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Image Segmentation Using Markov
Random Field Model in Fully Parallel
Cellular Network Architectures

M
arkovian approaches to early vision processes need a huge amount of computing
power. These algorithms can usually be implemented on parallel computing structures.
Herein, we show that the Markovian labeling approach can be implemented in fully

parallel cellular network architectures, using simple functions and data representations. This
makes possible to implement our model in parallel imaging VLSI chips.

As an example, we have developed a simpli®ed statistical image segmentation algorithm for the
Cellular Neural/Nonlinear Networks Universal Machine (CNN-UM), which is a new image
processing tool, containing thousands of cells with analog dynamics, local memories and
processing units. The Modi®ed Metropolis Dynamics (MMD) optimization method can be
implemented into the raw analog architecture of the CNN-UM. We can introduce the whole
pseudo-stochastic segmentation process in the CNN architecture using 8 memories/cell. We use
simple arithmetic functions (addition, multiplication), equality-test between neighboring pixels
and very simple nonlinear output functions (step, jigsaw). With this architecture, the proposed
VLSI CNN chip can execute a pseudo-stochastic relaxation algorithm of about 100 iterations in
about 100 ms.

In the suggested solution the segmentation is unsupervised, where a pixel-level statistical
estimation model is used. We have tested di�erent monogrid and multigrid architectures.

In our CNN-UM model several complex preprocessing steps can be involved, such as texture-
classi®cation or anisotropic di�usion. With these preprocessing steps, our fully parallel cellular
system may work as a high-level image segmentation machine, using only simple functions based
on the close-neighborhood of a pixel.
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Introduction

Markovian models of images may help us to make
better image restoration, enhancement or segmentation.
However, using segmentation methods based on Mar-
kov Random Field (MRF) models requires a huge
computing power and quite a lot of time. For these
reasons, MRF methods are usually used in o�-line tasks,
never in a real-time processing environment. Recently
multiprocessor arrays, transputers or distributed com-
puter systems have been used for MRF processing, but
all of them are power-consuming and still slow
considering the standard video-rate.

On the other hand, a new image processing archi-
tecture, the fully programmable Cellular Neural (or
Nonlinear) Network (CNN) array [9,27] has been
introduced in the past few years. The cells in the array
may contain photo-sensors, logical functions, local
memories [12], every cell has analog dynamics and
feedback/feed-forward convolution kernels with pro-
grammable parameters. Some recent simulation results
show that the analog VLSI accuracy is satisfactory for
tasks such as texture segmentation [30] and image
deblurring [23,29] or MRF-based segmentation [31]. In
the latter case we have very simple functions on the
pixel-cell level, so CNN running MRF-based algorithms
can easily be integrated in an upgraded version of real
VLSI circuits [12,27]. This CNN architecture can be
integrated by digital kernels as well [17], meaning higher
accuracy and more complex functionality.

However, implementing a fully parallel MRF seg-
mentation method in only one VLSI chip allows the use
of a small instruction set on the pixel-cell level. Herein,
we show that this can be solved using very simple VLSI
functions such as multiplication, addition, logical
operations, comparison and jigsaw functions. Several
other preprocessing steps can be involved into the
structure. We may get a complex image processing
system containing MRF segmentation, using a fully
parallel cell-array with a very reduced set of pixel-level
functions.

In this paper we suggest a computational tool-kit,
based on simple VLSI functions, to implement di�erent
levels and complexity of image processing methods
containing MRF segmentation. This architecture of
programmable set of instructions gives a more robust
VLSI implementation of image processing tools than
any task-speci®c [e.g. 7] solutions.
In the next section we show the basic MRF models
and optimization methods used in our paper. We
analyse them considering the global and local (pixel-
level) processes, and consider how to implement these
processes in a fully parallel system. We brie¯y describe
the Metropolis Dynamics (MD) and the modi®ed MD
(MMD) optimization methods, which are the best to
compress the labeling process into a simple cell-
arithmetic. Then the parameter estimation for the
Markovian labeling-decision is introduced, followed by
a simpli®cation using unsupervised pixel-level estima-
tion of labeling parameters.

In ``Fully Parallel Cellular Network Arrays'', the
general architecture of a fully parallel computing
structure is shown, by considering computational cost
and complexity.

In ``MRF using Cellular Nonlinear Network'', we
describe the CNN architecture and our MRF imple-
mentations using MMD optimization. Alternatively,
some monogrid and multigrid models are also described.
Simulation examples on di�erent images are shown to
demonstrate the e�ciency of this simple and analog
computing structure. Some noise and accuracy analyses
show the robustness of this system.

In the ®nal section, we show some preprocessing
methods, such as texture-labeling, deconvolution and
nonuniform di�usion. These algorithms can be easily
incorporated in the above architecture to make sophis-
ticated image segmentation.

MRF Segmentation Models and Optimization

In image processing, MRF modeling has received a
great deal of attention in the past decade [2,4±6,13±15,
19,20,33]. This type of modeling, originally introduced
in vision by Geman and Geman [13], has been widely
used for edge detection [33], image restoration [5],
stereovision, long range motion and image classi®cation
[19].

