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Abstract

An unsupervised color image segmentation algorithm is presented, using a Markov random field (MRF) pixel
classification model. We propose a new method to estimate initial mean vectors effectively even if the histogram does
not have clearly distinguishable peaks. The only parameter supplied by the user is the number of classes. © 2001

Elsevier Science B.V. All rights reserved.
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1. Introduction

Image segmentation is an important early vision
task where pixels with similar features are grouped
into homogeneous regions. Many high level pro-
cessing tasks (surface description, object recogni-
tion, for example) are based on such a pre-
processed image. Using color information can
considerably improve capabilities of image seg-
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mentation algorithms compared to purely intensi-
ty-based approaches.

In this paper, we are interested in unsupervised
color pixel classification to perform image seg-
mentation. Pixel classes are represented by multi-
variate Gaussian distributions and a first order
Markov random field (MRF), also known as the
Potts model (Baxter, 1990), is used as a priori
model in our Bayesian classification algorithm.
Some examples of MRF color image models can
be found in (Daily, 1989; Huang et al., 1992; Liu
and Yang, 1994). In these approaches, the color
MRF process consists of the color difference of
neighboring pixels. In (Daily, 1989), an MRF
segmentation model with color and line processes
is proposed and the use of three different lattice
schemes (squares, hexagons and triangles) are
discussed. The segmentation is obtained through
simulated annealing. A hybrid, multi-resolution
approach is presented in (Liu and Yang, 1994).
First, a scale space filter (SSF) is used to determine
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significant peaks in the histogram. Then, the his-
togram clustering information is used to perform a
coarse segmentation of the image. The final seg-
mentation is then obtained through an MRF
model defined over a quad-tree structure. The
MRF model is used in (Liu and Yang, 1994) to
control a split and merge algorithm. A similar
model is presented in (Huang et al., 1992) but they
use a monogrid MRF model and the segmentation
is obtained through simulated annealing. In
(Panjwani and Healey, 1995), an unsupervised
segmentation algorithm is proposed which uses
MRF models for color textures. These models are
defined in each color plane with interactions be-
tween different color planes. The segmentation
algorithm is based on agglomerative hierarchical
clustering but it also aims at maximizing the con-
ditional pseudo-likelihood of the image given the
regions and the MRF parameters.

Unsupervised segmentation algorithms are
usually iterative (Geman, 1985; Lakshmanan and
Derin, 1989; Kato et al., 1999), subsequently
generating a labeling, estimating parameters from
it, then generating a new labeling using these
parameters, etc. For such a method, we need a
reasonably good initial value for each parameter.
Since the classes are represented by a Gaussian
distribution in our model, the initialization of the
mean vectors is very important because of their
influence on subsequent labelings and hence on
the final estimates. On the other hand, the de-
termination of the components of a Gaussian
mixture without any a priori information (Tit-
terington et al., 1985) is a classical problem. Ex-
isting methods usually rely only on the histogram
of the observed image. For noisy images where
the histogram usually does not have clearly dis-
tinguishable peaks, these approaches are unreli-
able. We propose here a new method to find the
components of such a histogram which takes into
account spatial information. The basic idea is to
re-quantize the observed image via a pre-seg-
mentation. This forms the first part of an unsu-
pervised color image segmentation algorithm. The
only parameter supplied by the user is the num-
ber of classes.

In the next section, we briefly describe our
MREF color image segmentation model. Then, we

present an adaptive segmentation algorithm used
for the estimation of the model parameters and we
propose a new method to re-quantize a noisy color
histogram. Finally, we present some simulation
results for real and synthetic images.

2. A color image segmentation model

The first question, when dealing with color im-
ages, is how to measure quantitatively color dif-
ference between any two arbitrary colors.
Experimental evidence suggests that the tristimulus
color space may be considered as a Riemannian
space (Jain, 1989). Due to the complexity of de-
termining color distance in such spaces, several
simple formulas have been proposed. These for-
mulas approximate the Riemannian space by a
Euclidean color space yielding a perceptually uni-
form spacing of colors. One of these formulas is the
L*u*v* (Jain, 1989) color space that we use herein.

