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Abstract. Fuzzy sets and fuzzy techniques are attracting increasing at-
tention nowadays in the field of image processing and analysis. It has
been shown that the information preserved by using fuzzy representa-
tion based on area coverage may be successfully utilized to improve pre-
cision and accuracy of several shape descriptors; geometric moments of
a shape are among them. We propose to extend an existing binary shape
matching method to take advantage of fuzzy object representation. The
result of a synthetic test show that fuzzy representation yields smaller
registration errors in average. A segmentation method is also presented
to generate fuzzy segmentations of real images. The applicability of the
proposed methods is demonstrated on real X-ray images of hip replace-
ment implants.

1 Introduction

Image registration is one of the main tasks of image processing, its goal is to
find the geometric correspondence between images. Many approaches have been
proposed for a wide range of problems in the past decades [1]. Shape matching
is an important task of registration. Matching in this case consists of two steps:
First, an arbitrary segmentation step provides the shapes and then the shapes
are registered. This solution is especially viable when the image intensities un-
dergo strong nonlinear deformations that are hard to model, e.g. in case of X-ray
imaging. If there are clearly defined regions in the images (e.g. bones or implants
in X-ray images), a rather straightforward segmentation method can be used to
define its shape adequately. Domokos et al. proposed an extension [2] to the
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parametric estimation method of Francos et al. [3] to deal with affine match-
ing of crisp shapes. These parametric estimation methods have the advantage
of providing accurate and computationally simple solution, avoiding both the
correspondence problem as well as the need for optimization.

In this paper we extend this approach by investigating the case when the
segmentation method is capable of producing fuzzy object descriptions instead
of a binary result. Nowadays, image processing and analysis methods based
on fuzzy sets and fuzzy techniques are attracting increasing attention. Fuzzy
sets provide a flexible and useful representation for image objects. Preserving
fuzziness in the image segmentation, and thereby postponing decisions related
to crisp object definitions has many benefits, such as reduced sensitivity to noise,
improved robustness and increased precision of feature measures.

It has been shown that the information preserved by using fuzzy represen-
tation based on area coverage may be successfully utilized to improve precision
and accuracy of several shape descriptors; geometric moments of a shape are
among them. In [4] it is proved that fuzzy shape representation provides sig-
nificantly higher accuracy of geometric moment estimates, compared to binary
Gauss digitization at the same spatial image resolution. Precise moment esti-
mation is essential for a successful application of the object registration method
presented in [2] and the advantage of fuzzy shape representations is successfully
exploited in the study presented in this paper.

In Section 2 we present the outline of the previous binary registration method
[2] and extend it to accommodate fuzzy object descriptions. A segmentation
method producing fuzzy object boundaries is described as well. Section 3 con-
tains experimental results obtained during the evaluation of the method. In a
study of 2000 pairs of synthetic images we observe the effect of the number of
quantization levels of the fuzzy membership function to the precision of image
registration and we compare the results with the binary case. Finally, we ap-
ply the registration method on real X-ray images, where we segmented objects
of interest by an appropriate fuzzy segmentation method. This shows the suc-
cessful adjustment of the developed method to real medical image registration
tasks.

2 Parametric Estimation of Affine Deformations

In this section, we first review a previously developed binary shape registration
method in the continuous space [2]. Since digital images are discrete, an approx-
imative formula by discretization of the space is derived. The main contribution
of this paper is in using a fuzzy approach when performing discretization. In-
stead of sampling the continuous image function at uniform grid positions, and
performing binary Gauss discretization, we propose to perform area coverage
discretization, providing a fuzzy object representation. We also describe a seg-
mentation method that supports our suggested approach and produces objects
with fuzzy boundaries.
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2.1 Basic Solution

Herein we briefly overview the affine registration approach from [2]. Let us de-
note the points of the template and the observation by x,y ∈ �2, respectively
in the projective space. The projective space allows simple notation for affine
transforms and assumes using of homogeneous coordinates. Since affine trans-
formations never alter the third (homogeneous) coordinate of a point, which is
therefore always equal to 1, we, for simplicity, and without loss of generality, lib-
erally interchange between projective and Euclidean plane, keeping the simplest
notation.

Let A denote the unknown affine transformation that we want to recover. We
can define the identity relation as follows

Ax = y ⇔ x = A−1y.