For all these early vision processes, where the image is
represented on a lattice, the problem is posed as a
minimization of a cost function which is constructed
from the observed data, a priori information on the
world and constraints. The cost function obtained is
usually non-convex and several relaxation techniques
have been proposed to reach an optimum. The ®rst
group of methods deals with stochastic relaxation and is



Figure 1. First order neighborhood-system with cliques.
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based on Simulated Annealing (SA) [13,21]. These
algorithms converge asymptotically towards the global
minimum but require a great deal of computation. The
second group of methods is related to deterministic
relaxation. These techniques are suboptimal but require
less computational time than the previous ones. That is
why so many deterministic relaxation algorithms have
been recently investigated (Graduated Non Convexity
(GNC) [5], Iterated Conditional Mode (ICM) [4], Mean
Field Annealing (MFA) [33], Modi®ed Metropolis
Dynamics (MMD) [20]).

Optimization upon energy function in the MRF model

First, we brie¯y give an introduction to the theory of
MRF [1,25], then we describe a general image model
used in the following sections.

Let S � fs1; s2; . . . ; sNg be a set of sites (or pixels).
G � fGs j s 2 Sg is a neighborhood system for S if

1. s 62 Gs
2. s 2 Gr , r 2 Gs.

A subset C � S is a clique if every pair of distinct sites
in C are neighbors. In image processing the most
commonly used neighborhood systems are the homo-
geneous systems. In this case, we consider S as a lattice
and de®ne these neighborhoods as

Gn � fGn�i; j� : �i; j� 2 Sg;
Gn�i; j� � f�k; l� 2 S : �kÿ i�2 � �lÿ j�2 � ng:

Obviously, sites near the boundary have fewer neighbors
than interior ones. Furthermore, G0 � S and for all
n � 0 : Gn � Gn�1. Figure 1 shows a ®rst-order neighbor-
hood corresponding to n � 1. The cliques are
f�i; j�g; f�i; j�; �i; j� 1�g; f�i; j�; �i� 1; j�g.

Let X � fXs : s 2 Sg denote any family of random
variables so that 8s 2 S : Xs 2 �, where � � f1; . . . ;Lg
is a common state space. Furthermore, let 
�f!
� �!s1 ; . . . ; !sN� : !si 2 �; 1 � i � Ng be the set of all
possible con®gurations. X is a MRF with respect to G if

1. for all ! 2 
: P�X � !� > 0,
2. for every s 2 S and ! 2 
:

P�Xs � !s j Xr � !r; r 6� s�
� P�Xs � !s j Xr � !r; r 2 Gs�:

The functions in 2 are called the local characteristics
of the MRF, and the probability distribution P�X � !�
of any process satisfying 1 is uniquely determined by
these conditional probabilities. However, it is extremely
di�cult to determine these characteristics in practice.
Gibbs distribution and the Hammersley-Cli�ord theo-
rem provides us a simple way to overcome this problem.

A Gibbs distribution relative to the neighborhood
system G is a probability measure � on 
 with the
following representation:

��!� � 1

Z
exp

ÿE�!�
T

� �
; �1�

where Z is the normalizing constant or partition
function:

Z �
X
!

exp
ÿE�!�

T

� �
;

T is a constant called the temperature and the energy
function E is of the form

E�!� �
X
C2C

EC�!�:

Each EC is a function de®ned on 
 depending only on
those elements !s of ! for which s 2 C. The restriction
of ! to the sites of a given clique C is denoted by !C.
Such a function is called a potential . One of the most
important theorem is probably the Hammersley-Cli�ord
theorem which points out the relation between MRF
and Gibbs distribution:

X is a MRF with respect to the neighborhood system
G if and only if ��!� � P�X � !� is a Gibbs distribution
with respect to G.
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Using the above theorem, the de®nition of the MRF
is completed by the knowledge of the clique potentials
EC�!C� for every C in C and every ! in 
.

Let us now brie¯y review a general MRF image
model: given F � f fsgs2S a set of observed image data
where fs stands for the gray-level at pixel s. A very
general problem is to ®nd the labeling !̂ which
maximizes P�! j F� based on the Bayes decision
theorem. Following [20], we calculate the energy for a
pixel using the MRF image model with the following
energy function where the connection between clique
potentials and probabilities is kept by the Hammersley-
Cli�ord theorem:

E�!;F� �
X
s2S

ln�
������
2�
p

�!s
� � � fs ÿ �!s

�2
2�2!s

 !

�
X
fs;rg2C

���!s; !r�; �2�

where

��!s; !r� � ÿ1 if !s � !r

�1 if !s 6� !r

�
and � is a positive model parameter controlling the
homogeneity of the regions of the image. Each class
� 2 � is represented by a Gaussian model, its mean
value is �� and its standard deviation is ��.

Parallel solutions

MRF image segmentation methods are usually based on
the local calculations of probability and potential
functions. If we use a serial high-level machine with a
strong computing power, all functions can be done at
any complexity level. If we want to use parallel
solutions, we should de®ne the necessary complexity
for local computation. Using the Connection Machine
[16,19,20], a group of pixels is considered together
through virtual processor assignment at high accuracy
and complexity. It is a partly parallel solution. Using
fully parallel machines of smart but reduced complexity
cells, such as CNN, where the global computation is
more di�cult to process, we should rede®ne the task.
Basically, the process could be divided into two families
described below.

