Zoltan Kato: PhD Course on Variational and Level Set: Methods in Image processing,

Snakes: Active Contours

Zoltan Kato

http://www.cab.u-szeged.hu/~kato/variational/

Zoltan Kato: PhD Course on Variational and Level Set: Methods in Image processing

2

Introduction

Proposed by

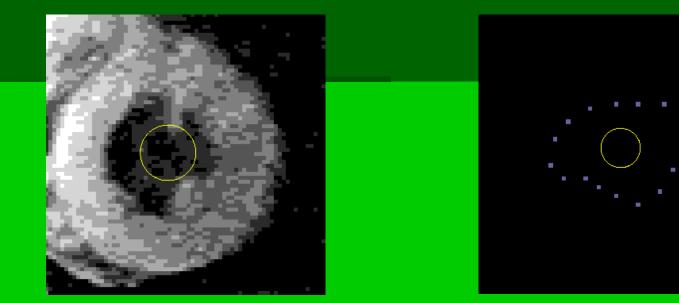
- Michael Kass
- Andrew Witkin
 - http://www.ri.cmu.edu/people/witkin andrew.html
- Demetri Terzopoulos
 - http://mrl.nyu.edu/~dt/

Snakes: Active Contour Models. International Journal of Computer Vision, Vol. 1, pp 321-331, 1988.

What is a snake?

An energy minimizing *spline* guided by external constraint forces and pulled by image forces toward features:

- Edge detection
- Subjective contours
- Motion tracking
- Stereo matching
-



Images taken from the GVF website: <u>http://iacl.ece.jhu.edu/projects/gvf/</u>

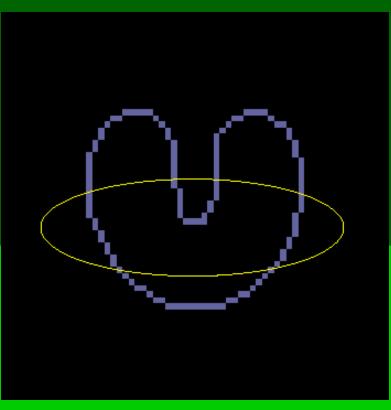
Snake behavior

- A snake falls into the closest *local* energy minimum.
 - The local minima of the snake energy comprise the set of alternative solutions
 - A higher level knowledge is needed to choose the *"correct one"* from these solutions
 - High-level reasoning
 - User interaction

These high-level methods can *interact* with the contour model by pushing it toward an appropriate local minimum

Snake behavior

- They rely on other mechanisms to place them *near* the desired contour.
 - The existence of such an initializer is application dependent.
 - Even in the case of manual initialization, snakes are quite powerful in refining the user's input.
- Basically, snakes are trying to match a deformable model to an image by means of energy minimization.



5

Image taken from the GVF website: http://iacl.ece.jhu.edu/projects/gvf/

Parametric representation: v(s)=(x(s),y(s))

$$E_{snake} = \int_{0}^{1} E_{int}(v(s)) + E_{image}(v(s)) + E_{con}(v(s))ds$$

- E_{int} = internal energy due to bending. Serves to impose piecewise smoothness constraint.
- E_{image} = image forces pushing the snake toward image features (edges, etc...).
- Econ = external constraints are responsible for putting the snake near the desired local minimum. It may come from:
 - Higher level interpretation
 - User interaction, etc...

The snake is a controlled continuity spline

Regularizes the problem

$$E_{\rm int} = (\alpha(s) |v_s(s)|^2 + \beta(s) |v_{ss}(s)|^2) / 2$$

The first order derivative v_s(s) makes the spline act like a membrane ("elasticity").

The second order derivative v_{ss}(s) makes it act like a thin-plate ("rigidity").

- α(s) and β(s) controls the relative importance of membrane and thin-plate terms
 - Setting β(s)=0 for a point allows the snake to become secondorder discontinuous and develop a corner.

