted standard, also motivated by the human visual sys-
tem [14,15], is to construct this probability measure in a
Bayesian framework [16–18]. We will assume that we have
a set of observed (Y) and hidden (X) random variables. In
our context, the observation F 2 Y represents the color val-
ues used for partitioning the image, and the hidden entity
x 2 X represents the segmentation itself. Hence the
observed image F ¼ f~f sjs 2S; 8i : 0 <~f i

s < 1g consists
of three spectral component values at each pixel s denoted
by the vector ~f s. Note that color components are normal-
ized. Furthermore, a segmentation x assigns a label xs

from the set of labels K = {1,2, . . . ,L} to each site s.
First, we have to quantify how well any occurrence of x

fits F. This is expressed by the probability distribution
PðFjxÞ – the imaging model. Second, we define a set of
properties that any segmentation x must posses regardless
the image data. These are described by P(x), the prior,
which tells us how well any occurrence x satisfies these
properties. For that purpose, xs is modeled as a discrete
random variable taking values in K. The set of these labels
x ¼ fxs; s 2Sg is a random field, called the label process.
Furthermore, the observed color features are supposed to
be a realization F from another random field, which is a
function of the label process x. Basically, the image process

F represents the manifestation of the underlying label pro-
cess. The multivariate Normal density is typically an
appropriate model for such classification problems where
the feature vectors~f s for a given class k are mildly corrupt-
ed versions of a single mean vector lk [19,20]. Applying
these ideas, the image process F can be formalized as fol-
lows: P ð~f sjxsÞ follows a three-variate Gaussian distribution
Nð~l;RÞ, each pixel class k 2 K = {1, 2, . . . ,L} is represent-
ed by its mean vector ~lk and covariance matrix Rk. As for
the label process x, a MRF model is adopted [21] over a
nearest neighborhood system. According to the Hammers-

ley–Clifford theorem [9], P(x) follows a Gibbs distribution:

PðxÞ ¼ 1

Z
expð�UðxÞÞ ¼ 1

Z
exp �

X
C2C

V CðxCÞ
 !

; ð1Þ

where U(x) is called an energy function, Z ¼P
x2X expð�UðxÞÞ is the normalizing constant (or partition

function) and VC denotes the clique potentials of cliques
C 2 C having the label configuration xC. The prior P(x)
will represent the simple fact that segmentations should
be locally homogeneous. Therefore we will define clique
potentials VC over pairs of neighboring pixels (doubletons)

such that similar classes in neighboring pixels are favored

V C ¼ b � dðxs;xrÞ ¼
þb if xs 6¼ xr;

�b otherwise;

�
ð2Þ

where b is a hyper-parameter controlling the interaction
strength. As b increases, regions become more homoge-
neous. The energy is proportional to the length of the re-
gion boundaries. Thus homogeneous segmentations will
get a higher probability, as expected.

Factoring the above distributions and applying the
Bayes theorem gives us the posterior distribution
PðxjFÞ / P ðFjxÞPðxÞ. Note that the constant factor
1=PðFÞ has been dropped as we are only interested in x̂
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which maximizes the posterior, i.e. the Maximum A Poste-
riori (MAP) estimate of the hidden field X

x̂ ¼ arg max
x2X

P ðFjxÞP ðxÞ: ð3Þ

The models of the above distributions depend also on cer-
tain parameters. Since neither these parameters nor X is
known, both has to be inferred from the only observable
entity Y. This is known in statistics as the incomplete data

problem and a fairly standard tool to solve it is Expectation

Maximization [22] and its variants. However, our problem
becomes much harder when the number of labels L is un-
known. When this parameter is also being estimated, the
unsupervised segmentation problem may be treated as a
model selection problem over a combined model space.
From this point of view, L becomes a model indicator

and the observation F is regarded as a three-variate Nor-
mal mixture with L components corresponding to clusters
of pixels which are homogeneous in color.