First, there are global processes, such as

1. G1: Image grabbing from camera or ®le.
2. G2: Checking the stopping conditions.
3. G3: Image saving or transfer.
4. G4: Image statistics computation (histograms,

estimation of labeling parameters).
5. G5: Simulated annealing process-control.

Second, there are local processes using only a reduced
neighborhood:

1. L1: Neighborhood labeling comparisons.
2. L2: Local energy calculation.
3. L3: Labeling decision.

An imaging cellular system can grab the image by
itself, using on-board photo-sensors, such as the CNN
VLSI chips [12]. Such a cellular network should be a
real-time video device, so we do not need to deal with
stopping conditions, since:

1. The process should be convergent in time, overtime is
not a problem.

2. The process should be faster than the video-frame
(for an analog CNN chip the whole MRF process is
between 0:01±0:1ms as simulations show for real
VLSI parameters [12]).

3. We stop an iteration-series at a pre-de®ned but
satisfactory number of steps.

The computation of image statistics and parameter
estimation is a sequential function and it can be done in
parallel with the image transfer by-¯y. These statistical
parameters together with the simulated annealing
parameters must be supplied in parallel to every cell,
which means that the system needs parallel data loading
and controlling. The parallel data loading method is a
basic function of the CNN VLSI chips.

However, as we show later, parameter estimation for
labeling may be done on pixel-level, using a parallel
unsupervised estimation method.

The local steps (L1±3) can be computed in a parallel
process considering a small neighborhood only. In the
case of the Gibbs Sampler for combinatorial optimiza-
tion, a labeling process in a cell needs:

1. Energy calculation using logarithmic function,
addition, multiplication;

2. Random number generation;
3. Exponential function, division;
4. Logical steps;
5. Local memories.
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The above operations can be easily executed by a
sequential processing computer, but it is far from
technological limits if we introduce them into the cells
of a huge pixel-array on a single chip. The recent digital
array processor chips can process the most simple
functions only such as addition and multiplication [17].
CNN-UM chips [12] may have on-board photo-sensors,
memories and logical functions. We suggest an archi-
tecture containing the following items only:

1. Addition, multiplication;
2. Logical steps;
3. Local memories;
4. Simple stored functions ( jigsaw, comparison).

Random number generation can be a pseudo-ran-
dom process, only the ®rst random numbers of the
initial random-array are ®lled by serial process if
necessary. Division is only done in preprocessing when
the inverse of standard deviations of classes are
calculated (see Eqn (2)). Using the MMD algorithm
[20], we need only 7±8 memories per cell. The inverse of
the variance and the mean of a possible level should be
fed into the cells by parallel lines. If they are stored in
pixel-memories, a cell needs additional memories
counted twice the number of the possible labels. Later
we show that only two additional memories are
necessary if we use a simpli®ed pixel-level parameter
and label estimation method.

In the case of digital parallel machines with a serial
controller and higher-level arithmetic CPU, the task of
energy computation in a cell may be much easier. The
CPU might calculate the histogram, and singleton
energies (expressed by the ®rst component of Eqn (2))
are computed for every label-class and every possible
gray-level of fs. These values are fed into the cells in
parallel using a data-bus. The cells store the values
which correspond to their fs values. Following this
storing process makes the whole cell-level computation
very simple.

MMD as an easy-to-parallelize optimization solution

Basically, the MMD algorithm [20] is just a modi®ed
version of Metropolis Dynamics [22] which turns the
algorithm into a pseudo-stochastic relaxation. The
di�erence between the original Metropolis method and
the MMD is the choice of the threshold � used in the
dynamics to accept a new state. For the original method,
� is chosen randomly at each iteration, however, in the
MMD algorithm � is a constant threshold, say �, chosen
at the beginning of the algorithm. This simply means
that the jump to a new labeling state � is allowed if this
does not increase the energy ``excessively''. The thresh-
old � controls this increase of energy. The algorithm is
highly parallel and can be described as follows:

1. In order to get the convergence of the algorithm,
partition the entire image into disjoint regions
Rn �1 � n �M� such that pixels which belong to
the same region are conditionally independent given
the data of all the other regions. Pick randomly an
initial con®guration !0, with k � 0 and T � T0.

2. Using a uniform distribution, pick a global state
� 2 
 n f!kg. For each site s 2 Rn �1 � n �M�, the
local energy Es��0� is computed with �0 �
�!k

s1
; !k

s2
; . . . ; �s; . . . ; !k

sN
�.

3. Compute �Es � Es��0� ÿ Es�!k�. The new label �s at
site s is accepted according to the following rule:

!k�1 �
� if �E � 0;
� if �E > 0 and ln��� � ÿ�E

T

ÿ �
;

!k otherwise

(
�3�

where � is a constant threshold (� 2 �0; 1�), chosen at
the beginning of the algorithm.

4. Decrease the temperature T � Tk�1 (k � number of
iterations) and go to Step 2 if �Eglob > threshold.

There is no explicit formula for threshold �. In
practice, � is determined empirically according to the
following rule: in the case of a noisy image, � is chosen
nearly equal to zero; otherwise, � is chosen nearly equal
to one. If the temperature is less than a certain threshold
(�Emin

ÿ ln�), then only the jumps to states of lower energy are
allowed. The algorithm converges to a local minimum
[20]. In [20] di�erent optimization methods have been
tested and compared. The initial temperature for the
algorithms using annealing (that is Metropolis or
MMD) was T0 � 4 and the schedule is given by
Tk�1 � 0:95 � Tk.

