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Abstract 

In this paper, we present three optimisation techniques, Deterministic Pseudo-Annealing (DPA), Game Strategy Approach (GSA), 
and Modified Metropolis Dynamics (MMD), in order to carry out image classification using a Markov random field model. For the 
first approach (DPA), the a posteriori probability of a tentative labelling is generalised to a continuous labelling. The merit function 
thus defined has the same maxima under constraints yielding probability vectors. Changing these constraints convexities the merit 
function. The algorithm solves this unambiguous maximisation problem, and then tracks down the solution while the original 
constraints are restored yielding a good, even if suboptimal, solution to the original labelling assignment problem. In the second 
method (GSA), the maximisation problem of the a posteriori probability of the labelling is solved by an optimisation algorithm based 
on game theory. A non-cooperative n-person game with pure strategies is designed such that the set of Nash equilibrium points of the 
game is identical to the set of local maxima of the a posteriori probability of the labelling. The algorithm converges to a Nash 
equilibrium. The third method (MMD) is a modified version of the Metropolis algorithm: at each iteration the new state is chosen 
randomly, but the decision to accept it is purely deterministic. This is also a suboptimal technique but it is much faster than stochastic 
relaxation. These three methods have been implemented on a Connection Machine CM2. Experimental results are compared to those 
obtained by the Metropolis algorithm, the Gibbs sampler and ICM (Iterated Conditional Mode). 
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1. Introduction 

Markov random fields (MRFs) have become more and 
more popular during the last few years in image proces- 
sing. A good reason for this is that such a modelisation is 
the one which requires the least a priori information on 
the world model. In fact, the simplest statistical model 
for an image consists of the probabilities of classes, or 
grey levels, for isolated pixels. The knowledge of the 
dependencies between nearby pixels is much more 
powerful, and imposes few constraints. In a way, it is 
difficult to conceive of a more general model, even if it 
is not easy to determine the values of the parameters 
which specify a MRF. Another good reason is of course 
thg: Hammersley-Clifford theorem, reported, for 
example, in Ref. [l], which considerably easied, as 
stressed in Ref. [2], the determination of these parameters 
by allowing specification of the model either by con- 
ditional or joint probabilities. 

Many standard image processing problems, such as 
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image classification, can thus be expressed quite natu- 
rally as combinatorial optimisation ones. Direct optimi- 
sation is not tractable even in the smallest cases. Many 
heuristics have been proposed to solve them: Iterated 
Conditional Modes [3,4], Graduated Non-Convexity 
(GNC) [5,6], Mean Field Annealing [7,8]. Simulated 
Annealing [ 1,9, IO], Dynamic Programming [ 111, etc. 

We present here three different optimisation techni- 
ques. The first approach, which we propose to call Deter- 
ministic Pseudo Annealing (DPA), is related to 
relaxation labelling, a quite popular framework for a 
variety of computer vision problems [12-141. The basic 
idea is to introduce weighted labellings which assign a 
weighted combination of labels to any object (or site) to 
be labeled, and then to build a merit function of all the 
weighted labels in such a way that this merit function 
takes the values of the probability of a global assignment 
of labels (up to a monotonic transform) for any weighted 
labelling, which assigns the value 1 to one label and 0 to 
the others at any site. Besides, these values are the only 
extrema of this function, under suitable constraints. 
DPA consists of changing the constraints so as to 
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convexify this function, find its unique global maximum, 
and then track down the solution, by a continuation 
method, until the original constraints are restored, and 
a discrete labelling can be obtained. The proposed algo- 
rithm is new, and departs significantly from GNC and 
MFA, though it has been developed in the same spirit. 

The second method, called the Game Strategy 
Approach (GSA), uses a game theory approach to 
maximise the a posteriori probability of the labelling. 
Game theory has been developing since the 1930s. 
Recently, it has been applied to computer vision prob- 
lems [ 15- 181. Here we are interested in a special branch 
of the theory, known as non-cooperative n-person game 
theory [ 191. The basic idea is to consider the pixels as the 
players and the labels as the strategies. The maximisation 
of the payoff function of the game corresponds to the 
maximisation of the a posteriori probability of the 
labelling. 

The third approach, Modified Metropolis Dynamics 
(MMD), is a modified version of the Metropolis algo- 
rithm [lo]: for each iteration, a global state is chosen at 
random (with a uniform distribution), and for each site, 
the decision on accepting the new state is deterministic. 

