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Multiscale Model
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Multiscale Model

To generate the multiscale version of the monogrid

model:

• divide the initial grid into blocks of size n×n (2×2

here)

• associate the same label to the pixels of a block

• coarser scales are defined similarly with blocks

ni × ni (i = 2,3, . . .)



Neighborhood structure
on blocks

We have the same neighborhood structure as on the

initial grid:



Equivalent Model
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• To each block, we associate a unique site having

the common label of the corresponding block.

• These sites form a coarse grid isomorphic to the

corresponding scale

• The isomorphism is just a projection of the coarse

label field to the fine grid.



Energy function
on coarse grids
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Energy function
on coarse grids

• The first order clique-potentials V i
1 are the sum

of the potentials of cliques included in the corre-

sponding block:

V i
1(ω

i
si,F) =

∑

s∈bi
si

V1(ωs, fs)− piβ

• The second order potentials V i
2 are the sum of po-

tentials siting astride the two corresponding blocks:

V i
2(ωr, ωs) =

{
−qiβ if ωr = ωs

+qiβ if ωr 6= ωs

pi is the number of second order cliques included in

a block and qi is the number of cliques between two

neighbor blocks

pi = 2ni(ni − 1)

qi = ni



Multiscale
Relaxation Scheme
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Using a top-down startegy in the pyramid:

1. The problem is solved at a higher level

2. The lower level is initialized by the projection of
the resulting labeling.



Advantages:

+ At coarser grids, the state space has only a few

elements =⇒ fast convergence properties on a se-

quential machine.

+ For deterministic relaxation methods (ICM. . . ),

the final result is improved.

Drawbacks:

– The multiscale scheme demands usually more it-

erations than the monogrid version

– On a SIMD machine (CM200 for ex.), the mul-

tiscale scheme may be slower than the monogrid

one (the rapidity depends only on the Virtual Pro-

cessor Ratio)

– For the stochastic relaxation methods, the final

result is only slightly improved since they are in-

dependent on the initial configuration.



Supervised Multiscale
Segmentation
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Parameters Θ

Build coarse grids and compute coarse parameters

Find MAP estimates using a top down strategy
(A:minimization ,     B: initialization)



Hierarchical Model
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New neighborhood system

Keeping the interactions at each level, we introduce

a new interaction between two neighbor grids:

• Each site interacts with its ancestor and its de-

scendants.

• We consider only the first and second order cliques.



Energy function
on the pyramid

• For the cliques which are located on the same

level, the potential is not changed.

• For the cliques which site astride two neighbor

levels, we will favour similair classes:

V{s,r}(ωs, ωr) =

{
−γ if ωs = ωr

+γ if ωs 6= ωr
γ > 0



Supervised Hierarchical
Segmentation

Parameters Θ

Hierarchical image segmentation model

Find MAP estimate 



Multi-Temperature Annealing
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updating sets:

T3 > T2 > T1 > T0



Why Shall We Use
Multi-Temperature Annealing?

• MTA converges about two times faster than

classical annealing schemes.

• Convergence is proved towards global minima.

Behaviour of MTA:

• At high temperature: The energy landscape will

be explored with large moves.

• At intermediate temperatures: The selected

energy-valley will be investigated.

• At temperature close to 0: Finding the mini-

mum of the energy-valley.



Convergence Conditions

The convergence is proved in the most general case

where each clique has its own temperature sched-

ule T (k, C), decreasing in k. Convergence towards

global minima is guaranteed if:

1. For all clique C:

lim
k→∞

T (k, C) = 0

2. For all k: T
inf
k ≥ K

ln(k)

(∀C:T
inf
k ≤ T (k, C) ≤ T

sup
k ).

3. For all k:

T
sup
k − T

inf
k

T
inf
k

≤ R

where K and R are constants depending on the energy

function.



How to Implement MTA
to Satisfy these Conditions?

• Conditions 1 and 2: The same implementation

may be used as in the case of classical annealing:

An exponential schedule with a sufficiently high

initial temperature.

• Condition 3: Since R cannot be computed in

practice, we propose two possible solutions:

– Ad hoc way: Choose a sufficiently small in-

terval [T inf
0 , T

sup
0 ].

– Using a more strict but easily verifiable con-

dition instead of the 3d condition:

lim
k→∞

T
sup
k − T

inf
k

T
inf
k

= 0

MTA is a quite general algorithm, it does not sup-

pose a pyramidal structure. Optimization of the en-

ergy function of hierarchical models is only a possible

application.



Results on a synthetic image
with 4 classes

Original image Noisy image (SNR= 3dB)
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MTA (100 iterations) Inhomogeneous (238 iterations)



Results on a satellite image
with 4 classes

Original image

MTA (44 iterations) Inhomogeneous (118 iterations)
151 sec. CPU time 404 sec. CPU time

Final Energy: -12166 Final Energy: -12156



Results on a synthetic image
with 4 classes
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Original image

ICM with xscale

Gibbs with xscale

Noisy image (SNR = 3dB)

ICM with 3D

Gibbs with 3D



Results on a synthetic image
with 16 classes
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Original image

ICM with xscale

Gibbs with xscale

Noisy image (SNR = 10dB)
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Results on a SPOT image
with 4 classes
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Computer Time on the CM
with 8K processors

original lev. VPR T0 it. total(s) t/it. β γ

Gibbs 1 2 4 60 82.16 1.37 0.5 —
ICM 1 2 1 5 0.23 0.046 0.5 —
Xscale — — — — — — — —
Gibbs 4 1,2 4 60 63.58 1.06 0.5 —
ICM 4 1,2 1 17 0.79 0.06 0.5 —
conn. — — — — — — — —
Gibbs 4 4 4,3,2,1 18 169.37 9.41 0.5 0.2
ICM 4 4 1 5 21.52 4.3 0.5 0.2



Results on a
noisy synthetic image

ICM

MMD

Gibbs

Original

ICM Xscale

MMD Xscale

Gibbs Xscale

Noisy(SNR = 0dB)

ICM conn.

MMD conn.

Gibbs conn.



Computer Time on the CM
with 8K processors

orig. lev. VPR T0 it. total(s) t/it. error β γ

Gibbs 1 2 4 53 70.03 1.32 949 0.7 —
ICM 1 2 1 8 0.37 0.05 4686 0.7 —
MMD 1 2 4 83 4.68 0.06 2650 0.7 —
Xscale — — — — — — — — —
Gibbs 4 1,2 4 56 45.84 0.82 611 0.6 —
ICM 4 1,2 1 13 0.65 0.05 863 0.6 —
MMD 4 1,2 4 33 2.0 0.06 851 0.6 —
conn. — — — — — — — — —
Gibbs 4 4 4->1 33 314.38 9.53 358 0.4 0.1
ICM 4 4 1 23 99.6 4.33 759 0.6 0.4
MMD 4 4 4->1 41 125.78 3.07 709 0.3 0.2