This MMD method has a simple computational
complexity that can really be implemented in a VLSI
architecture.

Approximation for unsupervised parallel segmentation
on CNN

We can use a lower number of local memories if we
apply an approximation simplifying the original MMD
algorithm. Herein, we introduce an easy-to-use auto-
matic parameter estimation method.
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We have made the assumption that we could work at
the pixel level (because computation needs to be very
local for the CNN). The observation at pixel s
( fs � xs � ns) is supposed to come from an original
gray level value ( xs), disturbed by an additive Gaussian
white noise (ns). Furthermore, we assume that a crude
approximation of xs could be obtained by the following
mean �s and standard deviation �s:

�s � fs � ss
2

and �s � j fs ÿ ssj
2

; �4�

where ss is a smoothed value of fs obtained through
anisotropic di�usion for instance [8,10,24]. Then,
following Eqn (2), we use an ad hoc criterion to get a
®nal segmentation !̂:

!̂ � min
!2


X
s2S

��!s
ÿ �s�2
2�2s

�
X
C2C2

EC�!C�
 !

;

where �!s
corresponds to the mean gray level value

associated to the class ! at site s. It is automatically
estimated considering the main peaks in the histogram
of input (or smoothed input) image, while the logarith-
mic component of Eqn (2) can be neglected since it has a
constant value in the comparison of local energy-
functions.

Using the above equation it is easy to de®ne the local
energy of any labeling ! at site s:

Es�!� � ��!s
ÿ �s�2
2�2s

�
X
fs;rg2C2

V�!s; !r�; �5�

where V�!s; !r� is equal to ÿ� (� > 0) if !s � !r and to
��, otherwise. A large value of � will favor the
formation of homogeneous regions.

The estimation of !̂ is done through the energy
minimization using an MMD algorithm.

In the above unsupervised estimation we consider two
di�erent scales of the image resolution: original and
smoothed. It brings the scale-space train of thought [8]
into the theory, especially when the smoothing e�ect is a
nonuniform di�usion [8,10,24], see the preprocessing
section.

Fully Parallel Cellular Network Arrays

In this section we show a fully parallel architecture that
is as simple as possible, but which executes the MMD
optimization without any approximation. The statistical
parameters (��, ��) of the di�erent (� 2 �) classes can
be estimated by the histogram of the original image. In
very noisy cases, smoothing of the image [10,32] can
remove the high-frequency noise-content from the
contiguous areas. It makes the histogram peaks of the
di�erent regions more separable, so the statistical
parameters of the di�erent regions can be better
estimated by using the histogram of the smoothed
image.

In the original digital solution a parallel two-color
MMD algorithm was used [20]. In this cellular solution
we can implement a fully parallel algorithm. According
to [2], we know that the algorithm will converge as long
as less than 100% of the pixels are updated at the same
time. It is true in our case, except for events which occur
with almost zero probability.

Another key-point is the generation of a random map
for each iteration. First, a real random map is generated,
e.g. using a serial ®lling in from a noise-generator
through a nonlinear quantizer (considering the possible
�!s

values). Starting from this map, we generate the next
random map using a common random o�set value for
the whole array and a jigsaw like nonlinear pixel-
function. This function maps all the [ÿ ,+ ],
[ÿ2 �  ,ÿ ] and [+ ,+2 �  ] intervals into [ÿ ,+ ],
where  is the amlitude interval of � and f. The
consecutive random elements of the same site are
independent because of the random o�set, while
neighbors are independent because of the initialization.
There is some statistical correlation between the
di�erent sites due to the deterministic pixel-based
function of the random generator. However, as we have
found in the simulations described in the following
section, practically it does not in¯uence the results.

General model using a simple memory-function for
the Singleton energies

In the case of digital parallel machines with a serial
controller and higher-level arithmetic CPU, the task of
the energy computation in a cell may be a simple
memory-function. The CPU might calculate the histo-
gram of the whole image and the characterizing �!s

values. Singleton energies are computed for every label-
class and every possible gray-level of fs. These values are
fed into the cells in parallel through a data-bus. The cells
store the values which correspond to their actual fs
values. Using this storing process makes the whole cell-
level computation simpler and faster. In the case of 10
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classes, data-precision of 8 bits and memory-transfer of
50 ns, the whole loading time is: 10 � 256�50 ns=128 ms.
Considering the simpli®cation in the cell-level comput-
ing the whole iteration process becomes simpler. This
solution needs L additional memories/cell and fully
parallel data loading.