The model proposed hereafter is based on an
intensity based segmentation model (Kato et al.,
1996). Let us suppose that the observed image
F = {f,ls € &} consists of three spectral compo-
nent values (L*u*v*) at each pixel s € & denoted by
the vector f,. We are looking for the labeling &
which maximizes the a posteriori probability
P(w | ), that is the maximum a posteriori (MAP)
estimate (Geman and Geman, 1984): arg
maxyeo [[,co P(f, | @5))P(w), where Q denotes the
set of all possible labelings. Since our goal is to
segment the image into homogeneous regions, a
pixel class 4 should correspond to one or more
homogeneous color patches in the input image. Such
regularities can be modelized by an additive white
noise with covariance X, centered around the the
expected color value p,. Thus, we suppose that
P(f, | ws) follows a Gaussian distribution and pixel
classes A € A = {1,2,...,L} are represented by the
mean vectors u; and the covariance matrices X;.
Furthermore, P(w) is a MRF with respect to a first
order neighborhood system (see Fig. 1). According
to the Hammersley—Clifford theorem (Geman and
Geman, 1984), P(w) follows a Gibbs distribution:

_exp(=U(®))  [leey exp(=Veloc))
P(w) = B Z0) ,

(1)
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Cliques:

Fig. 1. First-order neighborhood system with corresponding
cliques. Single pixel cliques are called singletons, horizontal and
vertical cliques are called doubletons.

where U(w) is called an energy function,
Z() =3 ,co exp(—U(w)) 1is the normalizing
constant (or partition function) and V¢ denotes the
clique potential of clique C € ¥ having the label
configuration wc. % is the set of spatial second
order cliques (i.e., doubletons). Note that the en-
ergies of singletons (i.e., pixel sites s € %) directly
reflect the probabilistic modeling of labels without
context, while doubleton clique potentials express
relationship between neighboring pixel labels. In
our model, these potentials favor similar classes in
neighboring pixels. Thus the energy function of the
so defined MRF image segmentation model has
the following form:

U, 7)=> <ln< (2)|Z,, I>

ses

1 _
+ 5 (fs - wa)z(uxl s :uwx)T)
+8 > oy, w,), (2)
{s,;r}e%
where é(wy, w,) = 1 if w,; and o, are different and 0
otherwise. ff > 0 is a parameter controlling the

homogeneity of the regions. As f increases, the
resulting regions become more homogeneous. If
we know the correct parameter values (mean vec-
tors, covariance matrices and f) then the segmen-
tation problem, which is called supervised in such
cases, 1s reduced to the minimization of the above
energy function. Since it is a non-convex function,
some combinatorial optimization technique is
needed to tackle the problem. Herein, we will use
the Metropolis algorithm (Laarhoven and Aarts,
1987) and iterated conditional modes (ICM)
(Besag, 1986).

3. Parameter estimation

In real life situations, parameter values are un-
known. Therefore, we need a method to estimate
the parameters @ which consists of the mean
vector u; and the covariance matrix X, for each
class, and the parameter f. Since we do not have a
labeled data set, we cannot use classical estimation
methods such as maximum likelihood (ML). To
solve this problem, we use an adaptive segmenta-
tion algorithm (Geman, 1985; Lakshmanan and
Derin, 1989; Kato et al., 1999) to perform seg-
mentation and parameter estimation simulta-
neously. First, let us Dbriefly review the
mathematical background of adaptive segmenta-
tion. In the case of unknown parameters, the MAP
estimation problem becomes:

(,0) =arg max P(w, 7 | ©). 3)

0,0

Since this maximization is not tractable, we use the
following approximation instead (Geman, 1985;
Lakshmanan and Derin, 1989):

); 4)
)- (5)

® = arg maxP(w, F | @
(0]
7 | ©

O}
I

arg mgxP((T),< |
Eq. (4) is simply the MAP estimate of the label
field based on the estimated parameters @ and
Eq. (5) is the ML estimate of the parameters based
on the labeled sample (@, %). Of course, the so-
lution of these equations is only a sub-optimal
solution of the original (Eq. (3)) (Lakshmanan and
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Derin, 1989). However, these equations can be
solved by an iterative algorithm:

Algorithm (Adaptive segmentation).