The goal of this paper is to evaluate the performance 
of these three methods. They have been implemented on 
a Connection Machine CM2. Their performances for 
image classification are compared to ICM [3,4], a well- 
known fast, deterministic relaxation scheme, the Metro- 
polis algorithm [lo], and Gibbs sampler [l]. The last two 
are classical fully-stochastic relaxation techniques. 

The paper is organized as follows. Firstly, we present 
the image model using the Markov random field 
formulation. Secondly, we describe each of the three 
algorithms. Lastly, we compare the performance of 
these algorithms, as well as that of ICM, the Metropolis 
algorithm and the Gibbs Sampler, through their appli- 
cation to image classification. 

2. Probabilistic modelisation 

In this article, we are interested in the following gen- 
eral problem: we are given a set of units (or sites) 
Y = {Sip 1 I i I N}, and a set of possible labels 
R={1,2,... , M}. Each unit can take any label from 1 
to M. We are also given an MRF on these units, defined 
by a graph G (where the vertices represent the units, and 
the edges represent the label constraints of the neigh- 
bouring units), and the so-called ‘clique potentials.’ Let 
c denote a clique of G, and % the set of all cliques of G, 
and Vi = {c : Si E c}. The number of sites in the clique is 
its degree: deg(c), and deg(G) = max,,% deg(c). 

A global discrete labelling L assigns one label Li 
(1 5 Li 5 M) to each site Si in 50. The restriction of L 
to the sites of a given clique c is denoted by L,. The 
definition of the MRF is completed by the knowledge 

of the clique potentials VcL (shorthand for VcL,) for 
every c in V and every L in P’, where 2 is the set of 
the MN discrete labellings (recall that A4 is the number of 
possible labels, which is assumed to be the same for any 
site for simplicity, and N is the number of sites). 

The nice result of Hammersley-Clifford is that the 
probability of a given labelling L may be computed 
quite easily (assuming deg (w) is small, at most 2 or 3) by: 

P(L) = I-I edw(-Kd 
z ' 

where Z, the partition function, is a normalising factor 
such that: 

c P(L)= 1. 
LEY 

We assume here that the sufficient positivity condition 
P(L) > 0 is met. 

The basic problem, for most applications, is to find the 
labelling L which maximises P(L), knowing that exhaus- 
tive search of all the labellingdis strictly intractable. 

Before explaining the proposed methods, it is neces- 
sary to give more detail about how Bayesian modelling 
behaves with Markov random fields. First, it is impor- 
tant to notice that for most applications, the information 
available stems from two different sources: a priori 
knowledge about the restrictions that are imposed on 
the simultaneous labelling of connected neighbour 
units; and observations on these units for a given occur- 
rence of the problem. 

The first source is generic, and is typically referred to 
as the ‘world model.’ For example, discrete relaxation 
relies on the knowledge of allowed couples, or n-tuples 
of labels between neighbouring sites. This type of know- 
ledge may be more detailed, and reflect statistical depen- 
dencies between the labels of neighbouring sites, thus 
defining a Markov random field. For example, when 
dealing with images, the knowledge of the likelihood of 
configurations of nearby pixels may take the form of an 
MRF with cliques of order 1 to 2 (Cconnectivity), or 
order 1 to 4 (8-connectivity). The other source of infor- 
mation consists of the observations. Combining these 
two sources of information may be achieved in different 
ways; Bayesian modelling, whether strictly applied or 
not, comes in very naturally at this stage. Let us assume, 
for simplicity, that the observations consist of the grey 
levels (or any other scalar or vector quantities) of the 
pixels in an image: yi is thus the grey level for site Si, 
andY=(yt,. . . yN)’ here represents the observed image. 
A very general problem is to find, given for example a 
first-order MRF on these pixels (i.e. knowing the statis- 
tics of couples of labels with 4-connectivity), the labelling 
L which maximises P(L/Y). Bayes’ theorem tells us that 
P(L/Y)= P(Y/L)P(L)/P(Y). Actually, P(Y) doesnot 
depend on the labelling L, and plays exactly the same 
role as Z in Eq. (l), as we are not concerned with testing 
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the likelihood of the MRF. We now have to assume that 
we are able to model the noise process. Standard assump- 
tions, which roughly amount to white invariant noise, 
are that: 

