

6. 3D Reconstruction

Computer Vision

Zoltan Kato

http://www.inf.u-szeged.hu/~kato/

oltan Kato: Computer Vision

Standard stereo setup

- Image planes of cameras are *P* parallel.
- Focal points are at same height.
- Focal lengths same.
- → epipolar lines are horizontal scan lines.

Derive expression for Z as a function of x_l, x_r, f, B

Zoltan Kato: Computer Vision

Disparity and depth

Zoltan Kato: Computer Vision

Depth reconstruction

 $Z = f \frac{D}{x_l - x_r}$ <u>Disparity</u>: d=x₁-x_r

$$Z = f \frac{B}{d}$$

 $\frac{B+x_r-x_l}{Z-f} = \frac{B}{Z}$

Then given Z, we can compute X and Y. B is the stereo baseline

d measures the difference in retinal position between corresponding points

Zoltan Kato: Computer Vision

Stereo disparity example

Left image

Right image courtesy of D. Young

Cameras have parallel optical axes, separated by horizontal translation (approximately)

Stereo disparity example

Disparity gets smaller with increasing depth

Left and right edge images, superimposed

Zoltan Kato: Computer Visio

What If...?

Zoltan Kato: Computer Visior

Zoltan Kato: Computer Visior

Two view (stereo) geometry

Geometric relations between two views are fully described by recovered 3X3 matrix

Planar rectification

- Brings two views into standard stereo setup
 - reproject image planes onto common plane parallel to line between optical centers
- Notice, only focal point of camera really matters

oltan Kato: Computer Visio

Image pair rectification

- simplify stereo matching by warping the images
- Apply projective transformation so that epipolar lines correspond to horizontal scanlines
 - map epipole e to (1,0,0)
 - try to minimize image distortion
 - problem when epipole in (or close to) the image

Extracting Structure

- The key aspect of epipolar geometry is its linear constraint on where a point in one image can be in the other
- By matching pixels (or features) along epipolar lines and measuring the **disparity** between them, we can construct a depth map (scene point depth is inversely proportional to disparity)

View 2

(Seitz)

View 1

Computed depth map

Stereo matching

- What should be matched?
 - Pixels?
 - Collections of pixels?
 - Edges?
 - Objects?
- Correlation-based algorithms
 - Produce a **DENSE** set of correspondences
- Feature-based algorithms
 - Produce a SPARSE set of correspondences

Stereo matching: constraints

- Photometric constraint
- Epipolar constraint (through rectification)
- Ordering constraint
- Uniqueness constraint
- Disparity limit
- Disparity continuity constraint

oltan Kato: Computer Vision

Photometric constraint

- Photometric constraint
 - <u>Assumption</u>: Same world point has same intensity in both images
 - Issues: noise, specularity,...
 - → matching standalone pixels won't work
- → match windows centered around individual pixels.

	=
the second states and a second state of the	
the state of a section of the second of allowed sections of the	-
and the second	_
and the second se	
Constructions and the star size and there	
contains any search on these states and the state and the	-
To the second second second second second	
the second of the providence of the second	
 All the server compared they will have one terms 	
the party products on the second state of the party of the second state	
	-
	-
the second s	
and an inclusion of the second s	
And a state of the	

g

oltan Kato: Computer Visior

Image Normalization

- Even when the cameras are identical models, there can be differences in gain and sensitivity.
- The cameras do not see exactly the same surfaces, so their overall light levels can differ.
- For these reasons and more, it is a good idea to normalize the pixels in each window:

Images as Vectors

Zoltan Kato: Computer Vision

Image Metrics

(Normalized) Sum of Squared Differences (SSD)

 $W_{R}(d) = \sum_{(u,v) \in W_{m}(x,y)} [\hat{I}_{L}(u,v) - \hat{I}_{R}(u-d,v)]^{2}$ $= ||W_{L} - W_{R}(d)||^{2}$ <u>Normalized Correlation (NC)</u>

$$C_{\rm NC}(d) = \sum_{(u,v)\in W_m(x,y)} \hat{I}_R(u-d,v)$$
$$= w_I \cdot w_R(d) = \cos\theta$$

Zoltan Kato: Computer Vision

Correspondence via correlation

Window size

W = 3

W = 20

Better results with adaptive window

- T. Kanade and M. Okutomi, <u>A Stereo Matching</u> <u>Algorithm with an Adaptive Window: Theory and</u> <u>Experiment</u>, Proc. International Conference on Robotics and Automation, 1991.
- D. Scharstein and R. Szeliski. <u>Stereo matching w</u> nonlinear diffusion. International Journal of Computer Vision, 28(2):155-174, July 1998

Zoltan Kato: Computer Vision

Epipolar constraint

Match pixels along corresponding epipolar lines (1D search)