The above equations still hold when a properly chosen function ω : �2 → �
2 is

acting on both sides of the equations [2]:

ω(Ax) = ω(y) ⇔ ω(x) = ω(A−1y). (1)

Binary images do not contain radiometric information, therefore they can be
represented by their characteristic function � : �2 → {0, 1}, where 0 and 1
are assigned to the elements of the background and foreground respectively. Let
�t and �o denote the characteristic function of the template and observation.
In order to avoid the need for point correspondences, we integrate over the
foreground domains Ft = {x ∈ �2|�t(x) = 1) and Fo = {y ∈ �2|�o(y) = 1) of
the template and the observation, respectively, yielding [2]

|A|
∫
Ft

ω(x) dx =
∫
Fo

ω(A−1y) dy. (2)

The Jacobian of the transformation (|A|) can be easily evaluated as

|A| =

∫
Fo

dy∫
Ft

dx
.

The basic idea of the proposed approach is to generate sufficiently many lin-
early independent equations by making use of the relations in Eq. (1)–(2). Since
A depends on 6 unknown elements, we need at least 6 equations. We cannot
have a linear system because ω is acting on the unknowns. The next best choice
is a system of polynomial equations. In order to obtain a system of polynomial
equations from Eq. (2), the applied ω functions should be carefully selected. It
was also shown in [2] that by setting ω(x) = (xn

1 , xn
2 , 1) Eq. (2) becomes

|A|
∫
Ft

xn
k dx =

n∑
i=0

(
n

i

) i∑
j=0

(
i

j

)
qn−i
k1 qi−j

k2 qj
k3

∫
Fo

yn−i
1 yi−j

2 dy, (3)

where k = 1, 2; n = 1, 2, 3 and qki denote the unknown elements of the inverse
transformation A−1.
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2.2 Fuzzy Object Representation

The polynomial system of equations in Eq. (3) is derived in the continuous
space. However, digital image space provides only limited precision for these
derivations and the integral can only be approximated by a discrete sum over the
pixels. There are many approaches for discretization of a continuous function.
The easiest way to form a discrete image is by sampling the continuous function
at uniform grid positions. This approach, leading to a binary image, is also
known as Gauss centre point digitization, and is used in the previous study [2].
An alternative way is to perform a fuzzy discretization of the image.

A discrete fuzzy subset F of a reference set X ⊂ �
2 is a set of ordered

pairs F = {((i, j), μF (i, j)) | (i, j) ∈ X}, where μF : X → [0, 1] is the
membership function of F in X . The fuzzy membership function may be defined
in various ways; its values reflect the levels of belongingness of pixels to the
object. One useful way to define the membership function on a reference set in
case when it is an image plane, is to assign a value to each image element (pixel)
that is proportional to its coverage by the imaged object. In that way, partial
memberships (values strictly between 0 and 1) are assigned to the pixels on the
boundary of the discrete object.

Note that in the coefficients of the system of equations in Eq. (3) are the first,
second and third order geometric moments of the template and observation. In
general, moments of order i + j of a continuous shape F = {x ∈ �2|�(x) = 1}
are defined as

mi,j(F) =
∫
F

xi
1x

j
2 dx. (4)

In the discrete formulation the geometric moments of order i + j of a discrete
fuzzy set F can be used, defined as

m̃i,j(F ) =
∑
p∈X

μF (p) pi
1p

j
2 . (5)

This equation can be used to estimate geometric moments of a continuous 2D
shape. Asymptotic error bounds for moments of order up to 2, derived in [4], show
that moment estimates calculated from a fuzzy object representation provide a
considerable increase of precision as compared to estimates computed from a
crisp representation, at the same spatial resolution.

If F is fuzzy representation of F , it follows that mi,j(F) ≈ m̃i,j(F ). Thus, by
using Eq. (4)–(5) the integrals in Eq. (3) can be approximated as∫

Ft

xn
k dx ≈

∑
p∈Xt

μFt(p) pn
k and (6)

∫
Fo

yn−i
1 yi−j

2 dy ≈
∑

p∈Xo

μFo(p) pn−i
1 pi−j

2 , (7)

and the Jacobian can be approximated as

|A| =
m00(Fo)
m00(Ft)

≈ m̃00(Fo)
m̃00(Ft)

=

∑
p∈Xo

μFo(p)∑
p∈Xt

μFt(p)
. (8)
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Xt and Xo are the reference sets (discrete domains) of the (fuzzy) template and
(fuzzy) observation image, respectively.

The approximating discrete system of polynomial equations can now be pro-
duced by inserting these approximations into Eq. (3):

|A|
∑

p∈Xt

μFt(p)pn
k =

n∑
i=0

(
n

i

) i∑
j=0

(
i

j

)
qn−i
k1 qi−j

k2 qj
k3

∑
p∈Xo

μFo(p)pn−i
1 pi−j

2 .

