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Quadrics SummaryQuadrics Summary
Quadrics are the Quadrics are the ‘‘xx22 familyfamily’’ in in PP33::

–– Point Quadric:Point Quadric: xxT T Q x = 0Q x = 0
–– Plane Quadric:Plane Quadric: ππT T Q* Q* ππ = 0= 0

•• Transformed Quadrics:Transformed Quadrics:
–– Point Quadric:Point Quadric: QQ’’ = H= H--TT Q HQ H
–– Plane Quadric:Plane Quadric: Q*Q*’’ = H= H Q* HQ* HTT

•• Symmetric Q, Q* matrices:Symmetric Q, Q* matrices:
–– 10 10 parameters butparameters but 9 DOF9 DOF; 9 points or planes ; 9 points or planes 
–– (or less if degenerate…)(or less if degenerate…)
–– 4x4 symmetric, so SVD(4x4 symmetric, so SVD(QQ) =) = USUUSUTT

Ellipsoid: 1 of  8 Ellipsoid: 1 of  8 
quadric typesquadric types

Quadrics SummaryQuadrics Summary

•• SVD(Q) =SVD(Q) =USUUSUTT::
–– UU columns are quadriccolumns are quadric’’s s axesaxes
–– SS diagonal elements: diagonal elements: scalescale

•• On U axes, write any quadric as:On U axes, write any quadric as:
aauu11

22 + b+ buu22
22 +c+cuu33

22 + d = 0 + d = 0 

•• Classify quadrics by Classify quadrics by 
–– signsign of a,b,c,d:  (>0, 0, <0)of a,b,c,d:  (>0, 0, <0)

•• Book’s method:  Book’s method:  
–– scale a,b,c,d to (+1,  0, scale a,b,c,d to (+1,  0, ––1)1)
–– classify by Q’s classify by Q’s rankrank and (and (a+b+c+da+b+c+d))

Ellipsoid: 1 of  8 Ellipsoid: 1 of  8 
quadric typesquadric types



Quadrics SummaryQuadrics Summary
AllAll UnruledUnruled Quadrics Quadrics 
are Rank 4: are Rank 4: (See page 55)(See page 55)

BUTBUT SomeSome Rank 4Rank 4
quadrics quadrics areare RuledRuled::

and and AllAll degenerate quadricsdegenerate quadrics
(Rank<4) are (Rank<4) are Ruled Ruled (or Conic)(or Conic)

New Weirdness:  Absolute Conic New Weirdness:  Absolute Conic ΩΩ∞∞

•• WHY WHY learnlearn ΩΩ∞∞?   ?   Similar to CSimilar to C∞∞ for Pfor P22……
–– Angles from directions (Angles from directions (dd11, d, d22) or planes () or planes (ππ11, , ππ22))
–– ππ∞∞ has 3DOF for has 3DOF for HHPP; ; ΩΩ∞∞ has 5DOF for has 5DOF for HHAA

•• ΩΩ∞∞ Requires TWO equations:Requires TWO equations:
ΩΩ∞∞ : : 

•• ΩΩ∞∞ is is complexcomplex 2D Point Conic on the 2D Point Conic on the ππ∞∞ plane plane 
Recall plane at infinity  Recall plane at infinity  ππ∞∞= [ 0,  0,  0, 1]= [ 0,  0,  0, 1]T T 

holds  ‘directions’  holds  ‘directions’  d = [xd = [x11, x, x22, x, x33, 0], 0]TT

xx11
22 + x+ x22

22 + x+ x33
22 = 0,  or  ‘2D point conic where C = I’= 0,  or  ‘2D point conic where C = I’

xx44 = 0,   or ‘all points are on = 0,   or ‘all points are on ππ∞∞’’ .

New Weirdness:  Absolute Conic New Weirdness:  Absolute Conic ΩΩ∞∞

•• ΩΩ∞∞ is is complexcomplex 2D Point Conic on the 2D Point Conic on the ππ∞∞ plane plane 

•• Only Only HHAAHHP P transforms transforms ΩΩ∞∞ (stays (stays ΩΩ∞∞ for for HHSS))
•• All circles (in any All circles (in any ππ) intersect ) intersect ΩΩ∞∞ circular pts.circular pts.