The goal of our analysis is inference about the number L

of Gaussian mixture components (each one corresponds to
a label), the component parameters H ¼ fHk ¼
ð~lk;RkÞjk 2 Kg, the component weights pk summing to 1,
the inter-pixel interaction strength b, and the segmentation
x. The only observable entity is F, thus the posterior dis-
tribution becomes

P ðL; p; b;x;HjFÞ ¼ P ðL; p; b;x;H;FÞ=P ðFÞ: ð4Þ
Note that P ðFÞ is constant, hence we are only interested in
the joint distribution of the variables L, p, b, H, F

P ðL; p; b;x;H;FÞ ¼ P ðx;FjH; b; p; LÞP ðH; b; p; LÞ: ð5Þ
In our context, it is natural to impose conditional indepen-
dences on (H,b,p,L) so that their joint probability reduces
to the product of priors

P ðH; b; p; LÞ ¼ P ðHÞP ðbÞP ðpÞP ðLÞ: ð6Þ
Let us concentrate now on the posterior of (x, F)

P ðx;FjH; b; p; LÞ ¼ P ðFjx;H; b; p; LÞP ðxjH; b; p; LÞ: ð7Þ
Before further proceeding, we can impose additional condi-
tional independences. Since each pixel class (or label) is
represented by a Gaussian, we obtain

P ðFjx;H;b;p;LÞ ¼ P ðFjx;HÞ ð8Þ

¼
Y
s2S

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ3jRxs j

q exp �1

2
~f s �~lxs

� ��

�R�1
xs

~f s�~lxs

� �T
�

and P ðxjH;b;p;LÞ ¼ P ðxjb;p;LÞ: ð9Þ

Furthermore, the component weights pk, k 2 K can be
incorporated into the underlying MRF label process as
an external field strength. Formally this is done via the sin-

gleton potential (probability of individual pixel labels)

P ðxjb; p; LÞ ¼ P ðxjb; LÞ
Y
s2S

pxs
: ð10Þ
Since the label process follows a Gibbs distribution [9], we
can also express the above probability in terms of an
energy

P ðxjb; p; LÞ ¼ 1

Zðb; p; LÞ expð�Uðxjb; p; LÞÞ; where ð11Þ

Uðxjb; p; LÞ ¼ b
X
fs;rg2C

dðxs;xrÞ �
X
s2S

logðpxs
Þ ð12Þ

{s,r} denotes a doubleton containing the neighboring pixel
sites s and r. The basic idea is that segmentations has to
be homogeneous and only those labels are valid in the
model for which we can associate fairly big regions.
The former constraint is ensured by the doubletons while
the latter one is implemented via the component weights.
Indeed, invalid pixel classes typically get only a few pix-
els assigned hence no matter how homogeneous are the
corresponding regions, the above probability will be
low. Unfortunately, the partition function Z(b,p,L) is
not tractable [23], thus the comparison of the likelihood
of two differing MRF realizations from Eq. (11) is infea-
sible. Instead, we can compare their Pseudo-Likelihood
[23]

Pðxjb; p; LÞ �
Y
s2S

pxs
exp �b

P
8r:fs;rg2Cdðxs;xrÞ

� �
P

k2Kpk exp �b
P
8r:fs;rg2Cdðk;xrÞ

� �
ð13Þ

Finally, we get the following approximation for the whole
posterior distribution:

P ðL; p; b;x;HjFÞ /

P ðFjx;HÞ
Y
s2S

pxs
exp �b

P
8r:fs;rg2Cdðxs;xrÞ

� �
P

k2Kpk exp �b
P
8r:fs;rg2Cdðk;xrÞ

� �
� P ðbÞP ðLÞ
�
Y
k2K

P ð~lkÞPðRkÞP ðpkÞ: ð14Þ

In order to simplify our presentation, we will follow [10]
and chose uniform reference priors for
L;~lk;Rk; pkðk 2 KÞ. However, we note that informative pri-
ors could improve the quality of estimates, especially in the
case of the number of classes. Although it is theoretically
possible to sample b from the posterior, we will set its value
a priori. The reasons are as follows:

• Due to the approximation by the Pseudo-Likeli-
hood, the posterior density for b may not be
proper [12].

• Being a hyper-parameter, b is largely independent of the
input image. As long as it is large enough, the quality of
segmentations are quite similar [21]. In addition, it is
also independent of the number of classes since double-
ton potentials will only check whether two neighboring
labels are equal.
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As a consequence, P(b) is constant.
3. Sampling from the posterior distribution

A broadly used tool to sample from the posterior distri-
bution in Eq. (14) is the Metropolis–Hastings method [24].
Classical methods, however, cannot be used due to the
changing dimensionality of the parameter space. To over-
come this limitation, a promising approach, called Revers-
ible Jump MCMC (RJMCMC), has been proposed in [3].
When we have multiple parameter subspaces of different
dimensionality, it is necessary to devise different move types
between the subspaces [3]. These will be combined in a so
called hybrid sampler. For the color image segmentation
model, the following move types are needed:

(1) sampling the labels x (i.e. re-segment the image);
(2) sampling Gaussian parameters H ¼ fð~lk;RkÞg;
(3) sampling the mixture weights pk(k 2 K);
(4) sampling the MRF hyperparameter b;
(5) sampling the number of classes L (splitting one mix-
ture component into two, or combining two into one).