(Seitz)

Ordering constraint

 order of points in two images is usually the same surface slice

Zoltan Kato: Computer Vision

Ordering constraint

Disoccluded – cost of no match

Zoltan Kato: Computer Visio

Surface as a path

Zoltan Kato: Computer Visior

Uniqueness constraint

- In an image pair each pixel has at most one corresponding pixel
 - In general one corresponding pixel
 - In case of occlusion/disocclusion there is none

Disparity constraint

- Range of expected scene depths guides maximum possible disparity.
 - Search only a segment of epipolar line

surface as a path

use reconsructed features to determine bounding box

oltan Kato: Computer Vision

Disparity continuity constraint

- Assume piecewise continuous surface
 - → piecewise continuous disparity
 - In general disparity changes continuously
 - discontinuities at occluding boundaries
 - Unfortunately, this makes the problem 2D again.
 - Solved with a host of graph algorithms, Markov Random Fields, Belief Propagation,

oltan Kato: Computer Vision

Stereo matching

Constraints

- epipolar
- ordering
- uniqueness
- disparity limit
- disparity gradient limit
- Trade-off
 - Matching cost (data)
 - Discontinuities (prior)

Zoltan Kato: Computer Vision

Disparity map

image I(x,y)

Disparity map D(x,y)

image l´(x´,y´)

(x',y')=(x+D(x,y),y)

(Cox et al. CVGIP'96; Koch'96; Falkenhagen'97; Van Meerbergen,Vergauwen,Pollefeys,VanGool IJCV'02)

Feature-based Methods

- Conceptually very similar to Correlation-based methods, but:
 - They only search for correspondences of a sparse set of image features.
 - Correspondences are given by the most similar feature pairs.
 - Similarity measure must be adapted to the type of feature used.

itan Kato: Computer Vision

Features commonly used

Corners

- Similarity measured in terms of
 - surrounding gray values (SSD, NC)
 - location
- Edges, Lines
 - Similarity measured in terms of:
 - orientation
 - contrast
 - coordinates of edge or line's midpoint
 - length of line

Zoltan Kato: Computer Vision

 $S = \cdot$

Example: Comparing lines

- I_I and I_r: line lengths
- θ_i and θ_i: line orientations
- (x_I,y_I) and (x_r,y_r): midpoints
- c₁ and c_r: average contrast along lines
- $\omega_{l} \omega_{\theta} \omega_{m} \omega_{c}$: weights controlling influence

 $\overline{\omega_{l}(l_{l}-l_{r})^{2}+\omega_{\theta}(\theta_{l}-\theta_{r})^{2}+\omega_{m}[(x_{l}-x_{r})^{2}+(y_{l}-y_{r})^{2}]+\omega_{c}(c_{l}-c_{r})^{2}}$

The more similar the lines, the larger <mark>s</mark> is!

Zoltan Kato: Computer Vision

Correspondence By Features

oltan Kato: Computer Visio

Correspondence By Features

 Search in the right image... the disparity (dx, dy) is the displacement when the similarity measure is maximum

Itan Kato: Computer Vision

Computing Correspondence

- Which method is better?
 - Edges tend to fail in dense texture (outdoors)
 - Correlation tends to fail in smooth featureless
 areas
- Both methods fail for smooth surfaces

Three geometric questions

Scene geometry (structure): Given corresponding image points x_i → x'_i and cameras P, P', what is the position of (their pre-image) X in space?

oltan Kato: Computer Vision

Terminology

- Point correspondences: x_i↔x[•]_i
- Original scene (pre-image): X_i
- Projective, affine, similarity reconstruction =
 - reconstruction that is identical to original up to projective, affine, similarity transformation
 - Literature: Metric and Euclidean reconstruction = similarity reconstruction

Zoltan Kato: Computer Visior

Computing Structure

- Recall that canonical camera matrices P, P' can be computed from fundamental matrix F
 - E.g. **P=[I|0]** and **P'=[[e']_xF|e']**,
- Triangulation: Back-projection of rays from image points x, x' to 3-D point of intersection X such that x=PX and x'=P'X

oltan Kato: Computer Vision

Reconstruction ambiguity: similarity

Zoltan Kato: Computer Visio

Reconstruction ambiguity: projective

Zoltan Kato: Computer Vision

The projective reconstruction theorem

If a <u>set of point correspondences</u> in two views <u>determine the</u> <u>fundamental matrix uniquely</u>, then the <u>scene and cameras</u> may be reconstructed from these correspondences alone, and any two such reconstructions from these correspondences are <u>projectively equivalent</u>

