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Bmoculqr S’rereo

A way of gettlng
depth (3D)
information about
a scene from two
2D views (images)
of the scene

Used by humans

Computational

stereo vision
Programming
machines to do
stereo vision
Studied
extensively in the
past 25 years
Difficult; still
being
researched

Three geometric questions

Correspondence geometry: Given an image
point in the first view, how does this constrain the
position of the corresponding point  in the
second image?

Camera geometry (motion): Given a set of

corresponding image points

what are the camera matrixes and

views?

Scene geometry (structure): Given

corresponding image points and cameras
, —, what is the position of (their pre-image) in

space?

for the two

Mapping Points between Images

What is the relationship between the images
,  of the scene point in two views?

Intuitively, it depends on:

The rigid transformation (motion) between
cameras (derivable from the camera matrices

)
The scene structure (i.e., the depth of )
Parallax: Closer points appear to move more
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3 transformation relating the points  to
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2D Homogeneous Coordinates

Why x,;? Why ‘default’ value of 1?

 Look at lines in R?:
— ‘line’ == all (x,y) points where [ax+by+c=0
—scale by 'k’ 2-> no change: |kax +kby + ke =0
 Using X, for points UNIFIES notation:

— line is a 3-vector named 1

— now point (x,y) is a 3-vector too, named x

ax+by+c=0 [Xl X, XJ . =0 xT1=0

Important Properties 1(seebookfordetails)

» 3 coordinates, but only 2 degrees of freedom
(only 2 ratios (x4 / X3), (X,/ X3) can change)

« DUALITY: points, lines are interchangeable

— Line Intersections = point: 11 X lz =X

(a 3D cross-product)

— Point ‘Intersections’ = line: X; X X, = |

— Projective theorem for lines <—-> theorem for points!




Epipolar geometry

epipolar plane T \

Baseline

The
fundamental
constraint in
stereo

Baseline:
Line joining
camera
centers ,

and are
coplanar

Epipolar lines

Epipolar lines |,
Intersection of epipolar
plane - with image
planes
The image in one view
of the other camera’s
projection ray.

Epipoles -,

Where baseline
intersects image planes
The image in one view
of the other camera
center.

Intersection of the
epipolar lines

Vanishing point of
camera motion direction

Epipolar pencil

As position of
varies, epipolar
planes “rotate”
about the baseline

This set of planes is
called the epipolar

pencil
Epipolar lines
“radiate” from
epipole—this is the
pencil of epipolar
lines

baseline

Epipolar constraint

Camera center and
image point  define a ray
in 3D space that projects to
the epipolar line in the
other view (since it's on the
epipolar plane)

3D point is on this ray =
image of in other view
must be on

In other words, the epipolar
geometry defines a
mapping of points in
one image to lines in the
other

/
y
> epipolar line
/
for x




Example: Epipolar Lines for Converging Cameras Example: Epipolar Lines for Translating Cameras

Left view Right view
Intersection of epipolar lines = Epipole !
Indicates location of other camera center

Epipoles coincide at focus of
expansion

- Not the same (in general) as
epipolar lines are parallel vanishing point of scene lines

epipolar lines correspond to rows in the image
epipoles in both images are at infinity along the x axis.




The Fp_ndqmen’ral Matrix ( ) ._Eunﬂdq_mental Matrix

Mapping a point in one image to epipolar line
in other image Is expressed
algebraically by the Fundamental Matrix

Write this as

is
3x3
rank 2 (not invertible, in contrast to Geometric derivation:

homographies) is a mapping from 2D (plane) to 1D (line) family
7 DOF (homogeneity and rank constraint -2 DOF) = is 3X3 but rank 2

Fundqmen’ral Matrix Fundqmental Matrix

X(L)=P*x +AC

]=P'CxP'P"x [e.) But what's this? A NEW TRICK:

Cross Product written as matrix multiply

2

F = [e']xP'Pjf .

