Image Segmentation and Parameter Estimation in a Markovian Framework

Zoltan Kato

Multiscale Model

Multiscale Model

To generate the multiscale version of the monogrid model:

- divide the initial grid into blocks of size $n \times n$ (2×2 here)
- associate the same label to the pixels of a block
- coarser scales are defined similarly with blocks $n^i \times n^i$ $(i=2,3,\ldots)$

Neighborhood structure on blocks

We have the same neighborhood structure as on the initial grid:

Equivalent Model

- To each block, we associate a unique site having the common label of the corresponding block.
- These sites form a coarse grid isomorphic to the corresponding scale
- The isomorphism is just a projection of the coarse label field to the fine grid.

Energy function on coarse grids

Energy function on coarse grids

• The first order clique-potentials V_1^i are the sum of the potentials of cliques included in the corresponding block:

$$V_1^i(\omega_{s^i}^i, \mathcal{F}) = \sum_{s \in b_{s^i}^i} V_1(\omega_s, f_s) - p^i \beta$$

• The second order potentials V_2^i are the sum of potentials siting astride the two corresponding blocks:

$$V_2^i(\omega_r, \omega_s) = \begin{cases} -q^i\beta & \text{if } \omega_r = \omega_s \\ +q^i\beta & \text{if } \omega_r \neq \omega_s \end{cases}$$

 p^i is the number of second order cliques included in a block and q^i is the number of cliques between two neighbor blocks

$$p^i = 2n^i(n^i-1)$$

 $q^i = n^i$

Multiscale Relaxation Scheme

Using a top-down startegy in the pyramid:

- 1. The problem is solved at a higher level
- 2. The lower level is initialized by the projection of the resulting labeling.

Advantages:

- + At coarser grids, the state space has only a few elements ⇒ fast convergence properties on a sequential machine.
- + For deterministic relaxation methods (ICM...), the final result is improved.

Drawbacks:

- The multiscale scheme demands usually more iterations than the monogrid version
- On a SIMD machine (CM200 for ex.), the multiscale scheme may be slower than the monogrid one (the rapidity depends only on the Virtual Processor Ratio)
- For the stochastic relaxation methods, the final result is only slightly improved since they are independent on the initial configuration.

Supervised Multiscale Segmentation

Build coarse grids and compute coarse parameters

ļ

Find MAP estimates using a top down strategy (A:minimization, B: initialization)

Hierarchical Model

New neighborhood system

Keeping the interactions at each level, we introduce a new interaction between two neighbor grids:

- Each site interacts with its ancestor and its descendants.
- We consider only the first and second order cliques.

Energy function on the pyramid

- For the cliques which are located on the same level, the potential is not changed.
- For the cliques which site astride two neighbor levels, we will favour similair classes:

$$V_{\{s,r\}}(\omega_s,\omega_r) = \begin{cases} -\gamma & \text{if } \omega_s = \omega_r \\ +\gamma & \text{if } \omega_s \neq \omega_r \end{cases} \gamma > 0$$

Supervised Hierarchical Segmentation

Multi-Temperature Annealing

 $T^3 > T^2 > T^1 > T^0$

Why Shall We Use Multi-Temperature Annealing?

- MTA converges about **two times faster** than classical annealing schemes.
- Convergence is proved towards global minima.

Behaviour of MTA:

- At high temperature: The energy landscape will be explored with large moves.
- At intermediate temperatures: The selected energy-valley will be investigated.
- At temperature close to 0: Finding the minimum of the energy-valley.

Convergence Conditions

The convergence is proved in the most general case where each clique has its own temperature schedule T(k,C), decreasing in k. **Convergence** towards **global minima** is guaranteed if:

1. For all clique
$$C$$
:

$$\lim_{k\to\infty} T(k,C) = 0$$

2. For all
$$k$$
: $T_k^{inf} \ge \frac{K}{\ln(k)}$
 $(\forall C: T_k^{inf} \le T(k, C) \le T_k^{sup}).$

3. For all k:

$$\frac{T_k^{sup} - T_k^{inf}}{T_k^{inf}} \le R$$

where K and R are constants depending on the energy function.

How to Implement MTA to Satisfy these Conditions?

- Conditions 1 and 2: The same implementation may be used as in the case of classical annealing: An exponential schedule with a sufficiently high initial temperature.
- Condition 3: Since *R* cannot be computed in practice, we propose two possible solutions:
 - Ad hoc way: Choose a sufficiently small interval $[T_0^{inf}, T_0^{sup}]$.
 - Using a more strict but easily verifiable condition instead of the 3^d condition:

$$\lim_{k \to \infty} \frac{T_k^{sup} - T_k^{inf}}{T_k^{inf}} = 0$$

MTA is a **quite general algorithm**, it does not suppose a pyramidal structure. Optimization of the energy function of hierarchical models is only a possible application.

Results on a synthetic image with 4 classes

MTA (100 iterations) Inhomogeneous (238 iterations)

Results on a satellite image with 4 classes

Original image

151 sec. CPU time Final Energy: -12166 Final Energy: -12156

MTA (44 iterations) Inhomogeneous (118 iterations) 404 sec. CPU time

Results on a synthetic image with 4 classes

Results on a synthetic image with 16 classes

Noisy image (SNR = 10dB)

Gibbs with xscale

ICM with xscale

Gibbs with 3D

ICM with 3D

ICM

Results on a SPOT image with 4 classes

Gibbs

ICM

Original image

Gibbs with xscale

ICM with xscale

Gibbs with 3D

ICM with 3D

Computer Time on the CM with 8K processors

original	lev.	VPR	T_0	it.	total(s)	t/it.	β	γ
Gibbs	1	2	4	60	82.16	1.37	0.5	
ICM	1	2	1	5	0.23	0.046	0.5	
Xscale								
Gibbs	4	1,2	4	60	63.58	1.06	0.5	
ICM	4	1,2	1	17	0.79	0.06	0.5	
conn.								
Gibbs	4	4	4,3,2,1	18	169.37	9.41	0.5	0.2
ICM	4	4	1	5	21.52	4.3	0.5	0.2

Results on a noisy synthetic image

Computer Time on the CM with 8K processors

orig.	lev.	VPR	T_0	it.	total(s)	t/it.	error	β	γ
Gibbs	1	2	4	53	70.03	1.32	949	0.7	
ICM	1	2	1	8	0.37	0.05	4686	0.7	—
MMD	1	2	4	83	4.68	0.06	2650	0.7	
Xscale									
Gibbs	4	1,2	4	56	45.84	0.82	611	0.6	—
ICM	4	1,2	1	13	0.65	0.05	863	0.6	—
MMD	4	1,2	4	33	2.0	0.06	851	0.6	
conn.									
Gibbs	4	4	4->1	33	314.38	9.53	358	0.4	0.1
ICM	4	4	1	23	99.6	4.33	759	0.6	0.4
MMD	4	4	4->1	41	125.78	3.07	709	0.3	0.2