–– (recall: circular pts. hold 2 axes: x (recall: circular pts. hold 2 axes: x ±± iiyy))
•• All spheres (in All spheres (in PP33) intersect ) intersect ππ∞∞ at all at all ΩΩ∞∞ pts.pts.

xx11
22 + x+ x22

22 + x+ x33
22 = 0,  or  ‘2D point conic where C = I’= 0,  or  ‘2D point conic where C = I’

xx44 = 0,   or ‘all points are on = 0,   or ‘all points are on ππ∞∞’’ .

New Weirdness:  Absolute Conic New Weirdness:  Absolute Conic ΩΩ∞∞

ΩΩ∞∞ measures angles between Directions (measures angles between Directions (dd11,d,d22))

–– WorldWorld--space space ΩΩ∞∞ isis II3x33x3 ((identident. matrix) within . matrix) within ππ∞∞

–– ImageImage--space space ΩΩ∞∞
’’ is transformed  is transformed  

–– Euclidean worldEuclidean world--space angle space angle θθ is given by:is given by:

–– Directions Directions dd11,d,d22 are orthogonal are orthogonal iffiff dd11
TT ΩΩ∞∞’’ dd2 2 = 0= 0

(d(d11
TT ΩΩ∞∞’’ dd22))

..

(d(d11
TT ΩΩ∞∞’’ dd11) (d) (d22

TT ΩΩ∞∞’’ dd22))
cos(θ) = 
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Action of projective camera on planes

• The most general transformation that 
can occur between a scene plane and 
an image plane under perspective 
imaging is a plane projective 
transformation 
• Assume world coordinate system is 

aligned with the plan π ( Z=0)

• affine camera affine transformation
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Action of projective camera on lines
• forward projection

• back-projection
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Action of projective camera on conics
• back-projection to cone

• example:
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Images of smooth surfaces
• The contour generator Γ is the set of points X on S

at which rays are tangent to the surface.  
• The corresponding apparent contour γ is the set of points 

x which are the image of X, i.e. γ is the image of Γ
• The contour generator Γ depends only on position of 

projection center
• γ depends also on rest of P
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Action of projective camera on quadrics

• back-projection to cone

• The plane of Γ for a 
quadric Q and camera 
center C is given by 
P=QC (follows from 
pole-polar relation)

• The cone with vertex V
and tangent to the 
quadric Q is

0lPPQlQ
PPQC

T*T*T
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What does calibration give?
• The camera calibration matrix K

is the (affine) transformation 
between x and the ray’s 
direction d=K-1x measured in 
the camera’s Euclidean 
coordinate frame
• In general, d is not a unit vector
• The angle between two rays d1, d2

corresponding to image points x1, 
x2 may be obtained by the cosine 
formula (angle between two 
vectors).

• Calibrated camera = direction 
sensor xKd 1−=
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What does calibration give?
• An image line l defines a plane through the 

camera center with  normal n=KTl measured 
in the camera’s Euclidean frame
• In general, n is not a unit vector

16
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Image of the absolute conic
• mapping between p∞ to an image is given by the 

planar homogaphy x=Hd, with H=KR

• Since the absolute conic Ω∞ is on p∞, its image 
(IAC) under H is given by

• Note that ω is an imaginary point conic with no real 
points.
• It is a convenient algebraic device…

KRd0
d]C~|KR[IPXx =

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
−== ∞

( ) 1-T-1T KKKKω ==
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Image of the absolute conic

• IAC depends only on intrinsics K
• angle between two rays

• If x1 and x2 correspond to orthogonal directions, then x1ωx2=0
• D(ual)IAC= ω*=KKT

• Once ω (or ω*) is identified K may be obtained by 
Cholesky factorisation

• image of circular points:
• A plane p intersects p∞ in a line
• This line intersects Ω∞ in two points (circular points of p)
• The image of these points lie on ω where the vanishing line of p

intersects ω
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A simple calibration device (Z. Zhang)
• Compute H for each square

• corners (0,0), (1,0), (0,1), (1,1)
• The alignment of the plane 

coordinate system with the square 
is a similarity transform does 
not affect circular point’s position 
on the plane

• Compute the imaged circular 
points H(1,±i,0)T

• h1±ih2

• Fit a conic to 6 circular points:
• (h1±ih2)Tω(h1±ih2)=0

• Compute K from ω through 
Cholesky factorization

• Image of 3 squares on 
planes
• Which are not parallel
• Not necessarily orthogonal

• Provides sufficient 
constraints to compute K
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Vanishing points
• All parallel lines in 3D space appear to meet in a 

point on the image - the vanishing point
• common intersection of the image lines
• An image may have several vanishing points

V1

V2
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Vanishing points
• All 3D lines with the 

same direction 
intersect at p∞ in the 
same point. 