281 

[21]. The key point here is to cast this discrete, combina- 
torial, optimisation problem into a more comfortable 
maximisation problem on a compact subset of 9’. Let 
us define a real functionf(X) (X E .gNM) as follows: 

P(YIL) = fi fYYi/L) = fi m/L;). 
i=l i=l 

(4 

The term P(L) is taken care of by the MRF modelling 
the a priori world model, as in Eq. (1). It is then easy to 
see that the a posteriori probability, which we are trying 
to maximise, is given by: 

P(LIY) m fi p(YilLi) n exd- Kd (3) 
i=l CEW 

It is obvious from this expression that the a posteriori 
probability also derives from a Markov random field, 
with cliques of order 1 and 2 (and not only 2 as for the 
a priori probability). The energies of cliques of order 1 
directly reflect the probabilistic modelling of labels with- 
out context, which would be used for classifying or 
labelling the pixels independently. This equivalence was 
used in Refs. [20,21] for initialising a continuous labelling 
before relaxation. It is easy to prove that it is always 
possible, by suitable shifts on the clique potentials, to 
keep only the potentials of maximal cliques. The 
procedure to do so directly derives from the proof of 
the Hammersley-Clifford theorem given in Ref. [22]. 
The problem at hand is thus strictly equivalent to 
maximising: 

where WC, = - VcL and L is the corresponding labelling. 
As we shall see, this transformation may not be really 
necessary, but it will simplify some results. The following 
property is more interesting: shifting every clique poten- 
tial of a given clique by the same quantity is equivalent to 
scaling all the P(L)% by a given factor, or equivalently to 
changing the normalisation factor Z of Eq. (1). Thus, the 
maximisation problem is not changed. For example, it 
will be possible to shift all the Wi’S so that they all 
become non-negative, or even positive, without changing 
the solution to the problem. 

3. Deterministic pseudo-annealing 

Several approaches have been proposed to find at least 
a reasonably good labelling. One of the best known is 
probably simulated annealing [I]. But other, more ‘algo- 
rithmic’ approaches are worth mentioning: Iterated Con- 
ditional Modes (ICM) [3] or Dynamic Programming 
[ 111, for example. Even former work on relaxation label- 
ling, already mentioned, was (knowingly or not) a way to 
tackle this problem. We start from one such example 

where cj denotes the jth site of clique c, and lc, the label 
assigned to this site by 1,. It is clear from Eq. (5) thatf is a 
polynomial in the Xi,k’s; the maximum degree off is the 
maximum degree of the cliques. If we assume for simpli- 
city that all the cliques have the same degree d (this is true 
with 4-neighbourhoods on images, after suitable shifts 
on the coefficients), thenf is a homogeneous polynomial 
of degree d. This is by no means necessary in what fol- 
lows, but will alleviate the notations. 

Moreover, it is clear thatf is linear with respect to any 
Xi,k (where i refers to a site, and k to a label to be attached 
to the site). Let us now restrict X to gNM, a specific 
compact subset of ,G%?,,,~ defined by the following con- 
straints: 

Vi, k : xi.k > 0, (6) 

These constraints simply mean that x is a probabilistic 
labelling. It admits many maxima on YNM, but the 
absolute maximum X* is on the border: 

Vi,Flk:x&= 1, l#k=s-x;=O. (8) 

It directly yields a solution to our problem. The difficulty 
is, of course, that f is not concave but convex with a 
tremendous number of such maxima, and that any 
standard gradient technique will usually lead to a local 
maximum (all located on the border of the domain), and 
not to the absolute maximum. It is thus vital to find a 
good starting point before applying such a technique. 

The basic idea in DPA is to temporarily change the 
subset on which f is maximised so that f becomes con- 
cave, to maximisef, and to track this maximum while 
slowly changing the constraints until the original ones 
are restored so that a discrete labelling can be deduced. 