 $\begin{aligned} \mathbf{x}_{i} &\leftrightarrow \mathbf{x}'_{i} \quad (\mathbf{P}_{1}, \mathbf{P}_{1}, \{\mathbf{X}_{1i}\}) \quad (\mathbf{P}_{2}, \mathbf{P}_{2}, \{\mathbf{X}_{2i}\}) \\ \mathbf{P}_{2} &= \mathbf{P}_{1}\mathbf{H}^{-1} \quad \mathbf{P}'_{2} &= \mathbf{P}'_{1}\mathbf{H}^{-1} \quad \mathbf{X}_{2} &= \mathbf{H}\mathbf{X}_{1} \quad (\text{except: } \mathbf{F}\mathbf{x}_{i} = \mathbf{x}'_{i}\mathbf{F} = \mathbf{0}) \\ \mathbf{P}_{2}(\mathbf{H}\mathbf{X}_{1i}) &= \mathbf{P}_{1}\mathbf{H}^{-1}\mathbf{H}\mathbf{X}_{1i} = \mathbf{P}_{1}\mathbf{X}_{1i} = \mathbf{x}_{i} = \mathbf{P}_{2}\mathbf{X}_{2i} \end{aligned}$

 \Rightarrow along same ray of \mathbf{P}_2 , idem for \mathbf{P}_2

two possibilities: $X_{2i} = HX_{4i}$, or points along baseline

key result: allows reconstruction from pair of uncalibrated images

Triangulation: Issues

- Errors in
 - points x, x' & F such that x'^TFx=0 or
 - X such that x=PX and x'=P'X
- This means that rays are *skew* they don't intersect

oltan Kato: Computer Visior

Linear triangulation

inhomogeneous

(X,Y,Z,1)

$(AH^{-1})(HX) = e$

algebraic error yes, constraint no (except for affine)

oltan Kato: Computer Vision

Point reconstruction

oltan Kato: Computer Vision

Geometric error

 Reconstruct matches in projective frame by minimizing the reprojection error

$$d(x_1, P_1X)^2 + d(x_2, P_2X)^2$$

 Non-iterative optimal solution (see Hartley&Sturm,CVIU'97)

Zoltan Kato: Computer Visio

Optimal Projective-Invariant Triangulation: Reprojection Error

• Pick $\mathbf{\hat{X}}$ that exactly satisfies camera geometry so that $\mathbf{\hat{x}} = \mathbf{P}\mathbf{\hat{X}}$ and $\mathbf{\hat{x}'} = \mathbf{P'}\mathbf{\hat{X}}$, and which minimizes

 $d(\mathbf{x}, \hat{\mathbf{x}})^2 + d(\mathbf{x}', \hat{\mathbf{x}}')^2$

- Can use as error function for nonlinear minimization on two views
 - Polynomial solution exists

oltan Kato: Computer Vision

Covariance of Structure Recovery

 Can't triangulate points on baseline (epipoles) because rays intersect along entire length

oltan Kato: Computer Visior

Line reconstruction

Zoltan Kato: Computer Vision

Projective Reconstruction Ambiguity

Two views from which **F** and hence **P**, **P**' are computed

Reconstructions related by a 4 x 4 projection \mathbf{H}

Hierarchy of transformations

Group	Matrix	Distortion	Invariant properties	
Projective 8 dof	$\left[\begin{array}{cccc} h_{11} & h_{12} & h_{13} \\ h_{21} & h_{22} & h_{23} \\ h_{31} & h_{32} & h_{33} \end{array}\right]$	4	Concurrency, collinearity, order of contact: intersection (1 pt contact); tangency (2 pt contact); inflections (3 pt contact with line); tangent dis- continuities and cusps. cross ratio (ratio of ratio of lengths).	Less ambigi
Affine 6 dof	$\left[\begin{array}{rrrr} a_{11} & a_{12} & t_x \\ a_{21} & a_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Parallelism, ratio of areas, ratio of lengths on collinear or parallel lines (e.g. midpoints), linear combinations of vectors (e.g. centroids). The line at infinity, l_{∞} .	
Metric/ Similarity 4 dof	$\left[\begin{array}{ccc} sr_{11} & sr_{12} & t_x \\ sr_{21} & sr_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$		Ratio of lengths, angle. The circular points, I , J (see section 1.7.3).	
Euclidean 3 dof	$\left[\begin{array}{ccc} r_{11} & r_{12} & t_x \\ r_{21} & r_{22} & t_y \\ 0 & 0 & 1 \end{array}\right]$	谷	Length, area	

oltan Kato: Computer Visior

Stratified Reconstruction

- Idea: Try to upgrade reconstruction to differ from the truth by a less ambiguous transformation
- Use additional constraints imposed by:
 - Scene:
 - known 3-D points (no 4 coplanar) → Euclidean reconstruction
 - Identify parallel, orthogonal lines in scene
 - Camera calibration: Known K, K → Metric/similarity reconstruction
 - Camera motion: Known R, t