Model for homogeneous variance

We can suppose that class-variances in images are
frequently uniform for the di�erent regions. In this case,
1=�2� is the same for all (� 2 �) di�erent classes. We can
apply an important simpli®cation in the cell-level
computation, since the denominator and the additive
constant in the ®rst part of Eqn (2) is the same for the
di�erent classes. Now, the whole energy computation
can be done in a simple cell-operation. Figure 2 shows
the timing-memory scheme for the initialization and the
process kernel. M# denotes the numbering of the seven
local memory-sites in the cells. Dashed boxes show the
initial arrays (processed only once), while dotted boxes
show the initial maps to be cancelled later. Ovals denote
the pixel-level functions (random o�set, jigsaw function,
step function, MMD decision), analog convolution-
based function (smoothing), nonlinear neighborhood
detection (equality tests) and parameters (constants: �
and �, time-dependent: temperature). In the initializa-
tion, the �! values are calculated for each class and
1=�2image for the image.

If we use the original Metropolis Dynamics, then an
additional cell-memory is necessary to make another
probabilistic value instead of the global �. Step function
is a series of ``if '' and ``less than'' and ``greater than''
relations.

In this con®guration a cell contains the following
things:

1. 7 (MMD) or 8 (MD) memories in every cell
2. addition, multiplication
3. comparison between the neighbors
4. logical and jigsaw functions
5. some smoothing in a small neighborhood (if

necessary)

In this con®guration we have the next global loading
lines, parallel to each cell:

1. inverse variance and mean values of the di�erent
classes
2. 1 (MMD) or 2 (MD) signals containing the pro-
babilistic o�set values

3. T temperature line for simulated annealing
4. � value for weighting the neighborhood energy

MRF using Cellular Nonlinear Network

The CNN architecture gives a very high speed tool for
parallel window-based dynamic processing of spatially
discretized 2D or 3D data-structures. The CNN
structure is well-suited for image processing. The
normalized di�erential state-equation of the analog
IIR-convolution e�ect of the local analog dynamics
[9,27] can be described with matrix-convolution opera-
tors [29,30]:

dX

dt
� ÿX� A � Y� B �U� J �6�

U;X;Y are the M�N input, state and output matrices
while J is an M � N o�set matrix. Here, the boundary
condition is U;X;Y � 0 if �i; j� 62 �0; 0;M;N�. There is a
non-linear function between the state and the output,
Yi;j � f �Xi;j�, where f �:� is usually a sigmoid. � denotes
convolution implemented by weighted local intercon-
nections in a VLSI chip. A and B represent the feedback
and feed-forward connections.

In the image processing model of the CNN, the
feedback convolution is responsible for the deconvolu-
tion [23,28±30] or the pattern shifting [27] capability of
the CNN structure.

The members of convolution kernels A;B and J (if it
is uniform) together are called templates [9,27].

The CNN Universal Machine (CNN-UM) [12,27]
chip architecture contains local memories and logical/
arithmetic functions between the di�erent image-levels,
and global programs (template series) and on-chip A/D
converters. Special local nonlinear functions can be
embedded in the structure if they are easily produced by
simple VLSI methods.

MMD implementations with some approximations

The original MMD algorithm [20] was implemented
on a Connection Machine (CM200) [16] with 8K
processors.

Once we have implemented the proposed model into a
VLSI environment, functions are related to the special



Figure 2. Architecture of Markov Random Process and MMD optimization, considering homogeneous class variance, in a fully
parallel cellular system using seven local memories and simple functions.
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hardware requirements. The use of probabilistic maps,
energy functions and Gaussian distributions should be
adapted to the VLSI constraints. Our CNNMRF model
contains only primitive functions, such as: jigsaw,
window and step functions. It uses two arithmetic
functions: addition and multiplication. A simple equal-
ity detector is used for each neighbor of clique-assign-
ment C2 in the energy calculus.

In an analog hardware it is not easy to implement
data-driven memory addressing. For this reason, we
should avoid the use of stored label-data in the local
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memories. Calculation of a probability is simpler in
VLSI architecture with our approximations of Eqn
(4, 5) (minimum number of local memories and simple
functions). In some close-to-the-trivial cases our model
is equivalent to the original Bayesian±Gaussian model
[13,20].

Monogrid model

In order to be able to implement the proposed method
on CNN we had to introduce important modi®cations
[31] with respect to the original model proposed in [20]:

1. ®rst, we worked with a larger neighborhood (3rd
order MRF (12 neighbors), using only the cliques of
order 1 (C1 � S) and 2 (C2), i.e. the singletons and the
doubletons).

2. second, we have made the assumption that we could
work at the pixel level (if computation needs to be
very local for the CNN). The energy optimization is
described by Eqn (3).

Our method calculates the energy-di�erence for each
pixel situation based on Eqn (5). The variances in the
denominators are the same for a given pixel through the
process. Let �!s

be the mean gray-level of class ! at pixel
s. The di�erence can be calculated using only additions
and multiplication:

��!k�1
s
ÿ �s�2 ÿ ��!k

s
ÿ �s�2

� ��!k�1
s
ÿ �!k

s
���!k�1

s
� �!k

s
ÿ 2�s�:

�7�

The energy part related to the doubletons C2 in Eqn (2)
is calculated using a simple equality detector for each
neighbor (!s � !r or !s 6� !r) for the state !k

s or
estimation !k�1

s . Summing the two parts of energy,
values of � and the temperature are used in a
comparison to detect if !k�1

s is accepted or if !k
s remains.

In this case, it is checked whether �" � ÿTk�1ln���
(then !k�1

s is accepted); if not, !k�1
s is rejected. We only

need a threshold comparison because ÿTk�1ln��� is a
general value for the whole array for a given step.