Attracts the snake to features (data term)

$$E_{image} = w_{line}E_{line} + w_{edge}E_{edge} + w_{term}E_{term}$$

- Iines: the simplest functional is the image intensity: E_{line}=I(x,y)
 - Depending on the sign of w_{line}, the snake will be attracted to the lightest or darkest nerby contour
- edges: one can simply set E_{edge} = | V I(x,y)|²
 attracts the snake to large intensity gradients.
- terminations: discussed later

Snake convergence

- If part of a snake finds a low-energy feature → the spline term will pull neighboring parts toward a possible continuation of the feature found.
- In fact, this places a large energy well around a good local minimum

9

Video taken from the website: http://www-2.cs.cmu.edu/afs/cs/user/aw/www/gallery.html

Scale space

Minimization by scalecontinuation:

- Spatial smooting the edge or line functional
 - E_{edge} = -($G_{\sigma} * \nabla^2 I$)², where G_{σ} is a Gaussian with σ standard deviation
 - Minima lie on zero crossings of $G_{\sigma} * \nabla^2 I$ (~edges)
- Snake comes to equilibrium on a blurry energy
 - Slowly reduce the blurring

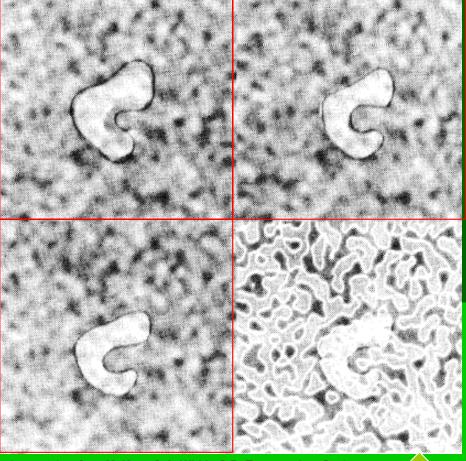


Image taken from **M. Kass & A. Witkin & D. Terzopoulos**: Snakes: Active Contour Models. *International Journal of Computer Vision*, *Vol. 1, pp 321-331, 1988.*

Zero crossings

Termination functional

Attracts the snake toward termination of line segments and corners. • Let $C(x,y) = G_{\sigma}(x,y) * I(x,y))^2$ (smoothed image) • Let $\theta = tan^{-1}(C_v/C_x)$ the gradient angle n=(cos θ, sin θ) unit vector along gradient n = (-sin θ, cos θ) perpendicular to gradient - E_{term} is defined using curvature of level lines in $C(x,y): E_{term} = \frac{\partial \theta}{\partial n_{\perp}} = \frac{\partial^2 C / \partial n_{\perp}^2}{\partial C / \partial n} = \frac{C_{yy}C_x^2 - 2C_{xy}C_xC_y + C_{xx}C_y^2}{\left(C_x^2 + C_y^2\right)^{3/2}}$

Subjective contour

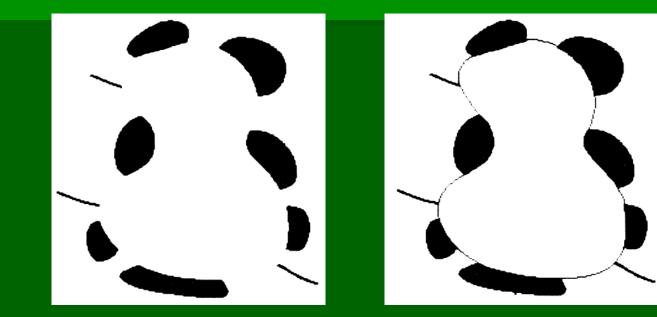


Image taken from M. Kass & A. Witkin & D. Terzopoulos: Snakes: Active Contour Models. International Journal of Computer Vision, Vol. 1, pp 321-331, 1988.

- Combining *E_{edge}* and *E_{term}*, we can create a snake attracted to edges and terminations
- The shape of the snake between the edges and lines in the illusion is completely determined by the spline smoothness term
- The same snake can find traditional edges in natural images

Zoltan Kato: PhD Course on Variational and Level Set Methods in Image processing ¹³

Subjective contour: hysteresys

- Snake tracking a moving subjective contour
- The snake bends until the internal spline forces overpower image forces
- Then the snake falls off the line and returns to a smoother shape

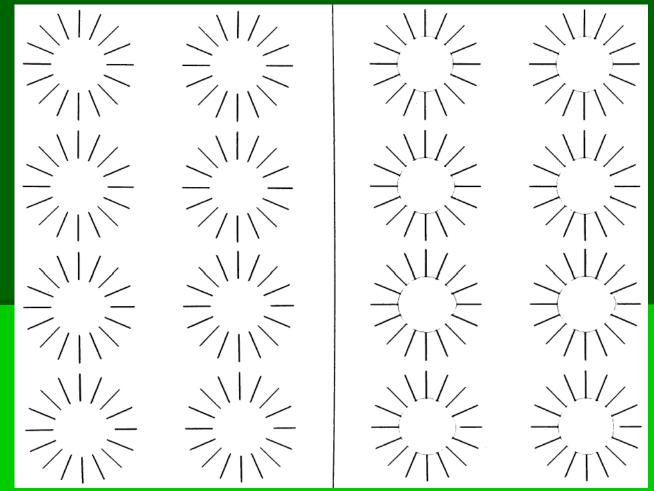


Image taken from M. Kass & A. Witkin & D. Terzopoulos: Snakes: Active Contour Models. International Journal of Computer Vision, Vol. 1, pp 321-331, 1988.

