oltan Kato: Computer Vision

Visual motion (=video)

7. Motion

Computer Vision

Zoltan Kato http://www.inf.u-szeged.hu/~}

<image>

Zoltan Kato: Computer Vision

Terminology

- <u>Scene flow</u>: 3-D velocities of scene points: Derivative of rigid transformation between views with respect to time
- <u>Motion field</u>: 2-D projection of scene flow
- <u>Optical flow</u>: Approximation of motion field derived from apparent motion of image points

Motion Analysis Problems

- <u>Correspondence</u>: Which elements of a frame correspond to which elements in the next frame?
- <u>Reconstruction</u> :Given a number of correspondences, and possibly the knowledge of the camera's intrinsic parameters, how to recovery the 3D motion and structure of the observed world
- Other problems:
 - <u>Motion Segmentation</u>: what are the regions the the image plane corresponding to different moving objects?
 - <u>Motion Understanding</u>: lip reading, gesture, expression, event...
- Main Difference between Motion and Stereo
 - Correspondence: the disparities between consecutive frames are much smaller due to dense temporal sampling
 - Reconstruction: the visual motion could be caused by multiple motions (instead of a single 3D rigid transformation)

The Motion Field of Rigid Objects

Motion:

- 3D Motion (R,T):
 - camera motion (static scene)
 - or scene (object) motion
 - Only one rigid, relative motion between the camera and the scene (object)
- Image motion field:
 - 2D vector field of velocities of the image points induced by the relative motion.
- Data: Image sequence
 - Many frames
 - captured at time t=0, 1, 2, ...
 - Basics: only consider two consecutive frames
 - We consider a reference frame and its consecutive frame
 - Image motion field
 - can be viewed disparity map of the two frames captured at two consecutive camera locations (assuming we have a moving camera)

Zoltan Kato: Computer Vision

Motion Field (MF)

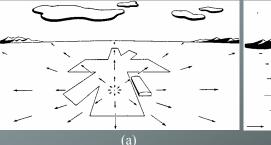
- MF assigns a velocity vector to each pixel in the image.
- These velocities are INDUCED by the RELATIVE MOTION between the camera and the 3D scene
- MF can be thought as the <u>projection</u> of the 3D velocities on the image plane.

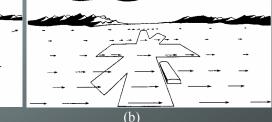
Zoltan Kato: Computer Vision

The Information from Image Motion

- Structure from Motion
 - Apparent motion is a strong visual clue for 3D reconstruction
 3D motion between observer and scene + structure of the scene
 - Wallach O'Connell (1953): Kinetic depth effect

http://www.bi

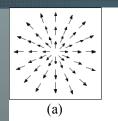

- Motion parallax: two static points close by in the image with different image motion; the larger translational motion corresponds to the point closer by (smaller depth)
- Recognition by motion only
 - Biological visual systems use visual motion to infer properties of 3D world with little a priori knowledge of it.
 - Johansson (1975): Light bulbs on joints


biols.susx.ac.uk/home/George_Mather/Motion/index.html

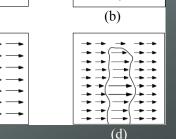
- Visual Motion = Video !
 - Surveillance (Human Tracking and Traffic Monitoring)
 - Video Coding and Compression: MPEG 1, 2, 4, 7...
 - HCI using Human Gesture (video camera)

• ...

Examples of Motion Fields I



- (a) Motion field of a pilot looking straight ahead while approaching a fixed point on a landing strip.
- (b) Pilot is looking to the right in level flight.



Examples of Motion Fields II

- Translation perpendicular to a (a) surface.
- (b) Rotation about axis perpendicular to image plane.
- (C) Translation parallel to a surface at a constant distance.
- (d) Translation parallel to an obstacle in front of a more distant background.

(c)

 $\mathbf{V} = -\mathbf{T} - \boldsymbol{\omega} \times \mathbf{P}$

 $-\omega_{\tau}$

 $\omega_{\rm x}$

 ω_{v}

0

 $-\omega_{r}$ |**P**+**T**

 ω_v

0

 $-\omega_x |\mathbf{P}|$

0

 ω_z

 $-\omega_v$

 $-\omega_z$

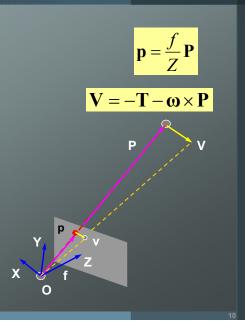
0

 ω_r

 $\mathbf{P} - \mathbf{P}' = \mathbf{V} = -\mathbf{T} - \mathbf{V}$

P′ =

 ω_{-}


 $-\omega_{v}$

Zoltan Kato: Computer Vision

The Motion Field of Rigid Objects

Notations

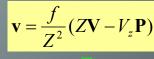
- $P = (X, Y, Z)^{T}$: 3-D point in the camera reference frame
- $p = (x,y,f)^T$: the projection of the scene point in the pinhole camera
- Relative motion between P and the camera
 - $T = (T_x, T_y, T_z)^T$: translation component of the motion
 - $\Box \omega = (\omega_x, \omega_y, \omega_z)^T$: the angular velocity
- How to connect this with stereo geometry (with R, T)?
- Image velocity v= ?

