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Standard stereo setup
• Image planes 

of cameras are 
parallel.

• Focal points 
are at same 
height.

• Focal lengths 
same.

• epipolar
lines are 
horizontal scan 
lines.
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adapted from
D. Young

Disparity and depth
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Depth reconstruction
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Stereo disparity example

Left image Right image
courtesy of D. Young

Cameras have parallel optical axes, separated by horizontal 
translation (approximately)
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Stereo disparity example

Left and right edge images, superimposed

courtesy of D. Young

Disparity gets
smaller with 
increasing depth
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What If…?
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Two view (stereo) geometry

Geometric relations between two views are fully
described by recovered 3X3 matrix F
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• Brings two views 
into standard 
stereo setup
• reproject image 

planes onto 
common 
plane parallel to 
line between 
optical centers

• Notice, only focal 
point of camera really 
matters

(Seitz)

Planar rectification
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Image pair rectification
• simplify stereo matching by warping the images
• Apply projective transformation so that epipolar lines 

correspond to horizontal scanlines
• map epipole e to (1,0,0)
• try to minimize image distortion
• problem when epipole in (or close to) the image
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• The key aspect of epipolar geometry is its linear constraint 
on where a point in one image can be in the other

• By matching pixels (or features) along epipolar lines and 
measuring the disparity between them, we can construct a 
depth map (scene point depth is inversely proportional to 
disparity)

View 1 View 2 Computed depth map
courtesy of P. Debevec

Extracting Structure
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Stereo matching
• What should be matched?

• Pixels?
• Collections of pixels?
• Edges?
• Objects?

• Correlation-based algorithms
• Produce a DENSE set of correspondences

• Feature-based algorithms
• Produce a SPARSE set of correspondences
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Stereo matching: constraints
• Photometric constraint
• Epipolar constraint (through rectification) 
• Ordering constraint
• Uniqueness constraint
• Disparity limit
• Disparity continuity constraint
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Photometric constraint
• Photometric constraint

• Assumption: Same world point has same 
intensity in both images

• Issues: noise, specularity,…
• matching standalone pixels won’t work

• match windows centered around individual 
pixels.
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Image Normalization
• Even when the cameras are identical models, 

there can be differences in gain and sensitivity.
• The cameras do not see exactly the same 

surfaces, so their overall light levels can differ.
• For these reasons and more, it is a good idea to 

normalize the pixels in each window:
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Left Right

Lw
Rw

m

m

Lw

Lw

row 1

row 2

row 3

m

m

m

“Unwrap”
image to form 
vector, using 
raster scan order

Each window is 
a vector in an 
m2 dimensional 
vector space. 
Normalization 
makes them 
unit length.

Images as Vectors
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Image Metrics
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Correspondence via correlation

Rectified images

Left Right

scanline

SSD error

disparity
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W = 3 W = 20

Better results with adaptive window
• T. Kanade and M. Okutomi, A Stereo Matching 

Algorithm with an Adaptive Window: Theory and 
Experiment,, Proc. International Conference on 
Robotics and Automation, 1991. 

• D. Scharstein and R. Szeliski. Stereo matching with 
nonlinear diffusion. International Journal of 
Computer Vision, 28(2):155-174, July 1998 

(Seitz)

Window size
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Epipolar constraint

• Match pixels along corresponding epipolar lines (1D 
search)
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… …
Left scanline Right scanline

Match

Match

MatchOcclusion Disocclusion

Ordering constraint
• order of points in two images is usually the same

surfacesurface sliceslice
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Three cases:
• Sequential – cost of match
• Occluded – cost of no match
• Disoccluded – cost of no match

Left scanline

Right scanline

Occluded Pixels

Disoccluded Pixels

Ordering constraint
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Surface as a path

11 22 33 4,54,5 66 11 2,32,3 44 55 66

2211 33 4,54,5 66
11

2,32,3

44
55

66

surfacesurface sliceslice surfacesurface as a as a pathpath

occlusion right

occlusion left
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Uniqueness constraint
• In an image pair each pixel has at most one

corresponding pixel
• In general one corresponding pixel
• In case of occlusion/disocclusion there is none
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Disparity constraint
• Range of expected scene depths guides maximum 

possible disparity.
• Search only a segment of epipolar line

surfacesurface sliceslice
surfacesurface as a as a pathpath

bounding box

dis
pa

rity
ba

nd

use reconsructed features to determine bounding box

constant
disparity
surfaces
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Disparity continuity constraint
• Assume piecewise continuous surface
• piecewise continuous disparity

• In general disparity changes continuously
• discontinuities at occluding boundaries

• Unfortunately, this makes the problem 2D again.
• Solved with a host of graph algorithms, Markov 

Random Fields, Belief Propagation, ….
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Stereo matching
• Constraints

• epipolar
• ordering
• uniqueness
• disparity limit
• disparity gradient limit

• Trade-off
• Matching cost (data)
• Discontinuities (prior)