1. Set k = 0 and initialize 0°.

2. Maximize P(w, 7 | ©) (see Eq. (4)) using an
optimization algorithm (ICM Besag, 1986, for
instance). The resulting labeling is denoted by
Plal

3. Update the current estimate of the parameters,
O to the ML estimate based on the current
labeling &**! (see Eq. (9)). R

4. Goto Step (2) with k = k + 1 until OF stabilizes.

Hereafter, we discuss Step (3) of this algorithm.
The probability at the right-hand side of Eq. (5)
can be written as P(®,Z | ©) = P(F )
P(® | ©). Using the model defined in Section 2,
the first term of the above equation is a product of
independent Gaussian densities and the second
term is a first-order MRF. Let us now consider the
log-likelihood function

2(0) = —In(P(,7 | ©))

_§:§:<m( (2ny': )

- S - >)
B 8@ad,) @B, (6
{s,;r}e®

where ., is the set of pixels where @ = 4. To get
the minimum of the likelihood functicp, the de-
rivative 0.2(0)/00 has to be zero at ©. The so-
lution with respect to u, (i) and X;(i,/) is simply
the empirical mean and covariance:

il |y;|2f

S€ES
Z(f ) - (£,0)
SES/
- m(/)), (7)
where | - | denotes the cardinality. The solution

with respect to f, however, is not as easy:

> wea N (@) exp(=BN™ ()
Dvea XP(=N" (@)

where N™(®) =37, 1, 0(d,, @,) is the number
of inhomogeneous cliques in @. The right-hand
side is also called the energy mean. Since In(Z(f))
is convex in O (see Geman, 1985 for more details),
the gradient can be approximated by stochastic
relaxation. Herein, we use a simpler heuristic,
which is computationally less expensive and gives
reasonably good results (Kato et al., 1999). Sup-
pose that we have an estimate of the label field (&).
The algorithm aims at finding a § which does not
change the labeling @ during a few iterations of a
fixed temperature, T, Metropolis algorithm. Basi-
cally, the algorithm uses a trial and error strategy
where the change of the current f value is gov-
erned by the ratio of the number of inhomoge-
neous cliques of the current labeling @ and the one
generated by the Metropolis algorithm (see Kato
et al., 1999 for more details). 7" is chosen empiri-
cally on a trial and error basis. In our tests, we
have set 7 = 2.5. This value has proven successful
for intensity-based segmentation (Kato et al.,
1999). The idea behind 7 = 2.5 is that an exces-
sively large value (7' = 4) would result in a com-
pletely random labeling independent of @ and the
algorithm will not converge. On the other hand, an
excessively small value (7 < 1) turns the Metrop-
olis algorithm into a deterministic one, which
permits a large variation in f without really dis-
turbing @.

NMN®) =

(®)

4. Obtaining initial parameters

The estimation procedure described previously
supposes that we have an initial guess about the
parameters. Experiments show that the most cru-
cial value is the mean value, all the other param-
eters are far less sensitive to initialization. In
Figs. 2 and 3, we can see that the quality of the
final segmentation is not influenced by the initial-
ization of . We have got a similar result for the
covariance matrix in Fig. 3. However, we found that
slightly changing the initial mean values may cause a
significant degradation in the final result (see Fig. 3).
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beta

iteration

Fig. 2. Convergence of the f§ parameter in case of the synthetic
image shown in Fig. 9. The initial values were
0.33,0.66,...,6.99. All other parameters are set to the correct
(supervised) values (see Table 1). The final estimate is obtained
between 3.3 and 3.5, whereas the supervised value was f§ = 3.5.

Thus the main problem is to obtain initial mean
values as close as possible to the correct ones.
Estimating the mean values is a classical prob-
lem, namely the determination of the components
of a Gaussian mixture without any a priori infor-
mation. Unfortunately, classical methods (Titter-
ington et al., 1985) fail if the histogram does not
have clearly distinguishable peaks, which is often
the case in dealing with noisy images. For exam-

0.50

1.0

Density

0.0

Greylevels

Fig. 4. Histogram of the synthetic image’s v* component.

ple, in Fig. 4, we show the histogram of a noisy
synthetic image (SNR=5 dB). Any histogram-
based method will fail to find a reasonably good
mean value for the four classes we have in this
image. However, using our segmentation-based
initialization method, we are able to obtain the
histogram shown in Fig. 5.

