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Left Image                                                      Right Image

Binocular Stereo
• A way of getting 

depth (3D) 
information about 
a scene from two 
2D views (images) 
of the scene

• Used by humans
• Computational 

stereo vision
• Programming 

machines to do 
stereo vision

• Studied 
extensively in the 
past 25 years

• Difficult; still 
being 
researched
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Three geometric questions
1. Correspondence geometry: Given an image 

point x in the first view, how does this constrain the 
position of the corresponding point x’ in the 
second image?

2. Camera geometry (motion): Given a set of 
corresponding image points {xi ↔x’i}, i=1,…,n, 
what are the camera matrixes P and P’ for the two 
views?

3. Scene geometry (structure): Given 
corresponding image points xi ↔x’i and cameras 
P, P’, what is the position of (their pre-image) X in 
space?
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Mapping Points between Images
• What is the relationship between the images 

x, x’ of the scene point X in two views?
• Intuitively, it depends on:

• The rigid transformation (motion) between 
cameras (derivable from the camera matrices P, 
P’)

• The scene structure (i.e., the depth of X)
• Parallax: Closer points appear to move more
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Example: Two-View Geometry

courtesy of F. Dellaert

x1 x’1

x2
x’2

x3 x’3

Is there a transformation relating the points xi to x’i ?
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WHAT?!WHAT?! Why Why xx33?  Why ‘default’ value of 1??  Why ‘default’ value of 1?
•• Look at lines in Look at lines in RR2 2 ::

–– ‘line’ == all (x,y) points where‘line’ == all (x,y) points where
–– scale by ‘k’scale by ‘k’ no change:no change:

•• Using ‘Using ‘xx33’ for points ’ for points UNIFIESUNIFIES notation: notation: 
–– line is a 3line is a 3--vector named vector named ll
–– now point (x,y) is a 3now point (x,y) is a 3--vector too, named vector too, named xx

ax + by + c = 0 

kax + kby + kc = 0 

ax + by + c = 0 = 0x1 x2 x3 a
b
c

xxT.T.l l = = 00

ll11 ×× ll22 = x= x

xx11 ×× xx22 = l= l

2D Homogeneous Coordinates2D Homogeneous Coordinates

Important PropertiesImportant Properties 11(see book for details)(see book for details)

•• 3 coordinates, but only 3 coordinates, but only 2 degrees of freedom2 degrees of freedom
(only 2 ratios (only 2 ratios (x(x1 1 / x/ x33), (x), (x2 2 / x/ x33)) can change)can change)

•• DUALITY:DUALITY: points, lines are interchangeablepoints, lines are interchangeable

–– Line Intersections = point:Line Intersections = point:
(a 3D cross(a 3D cross--product)product)

–– Point ‘Intersections’ = line:Point ‘Intersections’ = line:

–– Projective theorem for lines Projective theorem for lines theorem for points!theorem for points!
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Epipolar geometry
• The 

fundamental 
constraint in 
stereo

• Baseline: 
Line joining 
camera 
centers C, 
C’

• C,C’,x,x’ 
and X are 
coplanarBaseline
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Epipolar lines
• Epipolar lines l, l’: 

• Intersection of epipolar
plane π with image 
planes

• The image in one view 
of the other camera’s 
projection ray.

• Epipoles e, e’:
• Where baseline 

intersects image planes
• The image in one view 

of the other camera 
center.

• Intersection of the 
epipolar lines

• Vanishing point of 
camera motion direction
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Epipolar pencil
• As position of X

varies, epipolar
planes “rotate” 
about the baseline
• This set of planes is 

called the epipolar
pencil

• Epipolar lines 
“radiate” from 
epipole—this is the 
pencil of epipolar
lines
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Epipolar constraint
• Camera center C and 

image point  x define a ray 
in 3D space that projects to 
the epipolar line l’ in the 
other view (since it’s on the 
epipolar plane)

• 3D point X is on this ray 
image of X in other view x’
must be on l’.