Optimal path
(dynamic programming )

Similarity measure
(SSD or NC)

(Cox et al. CVGIP’96; Koch’96; Falkenhagen´97; 
Van Meerbergen,Vergauwen,Pollefeys,VanGool IJCV‘02)
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Disparity map

image I(x,y) image I´(x´,y´)Disparity map D(x,y)

(x´,y´)=(x+D(x,y),y)
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Feature-based Methods
• Conceptually very similar to Correlation-based 

methods, but:
• They only search for correspondences of a 

sparse set of image features.
• Correspondences are given by the most similar 

feature pairs.
• Similarity measure must be adapted to the type of 

feature used.
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Features commonly used
• Corners

• Similarity measured in terms of 
• surrounding gray values (SSD, NC) 
• location

• Edges, Lines
• Similarity measured in terms of: 

• orientation
• contrast
• coordinates of edge or line’s midpoint
• length of line
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Example: Comparing lines
• ll and lr: line lengths 
• θl and θr: line orientations
• (xl,yl) and (xr,yr): midpoints
• cl and cr: average contrast along lines
• ωl ωθ ωm ωc : weights controlling influence

The more similar the lines, the larger S is!
32

ZoltanZoltan Kato: Computer VisionKato: Computer Vision

LEFT IMAGE

corner line

structure

Correspondence By Features
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Correspondence By Features
RIGHT IMAGE

corner line

structure

• Search in the right image… the disparity (dx, dy) is the 
displacement when the similarity measure is maximum
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Computing Correspondence
• Which method is better?

• Edges tend to fail in dense texture (outdoors)
• Correlation tends to fail in smooth featureless 

areas
• Both methods fail for smooth surfaces
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Three geometric questions
1. Correspondence geometry: Given an image 

point x in the first view, how does this constrain the 
position of the corresponding point x’ in the 
second image?

2. Camera geometry (motion): Given a set of 
corresponding image points {xi ↔x’i}, i=1,…,n, 
what are the camera matrixes P and P’ for the two 
views?

3. Scene geometry (structure): Given 
corresponding image points xi ↔x’i and cameras 
P, P’, what is the position of (their pre-image) X in 
space?
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Terminology
• Point correspondences: xi↔x‘i

• Original scene (pre-image): Xi

• Projective, affine, similarity reconstruction =
• reconstruction that is identical to original up to  

projective, affine, similarity transformation

• Literature: Metric and Euclidean reconstruction = 
similarity reconstruction
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• Recall that canonical camera matrices P, P’ can be 
computed from fundamental matrix F
• E.g. P=[I|0] and P’=[[e’]xF|e’], 

• Triangulation: Back-projection of rays from image 
points x, x’ to 3-D point of intersection X such that 
x=PX and x’=P’X

from Hartley & Zisserman

Computing Structure
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Reconstruction ambiguity: similarity
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Reconstruction ambiguity: projective
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The projective reconstruction theorem
If a set of point correspondences in two views determine the
fundamental matrix uniquely, then the scene and cameras
may be reconstructed from these correspondences alone, 
and any two such reconstructions from these
correspondences are projectively equivalent
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⇒ along same ray of P2, idem for P‘2
two possibilities: X2i=HX1i, or points along baseline

key result: allows reconstruction from pair of uncalibrated images
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• Errors in 
• points x, x’ & F such that x’TFx=0 or 

• X such that x=PX and x’=P’X
• This means that rays are skew — they don’t 

intersect

from Hartley & Zisserman

Triangulation: Issues
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PXx = XP'x'=

Point reconstruction
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algebraic error yes, 
constraint no 
(except for affine)

Linear triangulation
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• Reconstruct matches in 
projective frame by
minimizing the reprojection
error

• Non-iterative optimal 
solution (see
Hartley&Sturm,CVIU´97)

( ) ( )222
2

11 XP,xXP,x dd +

Geometric error
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• Pick that exactly satisfies camera 
geometry so that                    and         
, and which minimizes          

• Can use as error function for nonlinear 
minimization on two views
• Polynomial solution exists

from Hartley & Zisserman

Optimal Projective-Invariant Triangulation: 
Reprojection Error

46

ZoltanZoltan Kato: Computer VisionKato: Computer Vision

Covariance of Structure Recovery
• Bigger angle between rays Less uncertainty

• Can’t triangulate points on baseline (epipoles) 
because rays intersect along entire length

from Hartley & Zisserman
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Line reconstruction
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doesn‘t work for epipolar plane
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from Hartley & Zisserman

Reconstructions related by 
a 4 x 4 projection H

Two views from which F and 
hence P, P’ are computed

Projective Reconstruction Ambiguity
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Less 
ambiguity

Properties of transformations (2-D)
from Hartley & Zisserman

Metric/

Hierarchy of transformations
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Stratified Reconstruction
• Idea: Try to upgrade reconstruction to differ from 

the truth by a less ambiguous transformation 
• Use additional constraints imposed by: 