Figure 3 shows the timing-memory scheme for the
initialization and the process kernel. M# denotes the
numbering of the eight local memory-sites in the CNN-
UM architecture [27]. Every step of the kernel process
can be done in a CNN-UM. In the initialization the �s
and 1=�2s values are calculated for each pixel. Currently,
the division is not a CNN step in VLSI, but it can be
done in a serial line. However, some restricted division
can be implemented in VLSI using a nonlinear pixel-
function with some limited accuracy. Due to the nature
of the � calculus no high precision is needed for the
division.

Experiments on monogrid CNN MRF model
The experiments have been executed on a simulator
system using a ®xed-point hardware accelerator board
in PC [26]. It has limited accuracy, so we should
normalize the values to avoid over- or under-¯ow
problems. Since the bounding error and the nonlinear
saturation of the CNN simulator result in some
computational errors, an implemented VLSI system
should likely be robust [29].

In Figure 4, we show the segmentation results using a
noisy input test image (SNR=5dB). Parameters are
Tk�1 � 0:95 Tk, � � 0:3 and � � 10:0. The misclassi®-
cation error is 1:5%. Using the original MMD
algorithm [20] on CM [16], the error is 1:3%, and it is
1:0% with the Metropolis algorithm. We have checked
the segmentation error (considering the un-noisy origi-
nal image) with respect to the number of iteration steps
for di�erent � values. We have found that the process is
convergent and settles in about 100 iteration steps.

In Figure 5, the unsupervised segmentation of a SPOT
satellite image is shown. We de®ned 4 output classes.
Parameters are Tk�1 � 0:95 Tk, � � 0:3 and � � 0:5.

Robustness
In [29] it has been shown that the analog structure of the
CNN is highly robust against parameter noise, image
noise, the imperfect estimation of parameters and
parameter accuracy in processes including feedback
e�ects, such as the tasks of image deblurring and texture
segmentation.

Robustness of the MRF process on the CNN array
has been tested by using a scaling factor in the
representation of energy. It causes saturation errors in
the calculations. In a wide dynamic range (two
magnitudes) the performance became stable. It shows
the fact that the MRF segmentation is self-consistent:
emerging computational errors are suppressed in the
consecutive iterations.

Multigrid models

Nowadays multiresolution, multiscale, hierarchical ap-
proaches are widely applied in the ®eld of image
processing. Markov Random Fields are one typical
area where the advantages of such techniques seem to be



Figure 3. Architecture of Markov Random Process using CNN-UM with 8 local memories and simple functions when the labeling
decision is a simpli®ed approximation like in Eqns (4, 5).
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tremendous. A review on this widespreading area can be
found in [14].

Here are some reasons why multigrid models are
preferable:

1. in a general case, many phenomena (e.g. fractal
signals) have intrinsic multiscale properties
2. in our case, we face an optimization problem with
possible local minima. Optimization with a multi-
scale/hierarchical model avoids being trapped into
local minima, resulting in faster convergence and
becoming less sensitive to initial con®gurations.

Generally speaking, the common feature of multiscale
models is the representation of images on several levels



Figure 4. Monogrid segmentation.
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with decreasing resolution. There can be signi®cant
di�erences in the de®nition of cliques and energy
functions in the di�erent approaches (see [14] for
details).

The VLSI implementation of the CNN-MRF model
with third-order neighborhood system can be technolo-
gically costly, on the other hand, as we experienced,
systems of ®rst-order neighborhood with unsupervised
pixel-level parameter-estimation do not give satisfactory
results. What we expect from multigrid implementations
is to reduce neighborhood connectivity of the monogrid
MRF model at comparable results and the ratio of
number of operations/iteration ratio.

Multiscale model
The following multiscale model has been introduced by
Perez et al. in [15]. Now, we are giving only a very short
description of this model, but still to be able to
understand its main idea.

In this model, we have a top-down strategy from
coarser representation of the image to ®ner scales (we
Figure 5. Satellite image segmentation, four classes.
used 2 � 2 sites to build up a coarser block). Optimiza-
tion is started on the coarsest level and the obtained
equlibrium state serves as the initial state for optimiza-
tion of the ®ner layer below. During the optimization
process there are no interactions between the scales
except for the initial data. Important feature of this
model is the calculation of clique potentials: at a given
scale it is done through the cliques of the ®nest scale:
always the cliques of the ®nest scale are considered for
computation, but with a restriction that the blocks of n2i

sites have the same value on the layer being optimized (n
is the rescale ratio, i is the processed level). Cliques of
the ®nest scale, corresponding to a certain level under
optimization, are partitioned into two sets: one set
contains the cliques which are included in any block of
the processed level (their energy contribution is given by
pi� in Eqn (8)), whereas, the other set of cliques contains
the ones which sit astride any two neighboring blocks
(Eqn (9)). Clique potentials of a given level are the sum
of these clique potentials of the ®nest scale.