• In other words, the epipolar
geometry defines a 
mapping  x l’ of points in 
one image to lines in the 
other 
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Example: Epipolar Lines for Converging Cameras

• Intersection of epipolar lines = Epipole ! 
• Indicates location of other camera center

Left view Right view
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Example: Epipolar Lines for Translating Cameras
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Special case: aligned image planes

• epipolar lines are parallel 
• epipolar lines correspond to rows in the image
• epipoles in both images are at infinity along the x axis.
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Special Case: Translation along Optical Axis

• Epipoles coincide at focus of 
expansion

• Not the same (in general) as 
vanishing point of scene lines

e

e’
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The Fundamental Matrix (F)
• Mapping a point in one image to epipolar line 

in other image x l’ is expressed 
algebraically by the Fundamental Matrix F

• Write this as l’=Fx
• F is 

• 3 x 3 
• rank 2 (not invertible, in contrast to 

homographies)
• 7 DOF (homogeneity and rank constraint -2 DOF)
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Fundamental Matrix

Geometric derivation:
• F is a mapping from 2D (plane) to 1D (line) family

• F is 3X3 but rank 2

[ ] FxxHe'
x'e'l'

xHx'

π

π

==
×=

=

×
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xP+

( )λX

Fundamental Matrix

Algebraic derivation:
• Doesn’t work for C=C’ F=0

( )IPP =+

( )
{

[ ] +
×

+

+

=

×=
+=

PP'e'F

xPP'CP'l
λCxPλX

x'e'
321
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Fundamental Matrix

F = [e’]× P’ P+ But what’s this?  A NEW TRICK:
• Cross Product written as matrix multiply (Zisserman pg. 554)

a × b =      × =                   =                        = [a]× · b 

• So write: a × b = -b × a = [a]×·b = (aT·[b]×)T

aa11
aa22
aa33

bb11
bb22
bb33

aa22bb33 –– aa33bb22
aa33bb11 –– aa11bb33
aa11bb22 –– aa22bb11

0   0   --aa33 aa22
aa33 0   0   --aa11
--aa22 aa11 00

bb11
bb22
bb33

a ‘skew symmetric’ a ‘skew symmetric’ 
matrixmatrix
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Correspondence condition & F
• Since x’ is on l’, by the 

point-on-line definition we 
know that  x’Tl’=0

• Combined with l’=Fx, we 
can thus relate 
corresponding points in the 
camera pair (P,P’) to each 
other by

• the fundamental matrix 
satisfies the above condition 
for any pair of corresponding 
points x↔x’ in the two images 

• The fundamental matrix of 
(P’,P) is the transpose FT

0Fxx'T =( )0l'x'T =
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Fundamental matrix summary
• F is the unique 3X3 rank 2 matrix that satisfies 

x’TFx=0 for all x↔x’
1. Transpose: if F is fundamental matrix for (P,P’) , then 

FT is fundamental matrix for (P’,P)
2. Epipolar lines: l’=Fx & l=FTx’
3. Epipoles: on all epipolar lines, ∀x: e’TFx=0, 

e’TF=0, similarly Fe=0
4. F has 7 DOF , i.e. 3X3 - 1(homogeneous) -1(rank2)
5. F is a correlation, projective mapping from a point x to a 

line l’=Fx (not a proper correlation, i.e. not invertible)
6. F is unaffected by any proj. transforms done on BOTH

cameras
• (PH, P’H) has same F matrix as (P, P’) for any full-rank H
• F measures camera P vs. Camera P’ only, no matter where 

you put them
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The Essential Matrix E
• If the calibration matrix K is known

• x=K-1x=[R|t]X normalized coordinates
• K-1P=[R|t] normalized camera matrix

• Consider a pair of normalized cameras P=[I|0]
and P’=[R|t]. 
• The Fundamental matrix correspondig to them is 

called the Essential Matrix E=[t]xR=R[RTt]x

• It is defined by x’TEx=0
• Relationship between E and F: 

FKK'E T=
24
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Properties of Essential Matrix E
• Has 5 DOF (3 for  R and 2 for t up to scale)

• First two singular values are equal
• The third is 0
• E=Udiag(1,1,0)VT

• Allows computation of camera matrices P, P’
• up to a scale  and 
• a four-fold ambiguity
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(only one solution where points is in front of both cameras)