• Scene: 
• known 3-D points (no 4 coplanar) Euclidean reconstruction
• Identify parallel, orthogonal lines in scene

• Camera calibration: Known K, K’ Metric/similarity 
reconstruction

• Camera motion: Known R, t
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Projective Affine Upgrade
• Identify plane at infinity π∞ (in the “true” 

coordinate frame, π∞ = (0, 0, 0, 1)T) 
• E.g., intersection points of three sets of parallel 

lines define a plane
• E.g., if one camera is known to be affine
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Projective Affine Upgrade
• Then apply 4 x 4 transformation:

• This is the 3-D analog of affine image rectification 
via the line at infinity l∞

• Things that can be computed/constructed with only 
affine ambiguity:
• Midpoint of two points
• Centroid of group of points
• Lines parallel to other lines, planes






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
=

∞
Tπ
0|I
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{ }( )iX,P'P,
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( )TT 1,0,0,0πH- =∞
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Translational motion
• points at infinity are fixed for a pure translation

• reconstruction of xi↔ x’i is on π∞

×× == ]e'[]e[F
0]|[IP =

]e'|[IP'=
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Scene constraints
• Parallel lines

• parallel lines intersect at infinity
• reconstruction of corresponding vanishing point yields

point on plane  at infinity
• 3 sets of parallel lines allow to uniquely determine π∞

• Remarks: 
• in presence of noise determining the intersection of 

parallel lines is a delicate problem
• obtaining vanishing point in one image can be  sufficient
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Affine Reconstruction Ambiguity

Affine reconstructions
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Affine Metric Upgrade
• Identify absolute conic Ω∞ on π∞ via image 

of absolute conic (IAC) ω
• From scene

• E.g., orthogonal lines
• From known camera calibration

• Completely constrained: ω = K-T K-1

• Partially constrained:
• Zero skew
• Square pixels

• Same camera took all images (e.g. moving 
camera)
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The infinity homography

∞

∞

( )T0,X~X =∞

X~M'x' =∞
X~Mx =∞
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m]Ma|[MA10
aAm]|[MP +=



=

-1-1MAAM'H =∞

Unchanged under
affine transformations

0]|[IP = e]|[HP ∞=
affine reconstruction:
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Affine to metric
• Identify absolute conic Ω∞

• transform so that
• then projective 

transformation relating 
original and reconstruction is 
a similarity transformation

• in practice, find ω (image of 
absolute conic) 
• ω back-projects to cone that 

intersects π∞ in Ω∞

ω*

Ω*

projection

constraints

∞∞ =++Ω on π ,0: 222 ZYX
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Affine to metric
• Given 

• possible transformation from affine to metric is 

m]|[MP = ω





= 10

0AH
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( ) 1TT ωMMAA −
=

(cholesky factorisation)
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Same camera for all images
• Same intrinsics same image of the 

absolute conic
• For example: moving camera

• Given sufficient images there is in general 
only one conic that projects to the same 
image in all images, i.e. the absolute conic
• This approach is called self-calibration

• Transfer of IAC:
-1-TωHHω' ∞∞=
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Direct metric reconstruction using ω

• Approach 1
• calibrated reconstruction

• Approach 2
• compute projective reconstruction
• back-project ω from both images

• intersection defines Ω∞ and its support plane π∞

KKKω -1-T ⇒=
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Direct metric reconstruction using ground truth

• Use control points XEi with know 
coordinates to go directly from 
projective to metric
• Need 5 points (no 4 coplanar)
• 2 linear eq. in H-1 per view,  3 for

two views)

ii HXXE = Eii XPHx -1=
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Metric Reconstruction Example

Only overall scale ambiguity remains—i.e., what are units of length?

from Hartley & Zisserman

Original views Synthesized views of reconstruction
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Metric Reconstruction
• Objective: Given two uncalibrated images compute (PM,P‘M,{XMi}) (i.e. 

within similarity of original scene and cameras)

• Algorithm
1. Compute projective reconstruction (P,P‘,{Xi})

1. Compute F from xi↔x‘I
2. Compute P, P‘ from F
3. Triangulate Xi from xi↔x‘I

2. Rectify reconstruction from projective to metric
1. Direct method: compute H from control points  

2. Stratified method:
1. Affine reconstruction: compute π∞

2. Metric reconstruction: compute IAC ω

ii HXXE = -1
M PHP = -1

M HPP ′=′ ii HXXM =





=

∞π
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metricπ∞
Ω∞

F,H∞

ω,ω’

Points correspondences 
and internal camera 
calibration

affineπ∞F,H∞

point correspondences 
including vanishing points

projectiveFpoint correspondences

reconstruction 
ambiguity

3-space 
objects

View relations and 
projective objects

Image information 
provided

Reconstruction summary