First, when c = 2 (cliques of order 2),f is a quadratic 
form, and can always be written asf = X’AX, where A is 
an NM * NM symmetric matrix. Besides, after suitable 
shift, A has non-negative entries. After Perron- 
Frobenius [23], A has a unique real non-negative eigen- 
vector, which is strictly positive, the corresponding 
eigenvalue being positive and equal to the spectral 
radius; besides any other eigenvalue has a smaller 
modulus. Actually, this is a generic case, which admits 
degeneracies, but they can be dealt with easily and are 
not considered here (see Ref. [20] for more details). This 
eigenvector maximisesf under constraints different from 
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the preceding ones: 

vi, k : Xi,k > 0, (9) 

(10) 
k=l 

We call QNMVd the compact subset of WNM so defined. 
It must be well understood that these constraints have 

been chosen only to makef concave, which makes it easy 
to optimise. On the other hand, the Xi,k’s can no longer 
be interpreted as a probabilistic labelling. The vector X 
can be obtained very efficiently by using (for example) 
the iterative power method: start from any X0, and apply 

(11) 

A fundamental point is the following: iff is a polynomial 
with non-negative coefficients and maximum degree d, 
then f has a unique maximum on QNM>d (with, again, 
possible degeneracies as mentioned when d = 2). A com- 
plete proof is given in Ref. [24]. 

The iterative power method can be readily extended, 
becoming: select X = X0, and apply 

Xn+l 0: (vf(X”))“(d-‘), IIXn+i]lLd = 1. (12) 

This simply means that, at each iteration, we select the 
pseudo-sphere of degree d the point where the normal is 
parallel to the gradient off. Obviously, the only stable 
point is singular, and thus is the maximum we are look- 
ing for. We have only proved experimentally that the 
algorithm does converge very quickly to this maximum. 

This procedure, already suggested in Ref. [21], yields a 
maximum which, as in the case d = 2, is inside QNMld 
(degeneracies apart), and thus does not yield a discrete 
labelling. The second key point is now to decrease d 
down to 1. More precisely, we define an iterative proce- 
dure as follows: 

l set p = d, select some X; 
l while (p > 1) do: 

find X’ which maximisesf on QNM,8, starting from X, 
decrease ,f3 by some quantity, 
project X’ on the new QNM1” giving X; 
od. 

l for each Si, select the label with value 1. 

This iterative decrease of ,0 can be compared up to a 
point to a cooling schedule, or better to a Graduated 
Non-Convexity strategy [5]. 

The last step (projection) is necessary, as changing p 
changes Q NMaB Actually, the normalisation performed . 
at the first iteration of the maximisation process, for any 
,B, takes care of that. On the other hand, the process 
defined by Eq. (11) cannot be applied when p = 1. 
Maximisation in that case has been thoroughly studied 
in Ref. [12]. In practice, it is simpler to stop at some p 

slightly larger than 1 (e.g. l.l), as experiments confirm 
that for these values, the vector X* almost satisfies the 
constraints in Eq. (8), and thus selecting the best label is 
trivial. 

It is also important to notice that, though shifting the 
coefficients does not change the discrete problem nor the 
maximisation problem on YNM, it changes it on QNMVd, 
and thus there is no guarantee that the same solution is 
reached. Nor is it guaranteed that the procedure con- 
verges toward the global optimum; actually, it is not 
difficult to build simple counter-examples on toy prob- 
lems. Experiments nevertheless show that, on real prob- 
lems, a very good solution is reached, and that the speed 
with which p is decreased is not crucial: typically 5-10 
steps are enough to go from 2 to 1. 

4. Game strategy approach 

Here we are interested in using game theory to find the 
maximum of P(L/ Y) defined in Eq. (3) or equivalently, 
to find the maximum off(L) defined in Eq. (4). The basic 
idea is to consider image sites as players, and labels as 
strategies of the players. Our cost function f(L) is a 
global measure of energy potentials. This implies that 
the corresponding game should be designed in such a 
way that the total payoff of the team of players is maxi- 
mised. In other words, the game should be a cooperative 
one: all the players have to take part in a coalition in 
order to find the global maximum off(L). However, as 
this problem is NP-hard, we will thus not be able to use 
the optimisation methods in this framework. Rather, we 
will take a non-cooperative game approach due to its 
simplicity. This method was first proposed in Ref. [25]. 

In a non-cooperative n-person game, there is a set of 
players I = {&, 1 I i 5 N }. Each player Rj has a set of 
pure strategies Ti (a mixed strategy is a probability dis- 
tribution on the set of a player’s pure strategies). The 
process of the game consists of each player Ri choosing 
independently his strategy ti E Ti to maximise its own 
payoff Hi(t). Thus, a play (a SitUatiOn) t = (t,, . . . , tN) 

is obtained. It is assumed that each player knows all 
possible strategies and the payoff under each possible 
situation. 