Another problem, specific to color images is a
sparse histogram. Due to the large number of
possible colors (2563 = 16777216 in case of 24 bit
color codes), typically less than 10 pixels belong to
the same color value yielding a completely flat
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Fig. 3. Plots of the percentage of misclassified pixels versus the initial value of 5, variance and mean value in case of the synthetic image
(Fig. 9). During the experiments, only the tested parameter is changed, all other parameters are set to their supervised value (see
Table 1). For f, the ratio of misclassified pixels is well under 0.2%. We have got a similar result for the covariance matrix X. The initial
covariance matrix is diagonal with variances set to 1,51,101,...,1001. Independent of the initialization, we have obtained final es-
timates close to the supervised values shown in Table 1. The ratio of misclassified pixels is well under 0.2%. In case of the mean values,
however, we found that using initial values obtained by slightly changing the correct mean values (they were shifted by
—10,-9,...,0,...,9,10) causes an important degradation in the final result and the algorithm is unable to find the supervised values
shown in Table 1. We can see that the ratio of misclassified pixels reaches 10%.
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0.0 255.0
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Fig. 5. Histogram of the synthetic image’s v* component after
pre-segmentation and quantization.

histogram. As a result, the histogram of such an
image will be too sparse for statistical analysis. To
solve this problem, we re-quantize our image. Our
goal is to reduce the number of colors such that the

quantized image contains only those colors which
correspond to important regions in the original
image. However, the goal of a classical quantiza-
tion algorithm is the minimization of the perceived
difference between the original and quantized im-
ages (Jain, 1989; Verevka and Buchanan, 1995).
Hence, using a classical quantization algorithm
could result in losing important spatial informa-
tion (merging color values that correspond to
different spatial regions in the input image). Thus,
we have to re-quantize the image taking into ac-
count spatial information. In (Verevka and Bu-
chanan, 1995), a clustering algorithm (called
LKM) based on the K-means algorithm is pro-
posed. For comparison, we present the results
obtained on the postcard image (see Fig. 6). Al-
though the results of the LKM algorithm are a
perceptually better reproduction of the original
image, the resulting initial mean values are not
suitable for the segmentation algorithm. Hence,
inferior final segmentation results are obtained.

Original postcard image.

Results after quantization via the
LKM algorithm colored by ran- tion.
dom colors.

Final unsupervised segmenta-

Fig. 6. Quantization and final result obtained from a postcard image using the LKM quantization algorithm. The quantized image is
closer to the original image but its histogram is not suitable to obtain initial mean values for the segmentation process. Hence, im-

portant regions are lost on the final segmentation.
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0.0 255.0
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Fig. 7. Histogram of the synthetic image’s v* component after
pre-segmentation.

We now introduce our approach. It is based on a
pre-segmentation. Instead of analyzing the histo-
gram of the observed image, an initial segmentation

is obtained via a split and merge algorithm using
color difference as a measure of homogeneity. In
the L*u*v* color space, a perceptually relevant color
difference is obtained from the second norm (i.e.,
Euclidean distance) of two color vectors. Regions
are represented by the average color of the original
pixels. Two neighboring regions are merged if their
color difference is less than a certain threshold 7. A
region is split if its maximal color difference is larger
than 7. A small t results in a large quantity of small
regions, a large 7 gives a small quantity of large
regions. To keep the method unsupervised, we have
to determine 7 from the observed image. This is
easily achieved because we only require a reason-
ably good initial segmentation, thus the number
and size of regions is not crucial. In our tests, we
have found that a 7, obtained as 25% of the maxi-
mal color difference in the observed image, gives
reasonably good pre-segmentation.

%
o

Result after pre-segmentation Final unsupervised segmenta-
and quantization colored by ran- tion.
dom colors.

b2 ~ §

Original postcard image.

Fig. 8. Pre-segmentation and final result obtained from a postcard image. On the pre-segmentation result, we can see a yellow
(L*u*v* =~ [220,80,240]) and a green (L*u*v* ~ [160,30,190]) regions in the central part of the image. Since these colors are close to
each other (the difference is only 92 while T = 100 for this particular image), the split and merge algorithm has a tendency to merge
them. In addition, there is no clear boundary between these regions which increase the probability of the formation of mixed regions.
This is why we obtain two large regions, one of them close to yellow (L*u*v* ~ [196,47,204]) and the other one close to green
(L*u*v* ~ [172,34,190]). Although the pre-segmentation is quite coarse, its histogram contains the colors of all important regions.
Thus it provides reasonably good initial mean values which was the goal of pre-segmentation.
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The histogram of the pre-segmented image has
clear peaks, it is suitable now for statistical anal-
ysis. In Fig. 7, we can observe that the histogram
has only a few peaks, some of them very close to
each other. Since in the pre-segmented image, the
pixel colors have been replaced by the average
color of their region, we expect to get the most

significant peaks close to the mean value of the
pixel classes. Thus, we could simply select the L
(L denotes the number of pixel classes) most sig-
nificant peaks. Unfortunately, the pre-segmenta-
tion provides regions having slightly different
average color. This might result in more than one
peak corresponding to the same pixel class and

Supervised segmentation result using color infor-
mation (0.05% misclassified pixels).