Clearly, the spatial resolution of the images affects the precision of this ap-
proximation. However, sufficient spatial resolution may be unavailable in real
applications or, as it is expected in case of 3D applications, may lead to too
large amounts of data to be successfully processed. On the other hand, it was
shown in [4] that increasing the number of grey levels representing pixel coverage
by a factor n2 provides asymptotically the same increase in precision as an n
times increase of spatial resolution. Therefore the suggested approach, utilizing
increased membership resolution, is a very powerful way to compensate for in-
sufficient spatial resolution, while still preserving desired precision of moments
estimates.

2.3 Segmentation Method Providing Fuzzy Boundaries

Application of the moment estimation method presented in [4] assumes a discrete
representation of a shape such that pixels are assigned their corresponding pixel
coverage values. Definition of such digitization is given in [5]:

Definition 1. For a given continuous object F ⊂ �
2, inscribed into an integer

grid with pixels p(i,j), the n-level quantized pixel coverage digitization of F is

Dn(F) =
{(

(i, j),
1
n

⌊
n

A(p(i,j) ∩ F)
A(p(i,j))

+
1
2

⌋) ∣∣∣∣ (i, j) ∈ �2

}
,

where �x	 denotes the largest integer not greater than x, and A(X) denotes the
area of a set X.

Even though many fuzzy segmentation methods exist in the literature, very few
of them result in pixel coverage based object representations. With an inten-
tion to show the applicability of the approach, but to not focus on designing
a completely new fuzzy segmentation method, we derive pixel coverage values
from an Active Contour segmentation [6]. Active Contour segmentation pro-
vides a crisp parametric representation of the object contour from which it is
fairly straightforward to compute pixel coverage values. Such a straightforward
derivation is not always possible, if other segmentation methods are used. The
main point argued for in this paper is of a general character, and does not rely
on any particular choice of segmentation method.

We have modified the SnakeD plugin for ImageJ by Thomas Boudier [7] to
compute pixel coverage values. The snake segmentation is semi-automatic, and
requires that an approximate starting region is drawn by the operator. Once the



740 A. Tanács et al.

snake has reached a steady state solution, the snake representation is rasterized.
Each pixel close to the snake boundary is given partial membership to the object
proportional to how large part of that pixel is covered by the segmented object.
The actual computation is facilitated by a 16 × 16 supersampling of the pixels
close to the object edge and the pixel coverage is approximated by the fraction
of sub-pixels that fall inside the object.

3 Experimental Results

When workingwith digital images,we are limited to a finite number of levels to rep-
resent fuzzy membership values. Using a database of synthetic binary shapes, we
examine the effect of the number of quantization levels to the precision of registra-
tion and compare them to the binary case. The pairs of corresponding synthetic
fuzzy shapes are obtained by applying known affine transformations. Therefore
the presented registration results for synthetic images are neither dependent nor
affected by a segmentation method. Finally, the proposed registration method is
tested on real X-ray images, incorporating the fuzzy segmentation step.

3.1 Quantitative Evaluation on Synthetic Images

The performance of the proposed algorithm has been tested and evaluated on a
database of synthetic images. The dataset consists of 39 different shapes and their
transformed versions, a total of 2000 images. The width and height of the images
were typically between 500 and 1000 pixels. The transformation parameters were
randomly selected from uniform distributions. The rotation parameter was not
restricted, any value was possible from [0, 2π). Scale parameters varied between
[0.5, 1.5], shear parameters between [−1, 1]. The maximal translation value was
set to 150 pixels. The templates were binary images, i.e. having either 0 or 1
fuzzy membership values. The fuzzy border representations of the observation
images were generated by using 16× 16 supersampling of the pixels close to the
object edge and the pixel coverage was approximated by the fraction of sub-
pixels that fall inside the object. The fuzzy membership values of the images
were quantized and represented by integer values having k-bit (k = 1, . . . , 8)
representation. Some typical examples of these images and their registration
accuracies are shown in Fig. 1.

In order to quantitatively evaluate the results, we have defined two error
measures. The first error measure (denoted by ε) is the average distance in pixels
between the true (Ap), and recovered (Âp) positions of the transformed pixels
over the template. This measure is used for evaluation on synthetic images, where
the true transformation is known. Another measure is the absolute difference
(denoted by δ) between the registered template image and the observation image.

ε =
1
m

∑
p∈T

‖(A− Â)p‖, and δ =
|R � O|
|R| + |O| ,

where m is the number of template pixels, � means the symmetric difference,
while R and O denote the set of pixels of the registered shape and the observation
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δ = 0.17% δ = 0.25% δ = 1.1% δ = 8.87% δ = 23.79% δ = 25.84%

Fig. 1. Examples of templates (top row) and observations (middle row) images. In the
third row, grey pixels show where the registered images matched each other and black
pixels show the positions of registration errors.

respectively. We note that before computing the errors, the images were binarized
by taking the α-cut at α = 0.5 (in other words, by thresholding the membership
function).