The Motion Field of Rigid Objects

Notations

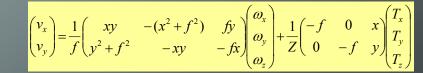
- $P = (X, Y, Z)^T$: 3-D point in the camera reference frame
- $p = (x,y,f)^T$: the projection of the scene point in the pinhole camera
- Relative motion between P and the camera
 - $T = (T_x, T_y, T_z)^T$: translation component of the motion
 - $\Box \omega = (\omega_x, \omega_y, \omega_z)^T$: the angular velocitv
- How to connect this with stereo geometry (with R,

 $\cos\beta\cos\gamma$ $-\cos\beta\sin\gamma$ $\sin\beta$ R = $\sin \alpha \sin \beta \cos \gamma + \cos \alpha \sin \gamma - \sin \alpha \sin \beta \sin \gamma + \cos \alpha \cos \gamma - \sin \alpha \cos \beta$ $-\cos\alpha\sin\beta\cos\gamma + \sin\alpha\sin\gamma = \cos\alpha\sin\beta\sin\gamma + \sin\alpha\cos\gamma$ $\cos\alpha\cos\gamma$


oltan Kato: Computer Visior

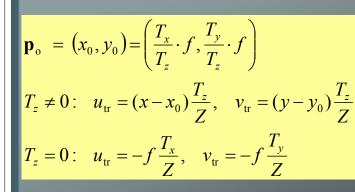
Basic Equations of Motion Field

Take the time derivative of both sides of the projection equation


$$\mathbf{v} = \frac{f}{Z^2} (Z \mathbf{V} - V_z \mathbf{P})$$

- The motion field is the sum of two components
 - Translational part
 - Rotational part
- Assume known intrinsic parameters

 $\mathbf{V} = -\mathbf{T} - \boldsymbol{\omega} \times \mathbf{P}$



Rotation part: no depth information

Translation part: depth Z

Zoltan Kato: Computer Vision

Translational flow field (ω =0)

Where p₀ is the

- focus of expansion (FOE) if T_
- focus of concentration (FOC) if
- When T₂=0 → All motion field vectors are parallel to each other and inversely proportional to depth !

oltan Kato: Computer Vision

Translational flow field (ω =0)

• Pure Translation (ω =0)

- Radial Motion Field (T_z≠0)
 - Vanishing point p₀ =(x₀, y₀)^T :
 motion direction
 - FOE (focus of expansion)
 - Vectors away from p0 if T_z<0
 COC (feasure of contraction)
 - FOC (focus of contraction)
 Vectors towards p0 if T_z>0
 - Depth estimation
 - depth inversely proportional to magnitude of motion vector v, and also proportional to distance from p to P_0 $Z = \frac{T_z}{|\mathbf{v}|} \sqrt{(x-x_0)^2 + (y-y_0)^2}$
- Parallel Motion Field (T,=0)
 - Depth estimation:
 - depth inversely proportional to magnitude of motion vector v

ltan Kato: Computer Visio

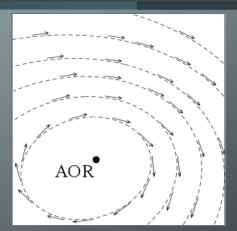
Pure Translation: Properties of the MF

• **p**₀ (FOE) is

- the vanishing point of the direction of translation.
- the intersection of the ray parallel to the translation vector and the image plane.

• T_z=0 →

- MF is **PARALLEL**.
- length of the MF vectors is inversely proportional to depth Z.

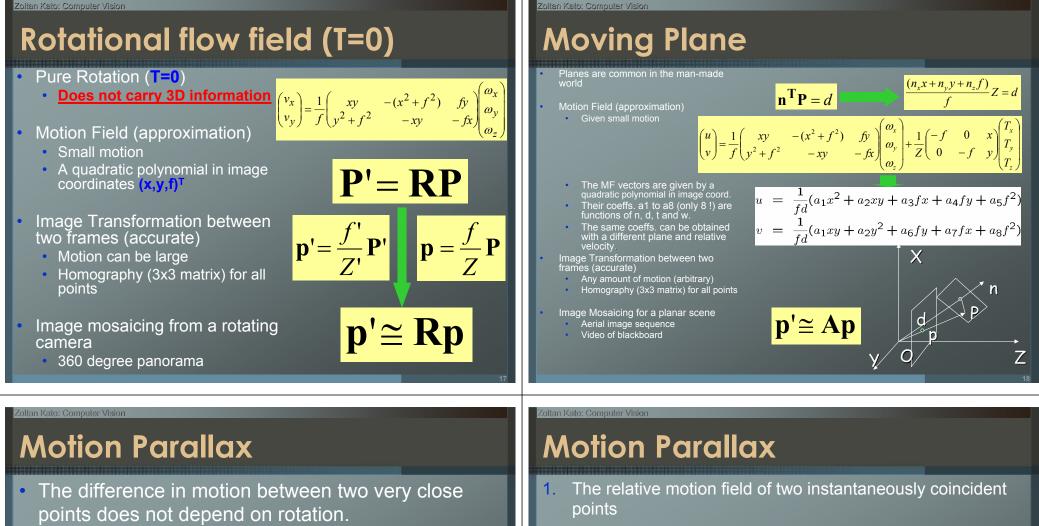

• T_z≠0 →

- MF is <u>RADIAL</u> with all vectors pointing towards (or away from) a single point p₀.
- length of the MF vectors is inversely proportional to depth Z.
- length is also directly proportional to the distance between p and p₀.