The only randomness in scanning these move types is the
random choice between splitting and merging in move (5).
One iteration of the hybrid sampler, also called a sweep,
consists of a complete pass over these moves. The first four
move types are conventional in the sense that they do not
alter the dimension of the parameter space. In each of these
move types, the posterior distribution can be easily derived
from Eq. (14) by setting unaffected parameters to their cur-
rent estimate. For example, in move (1), the parameters
L,p,b,H are set to their estimates L̂; p̂; b̂; Ĥ. Thus the pos-
terior in Eq. (14) reduces to the following form:

P ðL;p;b;x;HjFÞ/ P ðFjx;ĤÞP ðxjb̂; p̂; L̂Þ

/
Y
s2S

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ3jR̂xs j

q exp �1

2
~f s�~̂lxs

� ��0
B@

�R̂�1
xs

~f s�~̂lxs

� �T
��

�
Y
s2S

p̂xs exp �b̂
X

8r:fs;rg2C
dðxs;xrÞ

 !
:

ð15Þ

Basically, the above equation corresponds to a segmenta-
tion with known parameters.

In our experiments, move (4) is never executed since b is
fixed a priori. As for moves (2) and (3), a closed form solu-
tion also exists: Using the current label field x̂ as a training

set, an unbiased estimate of pk;~lk, and Rk can be obtained
as the zeroth, first and second moments of the labeled data
[20,21]. We have used this approach in our experiments.

Hereafter, we will focus on move (5), which requires the
use of the reversible jump mechanism. This move type
involves changing L by 1 and making necessary corre-
sponding changes to x, H and p.

3.1. Reversible jump mechanism

First, let us briefly review the reversible jump technique.
A comprehensive introduction by Green can be found in
[25]. For ease of notation, we will denote the set of
unknowns {L,p,b,x,H} by v and let p(v) be the target
probability measure (the posterior distribution from Eq.
(14), in our context). A standard tool to sample from
p(v) is the Metropolis–Hastings method [26,24]: assuming
the current state is v

(1) first a candidate new state is drawn from the proposal

measure q(v,v 0), which is an essentially arbitrary joint
distribution. Often a uniform distribution is adopted
in practice.
(2) Then v 0 is accepted with probability Aðv; v0Þ – the so
called acceptance probability.

If v 0 is rejected then we stay in the current state v. Other-
wise a transition v fi v 0 is made. The sequence of accepted
states is a Markov chain. As usual in MCMC [25], this
chain has to be reversible which implies that the transition
kernel P of the chain satisfies the detailed balance conditionZ

pðdvÞP ðv; dv0Þ ¼
Z

pðdv0ÞPðv0; dvÞ: ð16Þ

From the above equation, Aðv; v0Þ can be formally derived
[24,25]

Aðv; v0Þ ¼ min 1;
pðv0Þqðv; v0Þ
pðvÞqðv0; vÞ

� �
: ð17Þ

The implementation of these transitions are quite straight-
forward. Following Green [25], we can easily separate the
random and deterministic parts of such a transition in
the following manner:

• At the current state v, we generate a random vector u of
dimension r from a known density p. Then the candidate
new state is formed as a deterministic function of the
current state v and the random numbers in u:
v 0 = h(v,u).

• Similarly, the reverse transition v 0 fi v would be accom-
plished with the aid of r 0 random numbers u 0 drawn
from p 0, yielding v = h 0(v 0, u 0).