The solutions to such a game are the Nash equilibria 
(Nash points) [26]. A play t* = (t;, . . . , t;G) is a Nash 
equilibrium if none of the players can improve his 
expected payoff by unilaterally changing his strategy. 
In terms of the payoff functions, t* satisfies the following 
relations: 

Vi : Hj(t*) = y-p;Hi(t*litj), 
t I 

where t’ ]]ti denotes the play obtained from replacing t T 
by ti. It is known [26] that Nash points always exist in 
n-person games with pure or mixed strategies. 
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We define the payoff functions in such a way that each 
player’s payoff function depends on its own strategy and 
those of its neighbours, and that the total payoff takes 
into account our merit functionf(L): 

(13) 

where L = (L, , . . . , LN). In general,f(L) # Cy=i H,(L), 
except when the potentials of higher order cliques sum to 
zero. However, we have proved [25] that the Nash equi- 
libria exist for the game defined above, and that the set of 
Nash equilibria of the game is identical to the set of local 
maxima of the functionf(L). If one considers only cli- 
ques of orders 1 and 2, the game obtained, according to 
Miller and Zucker [17], is equivalent to the relaxation 
labelling formulated 

Let L@) = (Ly’ 
by variational inequalities [ 131. 

. . > Llyk’) denote the labelling at the 
k-th iteration, K be an integer representing the maximum 
number of iterations, a E (0,l) be a real number repre- 
senting the probability of acceptance of a new label. The 
relaxation algorithm is as follows: 

1. Initialize L(“’ = (Ly’, . . . , Ljvo’), set k = 0. 
2. At iteration k > 0, for each site Si, do: 

2.1. Choose a label L: # Ljk) such that 
H.(L’k’]]L:) = maxL,EA-{L!k)l Hi(L’k)jILi); 

2.2. If’ Hi(L’k’IIL:) I: Hj(Lck’): then Ljk+‘) = Lik); 
otherwise, accept L: with probability &; 

2 3 Let Lck+‘) = (Ly”‘, . , LF’)). . . 
od. 

3. If Lckf’) is a Nash point, or if k 2 K, then stop; other- 
wise, k = k + 1 and go to step 2. 

In this algorithm, the players choose their strategies at 
discrete times k = 0, 1,2,. . . . At any time k 2 1, each 
player has one-step delayed information on the strategies 
of its neighbours, and each player decides independently 
its new strategy in order to maximise its expected payoff. 
Therefore, the algorithm is intrinsically parallelisable in 
both SIMD and MIMD machines, and requires only 
local interprocessor communications. 

The label updating scheme is randomised whenever 
0 < o < 1. Such a randomisation not only guarantees 
the convergence of Lck) to a Nash equilibrium point 
when k tends to cc [25], but also makes the final labelling 
less dependent on the initialisation. When cx = 1, the 
algorithm may not converge. Simple counter-examples 
can be constructed where the labels oscillate. However, 
a deterministic version of the algorithm (with Q = 1) can 
be designed by excluding simultaneous updating of 
neighbouring objects. For example, the labels of objects 
can be updated sequentially. In this case one obtains a 
relaxation scheme similar to ICM [3]. 

5. Modified metropolis dynamics 

We present another pseudo-stochastic method which 

optimises the same energy as in DPA and GSA. The 
definition of the local energies is given in section 6 for 
image classification (see Eqs. (19) and (20)). The pro- 
posed algorithm is a modified version of Metropolis 
Dynamics [lo]: the choice of the new label state is 
made randomly using a uniform distribution; the rule 
to accept a new state is deterministic. 

To guarantee the convergence of the parallel algo- 
rithm, we partition the entire image into disjoint regions 
&“n such that pixels belonging to the same region are 
conditionally independent of the pixels in all the other 
regions: 

.~P=UB, and ~,,n~m=O(n#m). 
?I 

(14) 

The parallel algorithm is as follows 

1. Pick randomly an initial configuration L(O) = 
(LY’,... , LE)), with iteration k = 0 and temperature 
T = T(0). 

2. Pick a global state L’ using a uniform distribution 
such that: 1 < L: 5 M and Li # Lf, 1 5 i < N. 

3. For each site Si, the local energy bi(L’), where 
L’ = (Lf , . . , Lf_1, L:, LF+, , . . , Li) is computed in 
parallel using Eq. (20) presented in section 6.2. 

