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Multiscale Model
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Multiscale Model

To generate the multiscale version of the monogrid
model:

e divide the initial grid into blocks of size nxn (2x2
here)

e associate the same label to the pixels of a block

e coarser scales are defined similarly with blocks
ntxn' (i=2,3,...)



Neighborhood structure
on blocks

We have the same neighborhood structure as on the
initial grid:
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Equivalent Model
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e [0 each block, we associate a unique site having
the common label of the corresponding block.

e T hese sites form a coarse grid isomorphic to the
corresponding scale

e [ he isomorphism is just a projection of the coarse
label field to the fine grid.




Energy function
on coarse grids




Energy function
on coarse grids

e [ he first order clique-potentials Vf are the sum
of the potentials of cliques included in the corre-
sponding block:

Vf(wzi,f) — Z V1 (ws, fs) —piﬁ
sebii

e The second order potentials Vi are the sum of po-
tentials siting astride the two corresponding blocks:

i _ | =8 if wr = ws
VQ(wan) - { +4q'8 if wr #F ws

pi IS the number of second order cligues included in
a block and qi iIs the number of cliques between two
neighbor blocks
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Multiscale
Relaxation Scheme
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Using a top-down startegy in the pyramid:

1. The problem is solved at a higher level

2. The lower level is initialized by the projection of
the resulting labeling.



Advantages:

+ At coarser grids, the state space has only a few
elements —= fast convergence properties on a se-
quential machine.

+ For deterministic relaxation methods (ICM...),
the final result is improved.

Drawbacks:

— The multiscale scheme demands usually more it-
erations than the monogrid version

— On a SIMD machine (CM200 for ex.), the mul-
tiscale scheme may be slower than the monogrid
one (the rapidity depends only on the Virtual Pro-
cessor Ratio)

— For the stochastic relaxation methods, the final
result is only slightly improved since they are in-
dependent on the initial configuration.



Supervised Multiscale
Segmentation

Parameters ©

l

Build coar se grids and compute coar se parameters

l

Find MAP estimates using a top down strategy
(A:minimization, B: initialization)
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Hierarchical Model
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New neighborhood system

Keeping the interactions at each level, we introduce
a new interaction between two neighbor grids:

e Each site interacts with its ancestor and its de-
scendants.

e \We consider only the first and second order cliques.



Energy function
on the pyramid

e For the cliques which are located on the same
level, the potential is not changed.

e For the cliques which site astride two neighbor
levels, we will favour similair classes:
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Supervised Hierarchical
Segmentation

Parameters O
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Hierarchical image segmentation model

!

Find MAP estimate




Multi- Temperature Annealing
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Why Shall We Use
Multi- Temperature Annealing?

e MTA converges about two times faster than
classical annealing schemes.

e Convergence is proved towards global minima.

Behaviour of MTA:

e At high temperature: The energy landscape will
be explored with large moves.

o At Iintermediate temperatures: The selected
energy-valley will be investigated.

o At temperature close to 0: Finding the mini-
mum of the energy-valley.



Convergence Conditions

The convergence is proved in the most general case
where each cligue has its own temperature sched-
ule T'(k,C), decreasing in k. Convergence towards
global minima is guaranteed if:

1. For all clique C:

im T(k,C) =0
k— 00

inf
2. Forall k: T,/ > In(k)
ve: T < T(k,C) < T"P).

3. For all k:

where K and R are constants depending on the energy
function.



How to Implement MTA
to Satisfy these Conditions?

e Conditions 1 and 2: The same implementation
may be used as in the case of classical annealing:
An exponential schedule with a sufficiently high
initial temperature.

e Condition 3: Since R cannot be computed in
practice, we propose two possible solutions:

— Ad hoc ‘way: Choose a sufficiently small in-
terval [T2", TSP,

— Using a more strict but easily verifiable con-
dition instead of the 3¢ condition:
TSUP _ Tz'nf

im =&k —
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MTA is a quite general algorithm, it does not sup-
pose a pyramidal structure. Optimization of the en-
ergy function of hierarchical models is only a possible
application.



Results on a synthetic image
with 4 classes

Original image Noisy image (SNR= 3dB)

Nb. of iterations

MTA (100 iterations) Inhomogeneous (238 iterations)



Results on a satellite image
with 4 classes

Original image

MTA (44 iterations) Inhomogeneous (118 iterations)
151 sec. CPU time 404 sec. CPU time
Final Energy: -12166 Final Energy: -12156



Results on a synthetic image
with 4 classes

Original image N0|sy |mage (SNR  — 3dB)

ICM ~ ICM with xscale ICM with 3D



Results on a synthetic image
with 16 classes

ansy image 'SNR — 10dB

Original image

Gibbs Gibbs with xscale Gibbs with 3D

ICM ICM with xscale ICM with 3D



Results on a SPOT image
with 4 classes
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ICM ICM with xscale ICM with 3D



Computer Time on the CM
with 8K processors

original || lev. | VPR | To | it. | total(s) | t/it. g v |
Gibbs 1 2 4 | 60 82.16 1.37 | 0.5 | —
ICM 1 2 1 5 0.23 | 0.046 | 0.5 | —
Xscale — — — | — — — | — | —
Gibbs 4 1,2 4 | 60 63.58 1.06 | 0.5 | —
ICM 4 1,2 1] 17 0.79 0.06 | 0.5 | —
conn. — — — | — — — | — ] —
Gibbs 4 4 ,1 | 18 169.37 9.41 | 0.5 | 0.2
ICM 4 4 1 5 21.52 431 05 ] 0.2




~ Results on a
noisy synthetic image

Original N0|sy(SNR— OdB)
GIbbS G|bbs Xscale GIbbS conn
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MMD MMD Xscale MMD conn.
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ICM ICM Xscale ICM conn.




Computer Time on the CM
with 8K processors

orig. [ lev. | VPR | To | it. | total(s) | t/it. | error | (B | ~ |
Gibbs 1 2 4 | 53 70.03 | 1.32 949 | 0.7 | —
ICM 1 2 1 8 0.37 | 0.05 | 4686 | 0.7 | —
MMD 1 2 4 | 83 468 | 0.06 | 2650 | 0.7 | —
Xscale — — — | — — — — | — | —
Gibbs 4 1,2 4 | 56 45.84 | 0.82 611 | 0.6 | —
ICM 4 1,2 1| 13 0.65 | 0.05 863 | 0.6 | —
MMD 4 1,2 4 | 33 2.0 | 0.06 851 | 0.6 | —
conn. — — — [ — — — — [ — [ —
Gibbs 4 4 [ 4->1]33 ]| 314.38 | 9.53 358 [ 04 [ 0.1
ICM 4 4 1| 23 99.6 | 4.33 759 | 0.6 | 0.4
MMD 4 4 | 4->1 | 41 125.78 | 3.07 709 | 0.3 | 0.2






