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Image Segmentation Problem

The objective of segmentation is to partition an image

into homogeneous regions such that:

• The segmentation must be complete (i.e. every

pixel must be in a region).

• The pixels in a region must be connected.

• The regions must be disjoint.

In real scenes, neighboring pixels usually have similar

intensities. In a probabilistic framework, such regu-

larities are well expressed by Markov Random Fields

(MRF). On the other hand, the local behavior of MRF

permits to develop highly parallel algorithms.



MRF – Definitions

Cliques:

V1 V2

S

S - set of pixels (or sites)
F - observed image (data set)
Λ = {0,1, . . . , L − 1} - labels (or
classes,
ω ∈ Ω — global labeling
X—label process (MRF)

MRF: X is a MRF with respect to V if

1. for all ω ∈ Ω: P (X = ω) > 0,

2. for every s ∈ S and ω ∈ Ω:
P (Xs = ωs | Xr = ωr, r 6= s) = P (Xs = ωs | Xr = ωr, r ∈ Vs).

Hammersley-Clifford theorem: X is a MRF with respect to
the neighborhood system V if and only if π(ω) = P (X = ω) is a
Gibbs distribution:

π(ω) =
1

Z
exp (−U(ω)) =

1

Z
exp

(
−

∑

C∈C
VC(ω)

)
(1)

where Z is the normalizing constant or partition function:

Z =
∑

ω

exp (−U(ω)) ,

U(ω) =
∑

C∈C VC(ω) is the energy function and VC denotes the
clique potentials.

This equivalence provides a simple way to specify MRF’s through
clique-potentials instead of local characteristics, which is usually
very difficult.



Supervised Image
Segmentation

• F = {fs}s∈S is a set of image data (fs = the
greylevel value at pixel s).

• MAP estimation: We want to find the labeling
ω̂ ∈ Ω which maximizes

P (ω | F)
Bayes∝ P (F | ω)P (ω)

Ω = set of all possible global labelings.

• Hypothesis:

– P (F | ω) is Gaussian,

– P (ω) is Markovian.



Monogrid Model

ω̂ = min
ω∈Ω

∑

s∈S
V1(ωs, fs) +

∑

C∈C
V2(ωC)

with V2(ωC) = second order clique-potentials, which

favour similar classes for neighboring pixels:

V2(ωC) = V{s,r}(ωs, ωr) =

{
−β if ωs = ωr

+β if ωs 6= ωr

and

V1(ωs, fs) = log(
√

2πσωs) +
(fs − µωs)

2

2σ2
ωs

µωs and σωs are learned for each class (supervised

segmentation).



Supervised Parameter Learning

   1. 2. 3. 4.

classes:

The class statistics (mean and variance) are estimated

through the empirical mean and variance:

∀λ ∈ Λ : µλ =
1

| Sλ |
∑

s∈Sλ

fs, (2)

σ2
λ =

1

| Sλ |
∑

s∈Sλ

(fs − µλ)
2, (3)

where Sλ denotes the set of pixels in the training set

of class λ.



Supervised Segmentation
(Monogrid case)

Parameters Θ

MRF image segmentation model

Find MAP estimate
(Simulated Annealing, for instance)



Optimization

• Problem reduced to the minimisation of a non-

convex energy function =⇒ many local minima.

• Solution: relaxation methods

– stochastic techniques: Simulated Annealing

(Metropolis et al 53, Geman and Geman 84).

– deterministic techniques: Graduated Non Con-

vexity (Blake and Zisserman 87, Rangarajan

and Chellappa 90), Iterated Conditional Mode

(Besag 86, Jeng and Woods 88), Mean Field

Annealing (Geiger and Girosi 89, Zerubia and

Chellappa 90)...



Metropolis Algorithm
(Simulated Annealing)

Algorithm 1 (Simulated Annealing)

©1 Set k = 0 and initialize ω randomly. Choose a

sufficiently high initial temperature T = T0.

©2 Construct a trial perturbation η from the current

configuration ω such that η differs only in one el-

ement from ω.

©3 (Metropolis criteria) Compute ∆U = U(η) −
U(ω) and accept η if ∆U < 0 else accept with

probability exp(−∆U/T ) (analogy with thermody-

namics):

ω =





η if ∆U ≤ 0,
η if ∆U > 0 and ξ < exp(−∆U/T ),
ω otherwise

(4)

where ξ is a uniform random number in [0,1).