If the transformation from (v,u) to (v 0,u 0) is a diffeomor-

phism (i.e. both the transformation and its inverse are dif-
ferentiable), then the detailed balance condition is
satisfied when [25]

pðvÞpðuÞAðv; v0Þ ¼ pðv0Þp0ðu0ÞAðv0; vÞ oðv0; u0Þ
oðv; uÞ

����
����; ð18Þ

where the last factor is the Jacobian of the diffeomorphism.
Note that it appears in the equality only because the pro-
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posal destination v 0 = h(v,u) is specified indirectly. The
acceptance probability is derived again from the detailed

balance equation [3,25]

Aðv; v0Þ ¼ min 1;
pðv0Þp0ðu0Þ
pðvÞpðuÞ

oðv0; u0Þ
oðv; uÞ

����
����

� �
: ð19Þ

The main advantage of the above formulation is that it
remains valid in a variable dimension context. As long as
the transformation (v,u) ´ (v 0,u 0) remains a diffeomor-

phism, the dimensions of v and v 0 (denoted by d and d 0)
can be different. One necessary condition for that is the
so called dimension matching (see Fig. 1). Indeed, if the
d + r = d 0 + r 0 equality failed then the mapping and its
inverse could not both be differentiable.

In spite of the relatively straightforward theory of
reversible jumps, it is by far not evident how to construct
efficient jump proposals in practice. This is particularly true
in image processing problems, where the dimension of cer-
tain inferred variables (like the labeling x) is quite big.
Although there have been some attempt [27,25] to come
up with general recipes on how to construct efficient pro-
posals, there is still no good solution to this problem.

In the remaining part of this section, we will apply the
reversible jump technique for sampling from the posterior
in Eq. (14). In particular, we will construct a diffeomor-
phism w along with the necessary probability distributions
of the random variables u such that a reasonable accep-
tance rate of jump proposals is achieved. In our case, a
jump proposal may either be a split or merge of classes.
In order to implement these proposals, we will extend the
moment matching concept of Green [3,10] to three-variate
Gaussians. However, our construction is admittedly ad hoc
and fine-tuned to the color image segmentation problem.
For a theoretical treatment of the multi-variate Gaussian
case, see the works of Stephens [28,29].
3.2. Splitting one class into two

The split proposal begins by randomly choosing a class k
with a uniform probability P split

selectðkÞ ¼ 1=L. Then L is
increased by 1 and k is split into k1 and k2. In doing so, a
new set of parameters need to be generated. Altering L

changes the dimensionality of the variables H and p. Thus
u

X

r dimensional random vector 

d dimensional subspace

Fig. 1. w is a diffeomorphism which transforms back and forth between para
implemented by generating a random vector u such that the dimensions of (X
we shall define a deterministic function w as a function of
these Gaussian mixture parameters

ðHþ; pþÞ ¼ wðH; p; uÞ; ð20Þ
where the superscript + denotes parameter vectors after
incrementing L.u is a set of random variables having as many
elements as the degree of freedom of joint variation of the
current parameters (H,p) and the proposal (H+,p+). Note
that this definition satisfies the dimension matching con-
straint [3] (see Fig. 1), which guarantees that one can jump
back and forth between different parameter sub-spaces.
The new parameters of k1 and k2 are assigned by matching
the 0th, 1th, 2th moments of the component being split to
those of a combination of the two new components [10]:

pk ¼ pþk1
þ pþk2

; ð21Þ
pk~lk ¼ pþk1

~lþk1
þ pþk2

~lþk2
; ð22Þ

pk ~lk~l
T
k þ Rk

	 

¼ pþk1

~lþk1
~lþT

k1
þ Rþk1

� �
þ pþk2

~lþk2
~lþT

k2
þ Rþk2

� �
: ð23Þ

There are 10 degrees of freedom in splitting k since covari-
ance matrices are symmetric. Therefore, we need to gener-
ate a random variable u1, a random vector ~u2 and a
symmetric random matrix u3. We can now define the diffe-
omorphism w which transforms the old parameters (H,p)
to the new (H+,p+) using the above moment equations
and the random numbers u1, ~u2 and u3:

pþk1
¼ pku1 ð24Þ

pþk2
¼ pkð1� u1Þ ð25Þ

lþk1;i
¼ lk;i þ u2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rk;i;i

1� u1

u1

r
ð26Þ

lþk2;i
¼ lk;i � u2i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Rk;i;i

u1

1� u1

r
ð27Þ

Rþk1;i;j
¼

u3i;i 1� u22
i

	 

Rk;i;i

1
u1

if i ¼ j

u3i;jRk;i;j

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u22

i

	 
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u22

j

� �
u3i;iu3j;j

r
if i 6¼ j

8<
:

ð28Þ

Rþk2;i;j
¼

ð1� u3i;jÞ 1� u22
i

	 