• The vanishing point 
is simply the image 
of this point.
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Important property
• Vector CV1 (from the center of projection to the 

vanishing point) is parallel to the parallel lines

V1

Y

X

Z

C
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Orthocenter theorem
• Three orthogonal sets of parallel 

lines can be used to determine 
the image center without any 
information about focal length 
and extrinsic parameters:
• Input: three mutually orthogonal 

sets of parallel lines in an image
• T: a triangle on the image plane 

defined by the three vanishing points
• Image center (px,py) = orthocenter of 

triangle T
• Orthocenter of a triangle is the 

common intersection of the three 
altitudes

V1

V2

V3

h3

h2

h1

(px,py)
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Vanishing lines

• Any set of parallel lines on the plane define a vanishing point
• The union of all of these vanishing points is the vanishing (or 

horizon) line
• Note that the vanishing line depends only on the orientation

• Differently oriented planes define different vanishing lines
• Parallel planes share the same vanishing line (which is the image of 

the parallel 3D plane’s intersection at p∞ )
24
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Vanishing lines

The vanishing points of lines nearly parallel to the image plane are 
distant from the actual image.

The vanishing line 
of the ground 
plane (the horizon) 
may be obtained 
from two sets of 
parallel lines on 
the plane

The vanishing point of lines parallel to 
the ground plane lies on the vanishing 
line of the plane.
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Vanishing lines
• Geometry:

• The vanishing line l is constructed by intersecting the 
image with a plane

• Parallel to the scene plane π
• Through the camera center C
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Vanishing lines
• A plan through the camera center C with normal direction n

• Intersects the image plane in the line l=K-Tn
• l is the vanishing line of planes perpendicular to n

• a plane with vanishing line l has orienttation n=KTl in the 
camera’s Euclidean coordinate frame. 
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Vanishing lines
• The angle between two scene planes can be 

determined from their vanishing lines l1 and l2:

• A scene plane may be metrically rectified 
given only its vanishing line:
• The plane normal is known from l
• The camera can be rotated (synthetically) such 

that the plane becomes frontoparallel.
• This is achieved by computing a homography.
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Orthogonality and ω

• If x1 and x2 correspond to 
orthogonal directions, then 
x1ωx2=0

• They are conjugate with respect 
to ω

• A point x and a line l
backprojecting to a line and a 
plane that are orthogonal are 
related by l=ωx

• x and l are pole-polar with 
respect to ω

0lωl 2
*T

1 =
• The vanishing lines of two perpendicular planes satisfy:
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Calibration from vanishing points and lines

• Once ω is known, we can measure angle 
between rays 

• If the angle between rays are known then a 
constraint is placed on ω
• This is a quadratic constraint for arbitrary angles
• Orthogonality results in a linear constraint

• Internal constraints may also be imposed
• Zero skew: s=K12=0 ω12=ω21=0
• Square pixels: sx=K12=K21=sy ω11=ω22

30
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Calibration from vanishing points and lines
• Given three orthogonal vanishing point directions

• Each pair gives vi
Tωvj=0

• + assume zero skew & square pixles
• We have 5 constraints sufficient to compute ω

• Write the constraints by stacking them together to form the 
equation 
• Aw=0, where w=[ωi] (i=1..4) and A is 3X4
• Solve for w and compute K from ω=(KKT)-1 by Cholesky factoriztaion

followed by inversion.
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Calibration from vanishing points and lines
• The principal point p can be obtained from the orthocenter
• The focal length

• Consider the plane defined by C, p and one of the vanishing points (v3)
• The rays C v3 and C x are perpendicular to each other
• The focal length is the distance of the image plane from C
• by similar triangles: f2=d(p,v3)d(p,x)

• Caution: this method is degenerate if one of the vanishing points is at
infinity (in that case A drops rank to 2!)