4. Let A&i = ai - B,(Lk). A new label state at site Si 
is accepted according to the following rule: 

Lb+’ - 
I - 

L: if Adi 5 0 or A&i > 0 and (Y 5 exp 

Lb otherwise, 

where CII E (0,l) is a constant threshold: chosen at the 
beginning of the algorithm. 

5. Decrease the temperature T = T(k + 1) and go to 
step 2 until the number of modified sites is less than 
a threshold. 

There is no explicit formula to get the value of Q. For 
image classification, the more noise in the image, the 
smaller the value of o will be. cx also regulates the 
speed of the algorithm as well as its degree of randomisa- 
tion. See Ref. [27] for more details. 

6. Performance comparisons 

6.1. Implementation on a Connection Machine CM2 

In this section, we briefly describe the architecture of 
the Connection Machine CM2. A more detailed descrip- 
tion can be found in Ref. [28]. The Connection Machine 
is a single instruction multiple data (SIMD) parallel 
computer with 8 K to 64 K processors. Each processor 
is a l-bit serial processor, with 32 K bytes of local mem- 
ory and an 8 MHz clock. The Connection Machine is 
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Fig. 1. CM-2 architecture. 

accessed via a front-end computer which sends macro- 
instructions to a microcontroller. All processors are 
cadenced by the microcontroller to receive the same 
nano-instruction at a given time from it. Physically, the 
architecture is organised as follows (Fig. 1): 

l The CM2 chip contains 16 l-bit processors. 
l A Section is the basic unit of replication. It is com- 

posed of 2 CM2 chips, the local memory of the 32 
processors and the floating point unit. 

l The interprocessor communication architecture is 
composed of two distinct networks: 

- A nearest-neighbour network, the NEWS Network 
(North-East-West-South), interconnects processors 
in groups of four. 

- A more complex network, called the Router Net- 
work, is used to provide general communication 
between any pair of processors. Each group of 16 
processors is connected to the same router, and each 
router is connected to 12 other routers forming a 12- 
dimensional hypercube. 

For a given application, the user can dynamically 
define a particular geometry for the set of physical pro- 
cessors that has been attached. 

The processor resource can be virtualised (VP Ratio) 
when the number of data elements to be processed is 
greater than the number of physical processors. In such 

Table 1 

Results on the ‘chess board’ image with two classes 

Algorithm VPR No. of Iter Total time Time per It. Energy 

(s) (s) 

ICM 2 8 0.078 0.009 52011.35 

Metropolis 2 316 7.13 0.023 49447.60 

Gibbs 2 322 9.38 0.029 49442.34 

MMD 2 357 4.09 0.011 49459.60 

GSA 2 20 0.20 0.010 50097.54 

DPA 2 164 2.82 0.017 49458.02 

Table 2 

Results on the ‘triangle’ image with four classes 

Algorithm VPR No. of Iter Total time Time per It. Energy 

(sl (s) 

ICM 2 9 0.146 0.016 49209.07 

Metropolis 2 202 7.31 0.036 44208.56 

Gibbs 2 342 14.21 0.042 44190.63 

MMD 2 292 7.41 0.025 44198.31 

GSA 2 31 0.71 0.023 45451.43 

DPA 2 34 1.13 0.033 44237.36 

a case, several data elements are processed on a single 
physical processor. Note that when the VP Ratio 
increases, the efficiency of the machine also increases, 
because the instruction is only loaded once. 

For the three algorithms described in this paper, we 
use data parallelism on a square grid (one pixel per vir- 
tual processor) and the fast local communications 
(NEWS). Such an architecture is well suited for compu- 
ter vision as it is expressed in Ref. [29]. 