Rk;i;i

1
u1

if i ¼ j

ð1� u3i;jÞRk;i;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� u22

i

	 

1� u22

j

� �r
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� u3i;iÞð1� u3j;jÞ

p
if i 6¼ j

8>>><
>>>:

ð29Þ
d+r dimensional subspace

X’

ψ

ψ

1-

meter subspaces of different dimensionality. Dimension matching can be
, u) and X 0 are equal.
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The random variables u are chosen from the interval (0,1].
In order to favor splitting a class into roughly equal por-
tions, b(1.1,1.1) distributions are used. To guarantee
numerical stability in inverting Rþk1

and Rþk2
, one can use

some regularization like in [30], or one can use the well-
known Wishart distribution [31]. However, we did not
experience such problems, mainly because the obtained
covariance matrices are also reestimated from the image
data in subsequent move types. Therefore as long as our in-
put image can be described by a mixture of Gaussians, we
can expect that the estimated covariance matrices are
correct.

The next step is the reallocation of those sites s 2Sk

where xs = k. This reallocation is based on the new
parameters and has to be completed in such a way as
to ensure the resulting labeling x+ is drawn from the
posterior distribution with H = H+, p = p+ and
L = L + 1. At the moment of splitting, however, the
neighborhood configuration at a given site s 2 Sk is
unknown. Thus the calculation of the term
P ðxþjb̂; pþ; Lþ 1Þ is not possible. First, we have to pro-
vide a tentative labeling of the sites in Sk. Then we can
sample the posterior distribution using a Gibbs sampler.
Of course, a tentative labeling might be obtained by allo-
cating k1 and k2 at random. In practice, however, we
need a labeling x+ which has a relatively high posterior
probability in order to maintain a reasonable acceptance
probability. To achieve this goal, we use a few step
(around 5 iterations) of ICM [32] algorithm to obtain
a suboptimal initial segmentation of Sk. The resulting
label map can then be used to draw a sample from the
posterior distribution using a one step Gibbs sampler
[9]. The obtained x+ has a relatively high posterior prob-
ability since the tentative labeling was close to the opti-
mal one.

3.3. Merging two classes

A pair (k1,k2) is chosen with a probability inversely pro-
portional to their distance

P merge
select ðk1; k2Þ ¼

1=dðk1; k2ÞP
k2K
P

j2K1=dðk;jÞ ð30Þ

where d(k1, k2) is the symmetric Mahalanobis distance be-
tween the classes k1 and k2 defined as

dðk1; k2Þ ¼ ~lk1
�~lk2

ð ÞR�1
k1
~lk1
�~lk2

ð Þ
þ ~lk2

�~lk1
ð ÞR�1

k2
~lk2
�~lk1

ð Þ ð31Þ

In this way, we favor merging classes that are close to each
other thus increasing acceptance probability. The merge
proposal is deterministic once the choices of k1 and k2 have
been made. These two components are merged, reducing L

by 1. As in the case of splitting, altering L changes the
dimensionality of the variables H and p. The new parame-
ter values (H�, p�) are obtained from Eqs. (21)–(23). The
reallocation is simply done by setting the label at sites
s 2 Sfk1;k2g to the new label k. The random variables u

are obtained by back-substitution into Eq. (24)–(29).
3.4. Acceptance probability

As discussed in Section 3.1, the split or merge pro-
posal is accepted with a probability relative to the prob-
ability ratio of the current and the proposed states. Let
us first consider the acceptance probability Asplit for the
split move. For the corresponding merge move, the
acceptance probability is obtained as the inverse of the
same expression with some obvious differences in
the substitutions.

AsplitðL; p̂; b̂; x̂; Ĥ;Lþ 1;pþ; b̂;xþ;HþÞ ¼minð1;AÞ; where

ð32Þ

A ¼ PðLþ 1; pþ; b̂;xþ;HþjFÞ
PðL; p̂; b̂; x̂; ĤjFÞ

� P mergeðLþ 1ÞP merge
select ðk1; k2Þ

P splitðLÞP split
selectðkÞP realloc

� 1

Pðu1Þ
Q3

i¼1 Pðu2iÞ
Q3

j¼iPðu3i;jÞ
� � ow

oðHk; pk; uÞ

����
���� ð33Þ

Prealloc denotes the probability of reallocating pixels labeled
by k into regions labeled by k1 and k2. It can be derived
from Eq. (15) by restricting the set of labels K+ to the sub-
set {k1,k2} and taking into account only those sites s for
which xþs 2 fk1; k2g

P realloc�
Y

8s:xþs 2fk1 ;k2g

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞ3jRþxþs j

q exp �1

2
~f s�~lþxþs
� �

Rþ�1
xþs

~f s�~lþxþs
� �T

� �

�
Y

8s:xþs 2fk1 ;k2g
pþxþs exp �b̂

X
8r:fs;rg2C

d xþs ;x
þ
r

	 
 !