©4 Decrease the temperature: T = Tk+1 and goto

Step ©2 with k = k +1 until the system is frozen.



Gibbs Sampler

Algorithm 2 (Gibbs Sampler)

©1 Set k = 0, assign an arbitrary initial configura-

tion ω and let T = T0 be a sufficiently high initial

temperature.

©2 For each configuration which differs at most in one

element from the current configuration ω (they are

denoted by Nω), compute the energy U(η) (η ∈
Nω).

©3 (Gibbs Sampler) From the configurations in Nω,

a sample is drawn such that η is accepted with

probability

exp(−U(η))
∑

ζ∈Nω exp(−U(ζ))
(5)

as the new configuration.

©4 Decrease the temperature: T = Tk+1 and goto

Step ©2 with k = k +1 until the system is frozen.



Iterated Conditional Modes (ICM)

Algorithm 3 (ICM)

©1 Start at a “good” initial configuration ω0 and set

k = 0.

©2 For each configuration which differs at most in one

element from the current configuration ωk (they

are denoted by Nωk), compute the energy U(η)

(η ∈ Nωk).

©3 From the configurations in Nωk, select the one

which has a minimal energy:

ωk+1 = arg min
η∈N

ωk

U(η). (6)

©4 Goto Step ©2 with k = k + 1 until convergence is

obtained (for example, the energy change is less

than a certain threshold).



Modified Metropolis Dynamics

Algorithm 4 (MMD)

©1 Pick up randomly an initial configuration ω0, with

k = 0 and T = T0.

©2 Using a uniform distribution, pick up a global state

η which differs only in one element from ωk.

©3 (Modified Metropolis Dynamics) Compute ∆U =

U(η)−U(ω) and accept η according to the follow-

ing rule:

ωk+1 =





η if ∆U ≤ 0,

η if ∆U > 0 and ln(α) ≤
(
−∆U

T

)
,

ωk otherwise
(7)

where α is a constant threshold (α ∈ (0,1)), cho-

sen at the beginning of the algorithm.

©4 Decrease the temperature T = Tk+1 and goto

Step ©2 until convergence is obtained (∆U less

than a certain threshold, for example).



Behavior of MMD

• At high temperature, an energy increase is per-

mitted (“pseudo-stochastic” phase).

• Under a certain temperature-threshold, it be-

comes deterministic.



Cellular Neural Network
Implementation of MMD

• CNN is basically a deterministic analog circuit.

• Its VLSI implementation takes place on a single

analog chip containing several thousands (recently

about 10,000 to 40,000) cells, each cell beeing

connected to its neighbors.

• It has only simple arithmetic functions (addition,

multiplication) and very simple nonlinear output

functions (step, jigsaw).

• It’s precision is limited to a few digits (8 bit).

• MMD is an ideal algorithm for CNN implementa-

tion

• A real VLSI CNN chip can execute an MMD relax-

ation algorithm of about 100 iterations in about

1msec.



Simulated Annealing

We have three ways of annealing:

• Homogeneous annealing: relaxation is performed

at a fixed temperature until an equilibrium is reached.

• Inhomogeneous annealing: the temperature is

lowered after each iteration.

• Multi-Temperature Annealing (MTA):

– To the higher levels, we associate higher tem-

peratures which enable to be less sensitive to

local minima.

– At a finer resolution, the relaxation is performed

at a lower temperature (at the bottom level, it

is closed to 0).



Temperature Schedule
Theory

H
aj

ek
G

em
an

Tk ≥
Γ

ln(k)
(8)

with

Γ > max
ω∈Ω

U(ω)−min
ω∈Ω

U(ω) (9)



Temperature Schedule
Practice
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Logarithmic sched-

ule (4/ ln(k)).

Exponential sched-

ule (0.95k · 4).

Initial temperature: One usually set T0 to a rela-

tively low value (T0 = 4) resulting in a faster execu-

tion of the algorithm.

Final temperature We can simply fix the number of

iterations or terminate the execution of the algorithm

if the last few configurations obtained by SA have

nearly the same energy (i.e. ∆U is less than a certain

threshold).

Temperature schedule:

Tk+1 = c · Tk, k = 0,1,2, . . . (10)

where c < 1 is a constant close to 1.