Zoltan Kato: Computer Vision

Projective -> Affine Upgrade

- Identify plane at infinity π_∞ (in the "true" coordinate frame, π_∞ = (0, 0, 0, 1)^T)
 - E.g., intersection points of three sets of parallel lines define a plane
 - E.g., if one camera is known to be affine

Zoltan Kato: Computer Vision

Projective -> Affine Upgrade

• Then apply 4 x 4 transformation:

$$(\mathbf{P}, \mathbf{P}', \{\mathbf{X}_i\})$$
$$\boldsymbol{\pi}_{\infty} = (A, B, C, D)^{\mathsf{T}} \mapsto (0, 0, 0, 1)^{\mathsf{T}}$$
$$\mathbf{H}^{\mathsf{-T}} \boldsymbol{\pi}_{\infty} = (0, 0, 0, 1)^{\mathsf{T}}$$

 $\mathbf{H} = \begin{bmatrix} \mathbf{I} \mid \mathbf{0} \\ \boldsymbol{\pi}_{\infty}^{\mathrm{T}} \end{bmatrix}$

- This is the 3-D analog of affine image rectification via the line at infinity
- Things that can be computed/constructed with only affine ambiguity:
 - Midpoint of two points
 - · Centroid of group of points
 - Lines parallel to other lines, planes

Translational motion

 $F = [e]_{\times} = [e']_{\times}$

P = [I | 0]

P' = [I | e']

- points at infinity are fixed for a pure translation
 - reconstruction of $\mathbf{x}_{i} \leftrightarrow \mathbf{x}'_{i}$ is on π_{∞}

an Kato: Computer Vision

Scene constraints

Parallel lines

- parallel lines intersect at infinity
- reconstruction of corresponding vanishing point yields point on plane at infinity
- 3 sets of parallel lines allow to uniquely determine π_{∞}

Remarks:

- in presence of noise determining the intersection of parallel lines is a delicate problem
- obtaining vanishing point in one image can be sufficient

oltan Kato: Computer Visio

Affine Reconstruction Ambiguity

Affine reconstructions

oltan Kato: Computer Vision

Affine -> Metric Upgrade

- Identify **absolute conic** Ω_{∞} on π_{∞} via image of absolute conic (IAC) ω
 - From scene
 - E.g., orthogonal lines
 - From known camera calibration
 - Completely constrained: $\omega = K^{-T} K^{-1}$
 - Partially constrained:
 - Zero skew
 - Square pixels
 - Same camera took all images (e.g. moving camera)

Direct metric reconstruction using

Approach 1

calibrated reconstruction

 $\omega = K^{-T}K^{-1} \Longrightarrow K$

Approach 2

- compute projective reconstruction
- back-project o from both images
- intersection defines $\Omega_{\rm m}$ and its support plane

Zoltan Kato: Computer Vision

Direct metric reconstruction using ground truth

- Use control points X_{Fi} with know coordinates to go directly from projective to metric
 - Need 5 points (no 4 coplanar)
 - 2 linear eq. in H⁻¹ per view, 3 for two views)

$\mathbf{X}_{\mathrm{E}i} = \mathbf{H}\mathbf{X}_i \mathbf{X}_i = \mathbf{P}\mathbf{H}^{-1}\mathbf{X}_{\mathrm{E}i}$

H = |I|0

Metric Reconstruction Example

Metric Reconstruction

Objective: Given two uncalibrated images compute (PM,P'M,{XM,}) (i.e. within similarity of original scene and cameras)

Algorithm

- Compute projective reconstruction (P,P',{X,})
 - 1. Compute **F** from **x**_i↔**x**'₁
 - 2. Compute P. P' from F
 - 3. Triangulate X_i from $x_i \leftrightarrow x'_1$
- 2. Rectify reconstruction from projective to metric
 - 1. Direct method: compute **H** from control points

 $\mathbf{X}_{\mathrm{E}i} = \mathbf{H}\mathbf{X}_i \quad \mathbf{P}_{\mathrm{M}} = \mathbf{P}\mathbf{H}^{-1} \quad \mathbf{P}_{\mathrm{M}}' = \mathbf{P}'\mathbf{H}^{-1} \quad \mathbf{X}_{\mathrm{M}i} = \mathbf{H}\mathbf{X}_i$

- 2. Stratified method:
 - 1. Affine reconstruction: compute

Reconstruction summary

provided	View relations and projective objects	3-space objects	reconstruction ambiguity
point correspondences	F		projective
point correspondences including vanishing points	F,H _∞	π_{∞}	affine
Points correspondences and internal camera calibration	F,H _∞ ത,ത'	π_{∞} Ω_{∞}	metric