ð34Þ

The last factor is the Jacobian determinant of the transfor-
mation w

ow
oðHk;pk;uÞ

����
����¼�pk

Y3

i¼1

R2
i;i

u1ðu1�1Þ 1�u22
i

	 

ð1�u3i;iÞ�u3i;i

 

�
Y3

j¼i

Ri;j

u1ðu1�1Þ

!
ð35Þ

The acceptance probability for the merge move can be eas-
ily obtained with some obvious differences in the substitu-
tions as

AmergeðL; p̂; b̂; x̂; Ĥ; L� 1; p�; b̂;x�;H�Þ

¼ min 1;
1

A

� �
ð36Þ
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4. Optimization according to the MAP criterion

The following MAP estimator is used to obtain an
optimal segmentation x̂ and model parameters L̂; p̂; b̂; Ĥ

ðx̂; L̂; p̂; b̂; ĤÞ ¼ arg max
L;p;b;x;H

P ðL; p; b;x;HjFÞ ð37Þ

with the following constraints: x 2 X,Lmin 6 L 6 Lmax,P
k2Kpk ¼ 1; 8k 2 K : 0 6 lk;i 6 1; 0 6 Rk;i;i 6 1, and�1 6

Rk,i,i 6 1. Eq. (37) is a combinatorial optimization problem
which can be solved using simulated annealing [9].

Algorithm 1. (RJMCMC Segmentation)

� Set k = 0. Initialize b̂0; L̂0; p̂0; Ĥ0, and the initial tem-
perature T0.

` A sample ðx̂k; L̂k; p̂k; b̂k; ĤkÞ is drawn from the poster-
ior distribution using the hybrid sampler outlined in
Section 3. Each sub-chain is sampled via the corre-
sponding move-type while all the other parameter val-
ues are set to their current estimate.

´ Goto Step ` with k = k + 1 and Tk + 1 until k <K.

As usual, an exponential annealing schedule (Tk + 1 =
0.98 Tk, T0 = 6.0) was chosen so that the algorithm would
converge after a reasonable number of iterations. In our
experiments, the algorithm was stopped after 200 iterations
(T200 � 0.1).
Fig. 2. Segmentation
5. Experimental results

The evaluation of segmentation algorithms is inherently
subjective. Nevertheless, there have been some recent work
on defining an objective quality measure. Such a boundary
benchmarking system is reported in [33] that we will use
herein to quantify our results. The ground truth is provided
as human segmented images (each image is processed by
several subjects). The output of the benchmarked segmenta-
tion algorithm is presented to the system as a soft boundary
map where higher values mean greater confidence in the
existence of a boundary. Then two quantities are computed:

Precision is the probability that a machine-generated
boundary pixel is a true boundary pixel. It measures the
noisiness of the machine segmentation with respect to the
human ones.

Recall is the probability that a true boundary pixel is
detected. It tells us how much the ground truth is detected.

From these values, a precision-recall curve is produced
which shows the tradeoff between the two quantities (see
Fig. 6). We will also summarize the performance in a single
number: the maximum F-measure value across an algo-
rithm’s precision-recall curve. The F-measure characterizes
the distance of a curve from the origin which is computed
as the harmonic mean of precision and recall [33]. Clearly,
for non-intersecting precision-recall curves, the one with a
higher maximum F-measure will dominate.