The following form of energy components at level i
represents the above description:

Ui
1��i;F� �

X
si2Si

Vi
1��isi ; �F��;
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������
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�qi� if !r 6� !s

�
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The sum of Ui
1and Ui

2 gives the energy of level i. It is
similar to Eqn (2) but in the multiscale model
doubletons are also represented in Ui

1 . Some explana-
tions with respect to notations:

1. �isi means the labeling of one block at scale i,
2. s 2 bisi means sites which build up a block at scale i,
3. Ci is one clique while Ci is the set of all cliques at

scale i,
4. DCi is the set of the sites which build up clique Ci,



Figure 6. Multiscale cliques.

Figure 7. Main steps of multiscale segmentation.
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5. The number of cliques included in the same block at
scale i is pi � 2ni�ni ÿ 1�; while the number of cliques
between two neighboring blocks is qi � ni.

(In the equations, we consider blocks of size n � n and
a ®rst-order neighborhood system.) Figure 6 represents
the two kinds of cliques. The segmentation algorithm
consists of two main steps:

1. energy optimization of a layer
2. initialization of the next layer from a coarser layer

above.

Figure 7 illustrates them.

The adaptation of multigrid models to CNN
Besides Perez' model, we also tested a very simpli®ed
version of the Causal Hierarchical Model [6]. Here, a
label-pyramid of decreasing number of sites is built up
and a so-called sequential MAP estimation is used
during optimization. In the case of four levels connected
by vertical neighborhood only, we can achieve a very
fast and low-complexity architecture. However, this
simpli®ed structure results in higher segmentation error
(>10%) for the test image of Figure 4 (left). In this
simpli®ed Causal Hierarchical model, no horizontal
neighborhood system was taken into account in the
energy computation. The reason of using only vertical
connectivity in the Causal Hierarchical Model was the
increased organizational requirements for other cases:
considering additional local (same level) neighborhood
information would result in a too complex, practically
un-implementable cellular structure.

CNN-multiscale model
Now, we will show two implementations of the multi-
scale model described previously. They need more local
memories and functional complexity but smaller neigh-
borhood than in the case of the monogrid model to
achieve good segmentation results. There is no direct
interaction between two scales, the connection is kept by
the initialization step and by clique potentials as
explained before. This multiscale algorithm uses a
®rst-order neighborhood system.

There are two possible algorithmic implementations
of the model we built [11].

1. One is considering the model as a system with several
scales where cliques originate from the ®nest layer.
Only the current image scale being processed is
represented in the memory as a CNN layer.

2. In the other implementation, we tried to implement
what is behind the formulae: we had only one scale
represented on one CNN layer and instead of
building up a coarser (smaller) grid, we restricted
the values so as to be the same in every 2 � 2 block
(n � 2).

Since both techniques are based on the same theory,
we got similar results during testing, however, they have
di�erent complexity and di�erent computational time.
In both models, MMD optimization was used with
various ad hoc parameters.



IMAGE SEGMENTATION 207
As Figure 8 illustrates, there is a signi®cant increase in
segmentation quality compared to the ®rst-order mono-
grid model, best results of the ®rst-order multiscale
model are quite close to the results of the third-order
monogrid model.

In Figure 9, we can see a real-image segmentation.
The input image (a) is a part of an image from Airborne
Multisensor Pod System Data Access Catalogue (http://
info.amps.gov:2080/). Segmentation was done with a 2-
level multiscale method at 2*80 iteration steps.

Characteristics of the Implemented Models

Table 1 roughly summarizes the capacities needed by the
the monogrid and two multiscale models.
Figure 8. Segmentation results applying di�erent smoothing
methods in the preprocessing and di�erent MRF models on
the input image of Figure 4 (left): (a) Monogrid model, ®rst-
order neighborhood, 150 iteration steps, nonuniform smoothing
in the preprocessing, misclassi®cation error: 3.7%. (b) Mono-
grid model, third-order neighborhood, 150 iteration steps,
nonuniform smoothing in the preprocessing, misclassi®cation
error: 1.6%. (c) Multiscale (2 scales), ®rst-order neighborhood,
2*80 iterations, uniform smoothing in the preprocessing,
misclassi®cation error: 3.5%. (d) Multiscale (2 scales), ®rst-
order neighborhood, 2*80 iteration steps, nonuniform smooth-
ing in the preprocessing, misclassi®cation error: 1.7%.

Figure 9. Multiscale MRF segmentation: (a) Air view of a
scene with river, bridge, forest, green area and town (from left
to right). Rio Grande, New Mexico, Segmented into: (b) 3
classes, (c) 4 classes.
The need for multiscale CNN-MRF model was set up
mainly in order to reduce neighborhood connectivity of
the monogrid model at comparable segmentation
e�ciency.

To sum up the results multiscale models need more
sites of memory per cell but need smaller neighborhood
connectivity than the monogrid model to achieve a good
result. To decide which one to use in a VLSI chip
environment depends on the available technological
potential.

Preprocessing

There are several attempt to introduce di�erent image
processing methods in the MRF framework: texture
analysis and synthesis [3], motion detection [7] or
restoration from blurred and noisy images [18]. These
combined methods are usually very speci®c for the given
task. Sometimes, the composite algorithm is e�ective
only for binary imaging e�ects, such as simple motion-
detection or deconvolution to get binary image segments
[18].



Table 1. Some characteristics of the models, # stands for the ®nest scale, +for the coarse scale

Monogrid Multigrid 1. Multigrid 2.