The medians of errors for both ε and δ are presented in Table 1 for different
membership resolutions. For all membership resolutions, for around 5% of the
images the system of equations provided no solution, i.e. the images were not
registered. From the 56 images, there were only six whose transformed versions
caused such problems. These can be seen in Fig. 2. Among the transformed
versions, we found no rule to desribe when the problem occurs. Some of them
caused problems for all different fuzzy membership resolutions, some of them
occured for few resolutions only, randomly.

It is noticed that the experimental data confirmed the theoretical results, i.e.
that the use of fuzzy shape representation enhances the registration, compared
to the binary case. This effect can be interpreted as that the fuzzy representation
“increases” the resolution of the object around its border. It also implies that
registration based on fuzzy border representation may work for lower image
resolutions, also where the binary approach becomes unstable.

Although based on solving a system of polynomial equations, the proposed
method provides the result without any iterative optimization step or correspon-
dence. Its time complexity is O(N), where N is the number of the pixels of the
image. Clearly, most of the time is used for parsing the foreground pixels. All
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Table 1. Registration results of 2000 images using different quantization levels of the
fuzzy boundaries

Fuzzy representation
1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

ε median (pixels) 0.1681 0.080 0.0443 0.0305 0.0225 0.0186 0.0169 0.0147
δ median (%) 0.1571 0.0720 0.0439 0.0292 0.0196 0.0151 0.0125 0.0116

Registered 1905 1919 1934 1943 1933 1929 1925 1919
Not registered 95 80 66 57 67 71 75 81

0.00
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0.10

0.15

0.20

1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

epsilon median error

0.00
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0.04

0.06

0.08

0.10

0.12

0.14

0.16

0.18

1-bit 2-bit 3-bit 4-bit 5-bit 6-bit 7-bit 8-bit

delta median error

the summations can be computed in a single pass over the image. The algorithm
has been implemented in Matlab 7.2 and ran on a laptop using Intel Core2 Duo
processor at 2.4 GHz. The average runtime is a bit above half a second, includ-
ing the computation of the discrete moments and the solution of the polynomial
system. This allows real-time registration of 2D shapes.

3.2 Experiments on Real X-Ray Images

Hip replacement is a surgical procedure in which the hip joint is replaced by a
prosthetic implant. In the short post-operative time, infection is a major concern.
An inflammatory process may cause bone resorption and subsequent loosening
or fracture, often requiring revision surgery. In current practice, clinicians assess
loosening by inspecting a number of post-operative X-ray images of the patient’s
hip joint, taken over a period of time. Obviously, such an analysis requires the
registration of X-ray images. Even visual inspection can benefit from registration
as clinically significant prosthesis movement can be very small.

Fig. 2. Images where the polynomial system of equations provided no solutions in some
cases. With increasing level of fuzzy discretization, the registration problem of the first
three images vanished. The last three images provided problems permanently.
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δ = 2.17% δ = 4.81% δ = 1.2%

Fig. 3. Real X-ray registration results. (a) and (b) show full X-ray observation images
and the outlines of the registered template shapes. (c) shows a close up view of a third
study around the top and bottom part of the implant.

There are two main challenges in registering hip X-ray images: One is the
highly non-linear radiometric distortion [8] which makes any greylevel-based
method unstable. Fortunately, the segmentation of the prosthetic implant is
quite straightforward [9] so shape registration is a valid alternative here. Herein,
we used the proposed fuzzy segmentation method to segment the implant. The
second problem is that the true transformation is a projective one which depends
also on the position of the implant in 3D space. Indeed, there is a rigid-body
transformation in 3D space between the implants, which becomes a projective
mapping between the X-ray images. Fortunately, the affine assumption is a good
approximation here, as the X-ray images are taken in a well defined standard
position of the patient’s leg.

For for the diagnosis, the area around the implant (especially the bottom part
of it) is the most important for the physician. It is where the registration must be
the most precise. Fig. 3 shows some registration results. Since the best aligning
transformation is not known, only the δ error measure can be evaluated. We also
note, that in real applications the δ error value accumulates the registration error
and the segmentation error. The preliminary results show that our approach
using fuzzy segmentation and registration can be used in real applications.

4 Conclusions

In this paper we extended a binary affine shape registration method to take
advantage of a discrete fuzzy representation. The tests confirmed expectations
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from the theoretical results of [4], on increased precision of registration if fuzzy
shape representations are used. This improvement was demonstrated by a quan-
titative evaluation of 2000 images for different fuzzy membership discretization
levels. We also presented a segmentation method based on Active Contour to
generate fuzzy boundary representation of the objects. Finally, the results of a
successful application of the method were shown for the registration of X-ray
images of hip prosthetic implants taken during post-operative controls.
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