6.2. Model for image classiJication 

Using the same notation as in section 2, we want to 
maximise P(L/ Y) as defined in Eq. (3). We suppose that 
P( ,vi/Li) is Gaussian: 

p(YiILi) = gjLi exp 
(-(Y;i-J)) 

(15) 

where pLi (1 5 Li 5 M) is the mean and gLL, is the stan- 
dard deviation of class Lie It is obvious from Eq. (3) that 
this expression with a factor l/T corresponds to the 
energy potential of cliques of order 1. The second term 
of Eq. (3) is Markovian: 

P(L) = exp(-q) = exp(-+z vcL) 

= exp 

( 
-f c P$Lsi,Lsj) 

{si>sjlEq 

-1 
Y(Ls,,Ls,) = 

if Lsi = Ls,, 

+l ifLs,#Ls,, 
(17) 

Table 3 

Results on the ‘noise’ image with three classes 

Algorithm VPR No. of Iter Total time Time per It. Energy 

(s) (s) 

ICM 2 8 0.302 0.037 -5552.06 

Metropolis 2 287 37.33 0.130 -6896.59 

Gibbs 2 301 35.76 0.118 -6903.68 

MMD 2 118 10.15 0.086 -6216.50 

GSA 2 17 1.24 0.073 -6080.02 

DPA 8 15 1.33 0.089 -6685.52 
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where /3 is a model parameter controlling the homogene- Using the above equation, it is easy to define the global 
ity of regions. We get the estimation of L, denoted by L, energy dfglob(L) and the local energy a,(L) at site Sj of 
as follows: labelling L: 

i= 

= 

arg max LEY 
( 

$nP(YIL) +lnPiL)) 

argyGa; 2 - f In J%gL, + 
( ( 

(Vi - ILL I* 
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2_ ’ 
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-f c P”Iv5,JsJ 
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L, ) 
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{s,.s,}t-% ) 

Original image 

8,(L) = f InGaL, + 
C 

(Yi - &I2 2D2 
L ,r 

t 
(18) 

Noisy image (SNR= -5dB) Initialization of ICM, DPA, GSA 

Gibbs Sampler Metropolis 

(19) 

(20) 

DPA GSA MMD 

Fig. 2. Results on the ‘chess board’ image with two classes. 
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6.3. Experimental results 
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2. ‘triangle’ image with 4 classes, pixel size: 128 x 128 

(Fig. 3), 
The goal of this experiment is to evaluate the perfor- 

mance of the three algorithms (DPA, GSA and MMD) 
proposed by the authors. We compare these algorithms 
with three well-known MRF based methods: ICM [3,4], 
a fast, deterministic relaxation scheme; Metropolis 
Dynamics [lo]; and Gibbs Sampler [I]. The last two are 
classical fully-stochastic relaxation techniques. The per- 
formances are evaluated in two respects for each algo- 
rithm: the reached global minimum of the energy 
function and the computer time required. We remark 
that in all cases, the execution is stopped when the energy 
change AU is less than 0.1% of the current value of 6. 

We display experimental results on the following 
images: 

3. ‘noise’ image with 3 classes, pixel size: 256 x 256 

(Fig. 4) 
4. a SPOT image with 4 classes, pixel size: 256 x 256 

(Fig. 5). - 

Tables l-4 give, for each image and for each algo- 
rithm, the Virtual Processor Ratio (VPR), the number 
of iterations, the computer time, and the reached minima 
of the energies. Note that only the relative values of the 
energies matter. The following parameters are used for 
the experimentation: 

l Initialisation of the labels: Random values are assigned 
to the labels for the initialisation of the Gibbs, Metro- 
polis and MMD algorithms. For the ICM, DPA and 
GSA techniques, the initial labels are obtained using 
only the Gaussian term in Eq. (18) (for ICM, this 

1. ‘chess board’ image with 2 classes, pixel size: 
128 x 128 (Fig. 2) 

Original image Noisy image (SNR.= 3dB) Initialization of ICM, DPA, GSA 

ICM Gibbs Sampler Metropolis 

DPA GSA MMD 

Fig. 3. Results on the ‘triangle’ image with four classes. 
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Noisy image 

M. Berthod et al./Image and Vision Computing 14 (1996) 285-295 

Initialization of ICM, DPA, GSA 

Gibbs Sampler Metropolis 

GSA MMD 

Fig. 4. Results on the ‘noise’ image with three classes. 
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means the ‘Maximum Likelihood’ estimate of the 
labels). ICM is very sensitive to the initial conditions, 
and better results perhaps could have been obtained 
with another initialisation method. Nevertheless, the 
ICM, DPA and GSA algorithms have been initialised 
with the same data for the experiment. 

l Temperature: The initial temperature for those 
algorithms using annealing (i.e. Gibbs Sampler, 