Zoltan Kato: Computer Vision

Rotational flow field (T=0)

AOR =
$$\left(\frac{\omega_x}{\omega_z}f, \frac{\omega_y}{\omega_z}f\right)$$


 $\begin{pmatrix} v_x \\ v_y \end{pmatrix} = \frac{1}{Z} \begin{pmatrix} -f & 0 & x \\ 0 & -f & y \end{pmatrix} \begin{vmatrix} T_x \\ T_y \\ T \end{vmatrix}$

 $\begin{pmatrix} v_x \\ v_y \end{pmatrix} = \frac{T_z}{Z} \begin{pmatrix} x - x_0 \\ y - y_0 \end{pmatrix}$

T_=0

 $\binom{x_0}{y_0} = \frac{f}{T_z} \binom{T_x}{T_y}$

- AOR is the point where the rotation axis pierces the image plane.
- rotational flow field is quadratic in image coordinates.

 Can be used at depth discontinuities to obtain the direction of translation.

FOE

- Does not depend on the rotational component of motion
- Points towards (away from) the vanishing point of the translation direction
- 2. The motion field of two frames after rotation compensation
 - only includes the translation component
 - points towards (away from) the vanishing point p0 (the instantaneous epipole)
 - the length of each motion vector is inversely proportional to the depth, and also proportional to the distance from point p to the vanishing point p0 of the translation direction
 - Question: how to remove rotation?

20

Zoltan Kato: Computer Vision

Motion Parallax: 1. Relative MF

- At instant t, three pairs of points happen to be coincident
- The difference of the motion vectors of each pair cancels the rotational components
- ... and the <u>relative motion field</u> points in (towards or away from) the VP of the translational direction

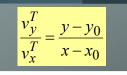
Epipole (x₀, y₀)

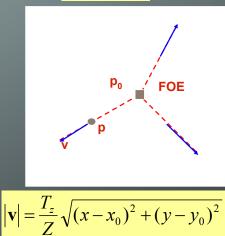
 $\mathbf{u} = (u, v) = \mathbf{u}_{tr} + \mathbf{u}_{rot}$ At points p_1 and $p_2 = (x, y)$ we have $\mathbf{u}_{1,rot} = \mathbf{u}_{2,rot}$ $\Delta u_{tr} = u_{1,tr} - u_{2,tr} = (x - x_o)(\frac{1}{Z_1} - \frac{1}{Z_2})$ $\Delta v_{tr} = v_{1,tr} - v_{2,tr} = (y - y_o)(\frac{1}{Z_1} - \frac{1}{Z_2})$ $\frac{\Delta v}{\Delta u} = \frac{y - y_0}{x - x_0}$

Zoltan Kato: Computer Vision

Motion Parallax: 1. Relative MF

- Vector component perpendicular to translational component is only due to rotation →
 - rotation can be estimated from it.


$$\mathbf{u}^{\perp}_{tr} = \frac{(y - y_0, x - x_0)}{\|(y - y_0, x - x_0)\|}$$


$$\mathbf{u} \cdot \mathbf{u}^{\perp}_{tr} = \frac{1}{\|(y - y_0, x - x_0)\|} (y - y_0) u_{rot} - (x - x_0) v_{rot}$$

Zoltan Kato: Computer Visio

Motion Parallax: 2. Rotation Compensation

- Question: how to remove rotation?
 - Rotation compensation can be done by image warping after finding three (3) pairs of coincident points
- After compensation, MF
 - only includes the translation component
 - points towards (away from) the vanishing point p₀ (the <u>instantaneous epipole</u>)
 - the length of each motion vector is inversely proportional to the depth,
 - and also proportional to the distance from point p to the vanishing point p of the translation direction (if T,=0)

NSIT 1410. 901195891 1191911

Motion Estimation Techniques

- Prazdny (1981), Burger Bhanu (1990), Nelson Aloimonos (1988), Heeger Jepson (1992):
 - Decomposition of flow field into translational and rotational components.
 - Translational flow field is radial (all vectors are emanating from (or pouring into) one point),
 - rotational flow field is quadratic in image coordinates.
 - Either search in the space of rotations: remainig flow field should be translational.
 - Translational flow field is evaluated by minimizing deviation from radial field:

$$(-v,u)\cdot(x-x_0,y-y_0)=0$$

- Or search in the space of directions of translation:
 - Vectors perpendicular to translation are due to rotation only