Noisy synthetic image (SNR=5db).

Unsupervised segmentation result using color in-
formation (0.19 % misclassified pixels).

Supervised segmentation result using only inten-
sity information (9.19 % misclassified pixels).

Fig. 9. Supervised and unsupervised segmentation obtained from a 128 x 128 noisy synthetic image. The signal to noise ratio (SNR)
was 5 dB in the RGB image.
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cause detection of false mean values which could
lead to wrong initial estimations. In order to sup-
press these unnecessary peaks, we merge neigh-
boring peaks by quantizing the pre-segmented
image. Experiments show that a 20% reduction of
the number of colors is sufficient (see Fig. 5) to
remove these peaks.

From the histogram obtained by the pre-seg-
mentation and quantization process, we can easily
extract initial mean vectors as the coordinates of
the first L most significant peaks. At this stage, we
only use the 2D histogram of the u*v* space be-
cause these components carry the chromatic in-
formation. As a consequence, the L* component is
omitted in the first step of the Adaptive segmen-
tation algorithm, but it is computed from the first
segmentation and is used in subsequent iterations.

It may seem strange to use a segmentation al-
gorithm to get initial parameters for a pixel clas-
sification algorithm. Why not use the result of the
pre-segmentation? To clarify this issue, consider
the image in Fig. 8. It contains large homogeneous
regions but also small, fine details. Since the pre-
segmentation algorithm uses only the color differ-
ence, it is fast but unable to keep fine details. In
particular, the central region of the postcard image

has been segmented into two regions producing a
segmentation that is not evident in the original
image. This is a good example to demonstrate that
a coarse pre-segmentation can be viable when it
comes to re-quantizing the image. The final, good
quality result is then obtained by the more elabo-
rate MRF model. We remark, that we usually get
better pre-segmentations. Thus consider Fig. § as
an extreme example.

5. Experimental results

The proposed algorithm has been tested on a
variety of images including synthetic noisy im-
ages, outdoor and indoor scenes, and video se-
quences. The test program has been implemented
in C. Herein, we present a few examples of these
results and compare color- and intensity-based
segmentation as well as supervised and unsuper-
vised results. In the case of supervised segmen-
tation, the mean vectors and covariance matrices
were computed over representative regions se-
lected by the user and  was set on an ad hoc
basis. In both cases, the number of pixel-classes is
given by the user. In our experiments, a reason-

Table 1

Parameter values of the synthetic image*

Class Initial values Final estimates Supervised values

# n X u X " X

1 (- 42, 197) I (189, 41, 197) —155 230 (189, 41, 197) 280  —155 230
—155 137 -—126 —155 137 -—126
230 —126 312 230 —126 312

2 (-, 82, 97) I (96, 81, 97) 474 259 419 (96, 81, 97) 474 =260 420
-259 209 224 —-260 209 225
419 =224 500 420 -225 501

3 (-, 97, 87) 1 (104, 98, 87) 438 246 386 (105, 98, 87) 429 248 385
—-246 203 215 —248 202 215
386 —215 456 385 =215 456

4 (- 47, 182) 1 (132, 49, 181) 366  —197 295 (132, 49, 181) 366 —197 294
—-197 179 —160 -197 179 —159
295 —160 414 294 —159 412

p 2.0 3.5 3.5

#The table shows the initial parameter values, final estimates obtained trough Adaptive segmentation and the correct, supervised values.
One can see, that initial mean values are already close to the correct ones but we have used a unit matrix (denoted by 7 in the table) as
initial value for the covariance matrices. Final estimates are nearly the same as supervised parameters.
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able value has been chosen depending on how
many differently colored regions can be found in
the image. Looking at the histogram of the image
is another clue when deciding about the number
of pixel-classes. Regions with similar colors tend
to merge during segmentation yielding to a ran-
dom mixture of the corresponding pixel classes.
Thus classes with similar mean-values should be
avoided.