Table 4 

Results on the ‘SPOT’ image with four classes 

Algorithm VPR No. of Iter Total time Time per It. Energy 

(s) (sl 

ICM 8 8 0.381 0.048 -40647.96 

Metropolis 8 323 42.31 0.131 -58037.59 

Gibbs 8 335 46.73 0.139 -58237.32 

MMD 8 125 10.94 0.087 -56156.53 

GSA 8 22 1.85 0.084 -56191.61 

DPA 8 15 1.78 0.119 -52751.71 

Metropolis, MMD) is TO = 4, and the decreasing sche- 
dule is given by T,,, = 0.95 Tk. For other algorithms 
(i.e. ICM, DPA, GSA), T = 1. 
Mean and standard deviation of each class: They are 
computed using a supervised learning method. Their 
values are listed in Table 5. 
Choice of ,B: ,!3 controls the homogeneity of regions. 
The greater the value of p is, the more we emphasise 
the homogeneity of regions. The values of p used for 
different images are shown in Table 6. 

Table 5 

Model parameters for the four images 

chess board 119.2 659.5 149.4 691.4 - _ _ 

triangle 93.2 560.6 116.1 588.2 139.0 547.6 162.7 495.3 
noise 99.7 94.2 127.5 99.0 159.7 100.1 _ 

SPOT 30.3 8.2 37.4 4.6 61.3 128.1 98.2 127.1 
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Original image 

ICM 

DPA 

Gibbs Sampler Metropolis 

GSA MMD 

Fig. 5. Results on the ‘SPOT’ image (four classes). 

Initialization of ICM, DPA, GSA 

l Choice of a! for MMD: a regulates the speed of the 
algorithm of MMD as well as its degree of randomisa- 
tion. The values of (Y for different images are also 
shown in Table 6. 

We remark that both cx and p are chosen by trial and 
error. 

As shown by Tables l-4 and Figs. 2-5, stochastic 
schemes are better regarding the achieved minimum, 
thus the classification error; deterministic algorithms 
are better regarding the computer time. ICM is the 

Table 6 

The 0 value, and the (Y value for MMD 

Image 

chess board 

triangle 
noise 

SPOT 

P (Y (for MMD) 

0.9 0.3 

1.0 0.3 

2.0 0.1 

2.0 0.7 

fastest, but the reached minimum is much higher than 
for the other methods (as mentioned earlier, another 
initialisation might lead to a better result, but a more 
elaborate initialisation usually increases the computer 
time). DPA, GSA and MMD seem to be good compro- 
mises between quality and execution time. Sometimes the 
results obtained by these algorithms are very close to the 
ones of stochastic methods. On the other hand, they are 
much less dependent on the initialisation than ICM, as 
shown by the experiment results and also in the theore- 
tical aspects. Note that, in Fig. 4, we are lucky that the 
maximum likelihood initialisation is very close to the 
true solution. But it is not generally the case. ICM 
improves the results in other figures, but not really in 
Fig. 4 because, on this particular image, the initial con- 
ditions are really good. 

It should be noticed that the three proposed algo- 
rithms do about the same when averaged across the dif- 
ferent test images. It is impossible to say that one 
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approach is better than the others. The choice of using 
which one of these methods is a question of taste. 

Finally, we remark that the random elements in GSA 
and in MMD are different from each other, and also 
different from that in simulated annealing schemes. In 
GSA, candidate labels are chosen in a deterministic 
way. Only the acceptance of the candidate is randomised. 
In MMD, the choice of the new label state is done ran- 
domly, and the rule to accept a new state is deterministic. 
In simulated annealing, both the selection and the accep- 
tance of candidates are randomly decided. 

7. Conclusion 

In this paper, we have described three deterministic 
relaxation methods (DPA, GSA and MMD) which are 
suboptimal but are much faster than simulated annealing 
techniques. Furthermore, the proposed algorithms give 
good results for image classification and compare 
favourably with the classical relaxation methods. They 
represent a good trade-off for image processing pro- 
blems. It should be noticed that the three algorithms 
have about the same performance when averaged across 
the different test images. 

Until now, we have used them in a supervised way, but 
an interesting problem would be to transform them into 
fully data-driven algorithms. This should be done using 
parameter estimation techniques such as Maximum 
Likelihood, Pseudo-Maximum Likelihood or Iterative 
Conditional Estimation, for instance. Finally, the three 
proposed methods could be adapted to multi-scale or 
hierarchical MRF models. 
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