Motion tracking

- Once a snake finds a feature, it "locks on"
- If the feature begins to move, the snake will track the same local minimum
 - Fast motion could cause the snake to flip into a different minimum

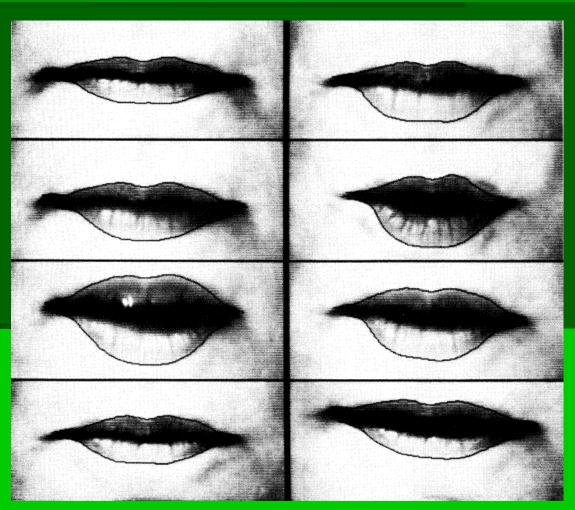


Image taken from M. Kass & A. Witkin & D. Terzopoulos: Snakes: Active Contour Models. International Journal of Computer Vision, Vol. 1, pp 321-331, 1988.

When α(s) and β(s) are constant, we get two independent Euler-Lagrange equations.
 When α(s) and β(s) are not constant then it is simpler to use a discrete formulation:

$$E_{snake} = \sum_{i=1}^{n} E_{int}(i) + E_{ext}(i), \quad v_i = (x_i, y_i) = (x(ih), y(ih))$$
$$E_{int}(i) = \alpha_i |v_i - v_{i-1}|^2 / 2h^2 + \beta_i |v_{i-1} - 2v_i + v_{i+1}|^2 / 2h^4$$

Let f_x(i) = ∂ E_{ext} /∂ x_i where derivatives are approximated by finite differences if they cannot be computed analitically.

The corresponding Euler equations

In matrix form where A is a pentadiagonal banded matrix:

$$\begin{aligned} \alpha_{i}(v_{i} - v_{i-1}) - \alpha_{i+1}(v_{i+1} - v_{i}) \\ + \beta_{i-1}(v_{i-2} - 2v_{i-1} + v_{i}) \\ - 2\beta_{i}(v_{i-1} - 2v_{i} + v_{i+1}) \\ + \beta_{i+1}(v_{i} - 2v_{i+1} + v_{i+2}) \\ + (f_{x}(i), f_{y}(i)) = 0 \end{aligned}$$

$$Ax + f_x(x, y) = 0$$
$$Ay + f_y(x, y) = 0$$

$$Ax_{t} + f_{x}(x_{t-1}, y_{t-1}) = -\gamma(x_{t} - x_{t-1})$$
$$Ay_{t} + f_{y}(x_{t-1}, y_{t-1}) = -\gamma(y_{t} - y_{t-1})$$

 γ is the step size

- Taking into account the derivatives requires changing *A* at each iteration. Speed up:
 We assume that *f_x* and *f_y* are constant during a time step → explicit Euler method w.r.t. the external forces.
 - → internal forces are specified by A → we can evaluate the time derivative at t rather than t-1

 At equilibrium, the time derivative vanishes.
 The Euler equations can be solved by matrix inversion:

$$\begin{aligned} x_t &= (A + \gamma I)^{-1} (\gamma x_{t-1} - f_x(x_{t-1}, y_{t-1})) \\ y_t &= (A + \gamma I)^{-1} (\gamma y_{t-1} - f_y(x_{t-1}, y_{t-1})) \end{aligned}$$

The inverse can be calculated by LU decomposition in O(n) time.