The proposed algorithm has been tested on a variety of
real color images. First, the original images were converted
of image rose41.
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from RGB to LHS color space [34] in which chroma and
intensity informations are separated. Results in other color
spaces can be found in [35]. The dynamic range of color
Fig. 3. Segmentation of

Fig. 4. Segmentation of

Fig. 5. Segmentation
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Fig. 6. Precision-recall curve f
components was then normalized to (0,1). The number
of classes L was restricted to the interval [1,50] and b has
been set to 2.5. This value gave us good results in all test
image kodakBus93.
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Fig. 7. Benchmark results on images from the Berkeley Segmentation Dataset.
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Table 1
F-measure and CPU time comparison

Method F-measure CPU time (730 · 500 image)

Human segmentation 0.79 —
RJMCMC 0.57 15 min
JSEG 0.56 2 min
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cases. This is demonstrated in Fig. 6, where we plot preci-
sion-recall curves for b = 2.5, b = 0.5, and b = 10.0.

Independently of the input image, we start the algorithm
with two classes ðL̂0 ¼ 2Þ, each of them having equal
weights ðp̂0

0 ¼ p̂0
1 ¼ 0:5Þ. The initial mean vectors were set

to [0.2,0.2, 0.2] and [0.7,0.7,0.7], and both covariance
matrices were initialized as

R̂0
0 ¼ R̂0

1 ¼
0:05 0:00001 0:00001

0:00001 0:05 0:00001

0:00001 0:00001 0:05

0
B@

1
CA
As an example, we show in Fig. 2 these initial Gaussians as
well as the final estimates. In spite of the rough initializa-
tion, our algorithm finds the three meaningful classes and
an accurate segmentation is obtained.

In subsequent figures, we will compare the proposed
method to JSEG [36], which is a recent unsupervised color
image segmentation algorithm. It consists of two indepen-
dent steps:

(1) Colors in the image are quantized to several represen-
tative classes. The output is a class map where pixels
are replaced by their corresponding color class labels.

(2) A region growing method is then used to segment the
image based on the multi-scale J-images. A J-image is
produced by applying a criterion to local windows in
the class-map (see [36] for details on that).

JSEG is also region based, uses similar cues (color simi-
larity and spatial proximity) than our method, and it is fully
automatic. We have used the program provided by the
authors [36] and kept its default settings throughout our
test: automatic color quantization threshold and number
of scales, the region merge threshold was also set to its
default value (0.4). Note that JSEG is not model based,
therefore there are no pixel classes. Regions are identified
based on the underlying color properties of the input
image. Although we also show the number of labels for
JSEG in our test results, these numbers reflect the number
of detected regions. In our method, however, the same label
is assigned to spatially distant regions if they are modeled
by the same Gaussian component. Segmentation results
are displayed as a cartoon image where pixel values are
replaced by their label’s average color in order to help
visual evaluation of the segmentation quality.

In Figs. 3–5, we show the results obtained on test images
found at the Kodak Digital Image Offering website (http://
www.kodak.com/digitalImaging/samples/imageIntro.
shtml). Both methods gave accurate segmentations but fine
details were better preserved by RJMCMC. In Fig. 7, we
show a couple of results obtained on the Berkeley Segmen-
tation Dataset [33], and in Fig. 6, we plot the correspond-
ing precision-recall curves. Note that RJMCMC has a
slightly higher F-measure (see Table 1) which ranks it over
JSEG. However, it is fair to say that both method perform
equally well but behave differently: while JSEG tends to
smooth out fine details (hence it has a higher precision
but lower recall value), RJMCMC prefers to keep fine
details at the price of producing more edges (i.e. its recall
values are higher at a lower precision value).

It has to be noted that RJMCMC requires a higher CPU
time (see Table 1). However, the running time can be
reduced by at least a factor of 2 when using a faster random
number generator [37] (currently we are using the standard
drand48() C function) and by replacing the exp() func-
tion calls with a faster approximation [38].

Finally, we found that the acceptance rate for the split
or merge move was �5% which is quite reasonable consid-
ering the fact that this move type involves a change of the
number of classes only. A similar finding has also been
reported in [11].
6. Conclusion

We have proposed a new RJMCMC sampler for multi-
variate Gaussian mixture identification and applied it to
unsupervised color image segmentation. For this purpose,
we have established a Bayesian segmentation model using
MRF modeling of the underlying label field. Pixel classes
are represented by multivariate Gaussian distributions.
The number of classes, class model parameters, and pixel
labels are all directly sampled from the posterior distribu-
tion using our RJMCMC sampler. A single parameter is
defined a priori which defines the interaction strength of
neighboring pixels. The final estimates, satisfying the
MAP criterion, are obtained through simulated anneal-
ing. Experimental results show that an accurate segmenta-
tion can be obtained on a variety of real images.
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