First, the original images were converted from
RGB to L*u*v* using the equations from (Jain,
1989). The dynamic range of all color components
was [0, 255]. Then, we applied the split and merge

algorithm followed by a quantization and the ini-
tial mean values were extracted from the obtained
image as described in Section 4. Independent of
the input image, the initial covariance matrix was
set to the unit matrix and the initial § = 2.0. The
final parameters and segmentation are then ob-
tained through the Adaptive segmentation algo-
rithm.

In Fig. 9, we show the results obtained from a
noisy color synthetic image by supervised segmen-
tation. Comparing color- and intensity based seg-
mentation, it is clear that using color information
can significantly improve the final result (0.05%

Table 2
Computing times on a Silicon Graphics Origin 2000 server®
Image Image size Number Pre-segmentation Quantization (s) MRF Total

of classes segmentation
Synthetic 128 x 128 4 491s 0.03 54's 58.94 s
Postcard 432 x 666 5 10m45s 0.45 11 m 56s 22m4l s
Peppers 512 x 512 2 Sml4s 0.39 11 m48s 17m2s
Jellies 217 x 404 2 49.8 s 0.15 3m35s 4m?25s
Seagull 458 x 381 2 583s 0.27 9m42s 10m 40 s
Leaves 738 x 490 5 26m 15s 0.55 31m57s 58ml2s

#The configuration consists of 16 R10000/250 MHz CPU’s, each with 4 MB secondary cache, a total main memory of 8 GB, and
multiple (switched) system bus bandwith’s of 1.6 GB/s, up to 4 GB/s (sustained).

i AT

Original image (peppers).

Unsupervised segmentation result (2 classes).

Fig. 10. Unsupervised segmentation of a 512 x 512 real image with two classes (red and green peppers). We can see some misclas-
sification in the highlights (they were classified as green due to some greenish color in highlights). On the other hand, red reflections on

green peppers are classified as red.
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misclassification versus 9.19%). Considering su-
pervised and unsupervised color segmentation re-
sults, we can see that the supervised method
performs slightly better (0.05% misclassification
versus 0.19%), especially when SNR increases.
However, up to a certain SNR, the unsupervised
results are very close to the supervised ones. For
this particular image, this limit seems to be around
SNR =5 dB. In Table 1 we can compare super-
vised and unsupervised Gaussian parameters. One

can see that final estimates are close to the super-
vised ones. The chief advantage of the unsuper-
vised method is that it does not require human
intervention. The findings were the same for real
images.

In Table 2, we give the computing times in
terms of the time required to perform pre-seg-
mentation, quantization and unsupervised MRF
segmentation. The most time consuming task is
the MRF segmentation. Half of the computing

Original image (leaves).

Unsupervised segmentation result (5 classes).

Fig. 11. Unsupervised segmentation of a 738 x 490 real image with five classes. One class corresponds to the blue water, another to the
black shades and the remaining three classes to three different shades of yellow leaves.
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power is used for the estimation of f5. In average, larger images or images with more classes require
500 Metropolis iterations are executed until the the more CPU time.

final estimate is obtained. The rest of the time is Finally, some results on real images are pre-
used by the estimation of Gaussian parameters sented in Figs. 10 and 11. The algorithm also
and by the image segmentation step (Step (2) in performs well in foreground/background segmen-
our Adaptive segmentation algorithm. Obviously, tation (see Fig. 12).

Unsupervised segmentation result (2 classes).

Original image seagull. Unsupervised segmentation result (2 classes).

Fig. 12. Unsupervised foreground/background segmentation of two real images. One can see that foreground objects have been quite
well separated from the the background while fine details (especially on the jellies image) have been preserved.
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6. Conclusion

In this paper, we have proposed an unsuper-
vised color image segmentation algorithm. The
segmentation model is defined in a Markovian
framework and uses a first order potential derived
from a tri-variate Gaussian distribution in order to
tie the final segmentation to the observed image.
To estimate the model-parameters, we use an it-
erative algorithm, which subsequently generates a
labeling and then recomputes the parameter val-
ues. This process requires good initial mean values.
Due to the large number of possible colors, the
histogram cannot be analyzed directly, we have to
re-quantize it without losing any important spatial
information. To solve this problem, we have pro-
posed a new method. It uses a pre-segmentation
step based on color differences in order to reduce
the number of colors. The method has been tested
on a variety of real and synthetic images and the
results are very close to supervised ones if SNR is
kept reasonably high.
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