as| [bs| |2yby—ayb; L 1193

‘ " ?Oi‘x e
) A So write:
Algebraic derivation: matrix

Doesn’t work for

byl |asb; —ab;

axb=[a|x[b]=[ab;—ab,| =] I[b)] =[a] - b
b
b




Correspondence condition & Fundamental matrix summary

Since ison , by the is the unique 3X3 rank 2 matrix that satisfies
point-on-line definition we for all

know that < Transpose: if is fundamental matrix for , then
Combined with , we 3 is fundamental matrix for

can thus relate Epipolar lines: &
corresponding points in the

camera pair to each

other by
- is a correlation, projective mapping from a point toa
line (not a proper correlation, i.e. not invertible)

= the fundamental matrix . ! is unaffected by any proj. transforms done on BOTH
satisfies the above condition /_.,;;ipo]m_ i cameras :

for any pair of corresponding  orx has same matrix as for any full-rank

points in the two images . = - measures camera - vs. Camera  only, no matter where
The fundamental matrix of you put them

is the transpose

Epipoles: on all epipolar lines, = i 4
, Similarly

has 7 DOF , i.e. 3X3 - 1(homogeneous) -1(rank2)
T Fx =0

The Essential Matrix Properties of Essential Matrix

If the calibration matrix is known Has 5 DOF (3 for and 2 for up to scale)
> 4 normalized coordinates First two singular values are equal
> normalized camera matrix The third is O

Consider a pair of normalized cameras

and Allows computation of camera matrices
The Fundamental matrix correspondig to them is

I
called the Essential Matrix g alnd _
: : a four-fold ambiguity
It is defined by

Relationship between and




Four possible reconstructions from Computing

Compute from

X'Xf X Y, X fiy V' X AV Vo Y S H X Y+ fi3=0
separate known from unknown:

X' v, X, 05,3 3,35, Yl fois fias fiss fors Fons Foso fors foan fs] =0
—,—/
data unknows(linear)
XYy Vi Yoo on 1
: : : : : ColE=0
x’l’l y'n xil y'n yn y'n 'xn yn 1

(c) (d)
only one solution where points is in front of both cameras)

The singularity constraint Example

detF=0lrankF=2  The importance of the singularity constraint

SVD from linearly computed F matrix (rank 3)

- 4

Compute closest rank-2 approximation min”F- F‘”F

Without constraint Constraint enforced




How many correspondences?

| When has rank 8

=» possible to solve for up to scale
= need 8 point correspondences

When hasrank > 8

Use LSE:
Minimize subject to (SVD)

At least 8 point correspondences
However has 7 DOF
is still OK
=» possible to solve with 7 point correspondences
AND by making use of the singularity constraint

7 point correspondences

The solution is a 2D space: F =F, + /F,
one parameter family of solutions -
Af=0

not automatically rank 2

x'l_% le y'1_x1 y'1.y1 yjl % i 1
: : : : : : S P

X,y Xy yax, Y.y, V.o ox, oy, 1

7 point correspondences

G3

(obtain 1 or 3 solutions)
F

FR \

Impose rank 2 constraint = Cubic equation:
det(F, +AF,) =aA’ +a,\* +al+a, =0
det(F, + AF,) = det F, det(F;'F, + AI) = 0

Compute as eigenvalues of
only real solutions are potential solutions

8 point correspondences

LSE solution

8 equations but usually in case of real (noisy) data

nn
Yay2' yo'

r
yﬂyﬂ

n Orders of magnitude difference between columns of
data matrix =» LSE yields poor results




Normalized 8 point algorithm

Transform image to ~[-1,1]x[-1,1]

(0,500) (700,500) (-L1)

(0,0) (700,0) (-1,-1)

Given n>=8 point correspondences
Normalization: and
Find
= Singular vector of smallest singular value from
Enforce rank 2 constraint using >
Denormalization:

Locating the Epipoles
Fe=00

lies on all epipolar lines of the left image

Input: Fundamental Matrix -
Find the SVD of F=UDV
The epipole is the column of corresponding to
the null singular value (as shown above)
The epipole s the column of corresponding to
the null singular value (similar treatment as for )

Output: Epipole and