Four possible reconstructions from E
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Computing F
• Compute F from xi↔x’i

• separate known from unknown:

0Fxx'T =
0'''''' 333231232221131211 =++++++++ fyfxffyyfyxfyfxyfxxfx

[ ][ ] 0,,,,,,,,1,,,',',',',',' T

(linear) unknows

333231232221131211

data

=
444444 3444444 2144444 344444 21
fffffffffyxyyyxyxyxxx

0Af =

0f =
















1''''''

1'''''' 111111111111

nnnnnnnnnnnn yxyyyxyxyxxx

yxyyyxyxyxxx
MMMMMMMMM
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The singularity constraint
0Fe'T = 0Fe = 0detF= 2Frank =

T
333

T
222

T
111

T

3

2

1
VσUVσUVσUV

σ
σ

σ
UF ++=














=

SVD from linearly computed F matrix (rank 3)

T
222

T
111

T
2

1
VσUVσUV

0
σ

σ
UF' +=














=

F
F'-FminCompute closest rank-2 approximation
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Example
• The importance of the singularity constraint

• Guarantees that epipolar lines intersect in one single point

Without rank F=2 constraint Constraint enforced
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How many correspondences?
• When A has rank 8 

• possible to solve for f up to scale
• need 8 point correspondences 

• When A has rank > 8
• Use LSE: 

• Minimize ||Af|| subject to ||f||=1 (SVD)
• At least 8 point correspondences 

• However F has 7 DOF
• rank A = 7 is still OK
• possible to solve with 7 point correspondences
• AND by making use of the singularity constraint 

0Af =
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7 point correspondences
• The solution is a 2D space:

• one parameter family of solutions
• not automatically rank 2

0f
1''''''

1''''''

777777777777

111111111111
=















yxyyyxyxyxxx

yxyyyxyxyxxx
MMMMMMMMM

( ) T
9x9717x7 V0,0,σ,...,σdiagUA = 9x298 0]VA[V  =⇒

1...70,)xλFF(x 21
T =∀=+ iii

0Af =
2FFF 1 λ+=
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7 point correspondences

• Impose rank 2 constraint Cubic equation:

• Compute λ as eigenvalues of F2
-1F1

• only real solutions are potential solutions

F1 F2

F

σ3

F7pts

(obtain 1 or 3 solutions)

0λλλ)λFFdet( 01
2

2
3

321 =+++=+ aaaa

0)λIFFdet(Fdet)λFFdet( 1
-1
2221 =+=+
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8 point correspondences
• LSE solution 

• 8 equations but usually rank A = 9 in case of real (noisy) data

0

1´´´´´´

1´´´´´´
1´´´´´´
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
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
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












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f
f
f
f
f
f
f
f
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yxyyyyxxxyxx

yxyyyyxxxyxx
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nnnnnnnnnnnn
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~10000 ~10000 ~10000 ~10000~100 ~100 1~100 ~100

! Orders of magnitude difference between columns of 
data matrix LSE yields poor results
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Normalized 8 point algorithm
• Transform image to ~[-1,1]x[-1,1]

• Given n>=8 point correspondences
1. Normalization: Tx and T’x’
2. Find F’’

a) F’ = Singular vector of smallest singular value from SVD(A)
b) Enforce rank 2 constraint using SVD(F’) F’’

3. Denormalization: F=T’TF’’T

(0,0)

(700,500)

(700,0)

(0,500)

(1,-1)

(0,0)

(1,1)(-1,1)

(-1,-1)























−

−

1

1
500

2

10
700

2
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Locating the Epipoles

x x’

X

C C’e e’

Xl Xr

• Input: Fundamental Matrix F
• Find the SVD of F:
• The epipole e is the column of V corresponding to 

the null singular value (as shown above)
• The epipole e’ is the column of U corresponding to 

the null singular value (similar treatment as for e)
• Output:  Epipole e and e’

TUDVF =

e lies on all  epipolar lines of the left image

0Fxx T =' 0Fex'T = 0Fe =