Memories/Cell 8 15 10
Operations/Iterations 8 24+/8# 13
Processed Image Size (inputs is of N * N) N * N (N/2) * (N/2)+; N * N# N * N
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In our approach we tried to give some solutions for
the continuous-valued image models using a general
MRF segmentation combined with di�erent parallel
preprocessing enhancement methods. In the same
cellular system, we can implement many of the
preprocessing methods, such as deblurring [23,29],
texture-featuring [29,30] and anisotropic di�usion
[8,10,24,28]. Now, we show two examples of complex
preprocessing.

Texture labeling

When instead of light-intensity the local-structure of the
image (textures) is to be separated the (analog) cellular
model is capable of pixel-level image segmentation
considering the di�erent texture-classes [29,30]. How-
ever, the output of such a segmentation may be quite
noisy owing to the relatively small detection window,
which is necessary to get sharp edges. The local
inhomogeneities can be removed by using a MRF
model. The CNN-based texture-recognizer method
[29,30] performs well for many texture classes.
Figure 10 shows a texture segmentation result based
on the CNN texture segmentation ®ltering method
[29,30]. Here, we use a single 363 analog CNN template
as a spatial ®lter to make di�erent (average) gray-tones
for the di�erent textures of similar ¯at histograms in the
Figure 10. Texture segmentation in the CNN-UM architecture
using one CNN ®lter and MRF post-processing.
input. The segmentation and misclassi®cation errors on
the texture-borders and inside the textures are removed
using the MRF method. The e�ect of foreign stripes at
the border of two di�erent textures can be removed
using several texture-detector CNN templates [30].

Nonlinear/nonuniform di�usion

In the case of uniform heat-di�usion on the image, we
have the following equation whose solution is a
convolution of the signal with a Gaussian kernel:

�u�t; x; y�
�t

� �u�t; x; y�; u�0; x; y� � u0�x; y� �10�

In further improvement of this model [24] we take the
local geometry of the image into consideration as
described by the following equation:

�u�t; x; y�
�t

� rfg�jru�t; x; y�j�ru�t; x; y�g �11�

In this case, the anisotropic di�usion explicitly
depends on the local gradient (as a function of g)
leading to edge conserving property as seen in Figure
8(c, d) for the multiscale case, using Figure 4 (left) as the
input image. To improve the e�ectiveness of the CNN-
MRF model our aim was to decrease the probability of
misclassi®cation at the borders of the di�erent homo-
geneous regions. For this reason, we introduced a
nonlinear and nonuniform di�usion as the smoothing
process. The following simple formula [28] was applied
for the CNN where a new image Fk�1 is obtained from
the previous state Fk:

Fk�1 � Fk � h�Fk�1ÿ jrG�Fk�j�; �12�

where � is the Laplace operator and r is the grad
operator which is normalized to 1 and G�:� is a Gaussian
pre-smoothing [8], h is a scaling. This means that, where
the gradient is high, the smoothing of the image is small.
In addition, the gradient calculation should have been
preceded by a uniform smoothing (G), otherwise, the
gradient would be e�ected by undesirable noise.



Figure 11. E�ect of nonuniform di�usion in the preprocessing: (a) Original input image part. (b) Smoothed input. (c) MRF
segmentation after smoothing. (d) Nonuniform di�usion on the input image. (e) MRF segmentation following the nonuniform
di�usion step.
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The e�ects of using nonuniforn di�usion in the
CNN-MRF model can been seen in Figure 11. In
many cases, the preservation of edges can be very
Figure 12. The role of the nonuniform di�usion in the preprocessi
segmentation: (a) Input Street Scenery. (b) CNN-MRF segm
segmentation preprocessed by nonuniform di�usion.
crucial for the segmentation procedure. A good ex-
ample can be seen in Figure 12 representing a street
scenery.
ng image segmentation and enhancement using monogrid MRF
entation preprocessed by uniform di�usion. (c) CNN-MRF



Table 2. Computational complexity and the required processing-time considering 100 ns for a simple operation and 1 ms for an
analog ®ltering process

Complexity of an Iteration
Simple Operation/Analog Filter

Number of iterations Processing time

MRF Monogrid 8/0 150 120ms
MRF Multigrid 13/0 100 130ms
Nonlinear Di�usion 5/1 10 15ms
Texture Filtering 2/2 1 2.2ms
Deblurring 0/1 1 1ms
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The nonlinear di�usion in the smoothing process and
the multiscale MRF segmentation (see Figure 8) bring
closer the two di�erent multiresolution methods in one
framework.

Conclusions

We have shown that MRF models can be implemented
using simple VLSI functions and a parallel cellular
array. The whole time-consuming process can be
embedded in a fully parallel, high-speed architecture of
simple functions. Using an analog solution, the CNN-
UM architecture, the original MRF models have been
modi®ed to ®t the requirements of analog VLSI
implementations. These modi®cations do not change
the performance too much. This analog-chip architec-
ture is very robust. Segmentation is based on an
unsupervised labeling method where local statistics are
considered for the label-classes. This structure is ready
for implementation on VLSI CNN chips. In Table 2 we
show the computational complexity and the required
processing-times of the di�erent processing steps.

In the proposed fully-parallel architecture the MRF
segmentation of images can be a basic step, as a part of a
programmable multi-function architecture.
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