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Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)
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SIEMENS

Corp. Research

Standard minimum s-t cuts algorithms =~ =

m Augmenting paths [Ford & Fulkerson, 1962]
m Push-relabel [Goldberg-Tarjan, 1986]

adapted to N-D grids used in computer vision

m Tree recycling (dynamic trees) [B&K, 2004]
m Flow recycling (dynamic cuts) [Kohli & Torr, 2005]
m Cut recycling (active cuts) [Juan & Boykov, 2006]
m Hierarchical methods
- In search space [Lombaert et al., CVPR 2005]
- In edge weights (capacity scaling) [Juan et al., ICCV07]
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3D bone segmenrtatisrtredBaN R screen capture)



Graph cuts applied to multi-view
reconstruction

surface of good photoconsistency
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visual hull
(silhouettes)
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Adding regional properties
(B&J, ICCV’01)

regional bias example

t .
suppose |°and | are given 2 o2
“expected” intensities Dp(s)oceXp“”IP "1/ 207

of object and background D, (t)ocexp €1, —1"|] /20'2:

NOTE: hard constratas-are nat - required, in genesal.



Adding regional properties
(B&J, ICCV’01)

. 1

“expected” intensities of )
object and background = D,(s)ocexp €|[1,—1° | /26%

"and | D, (t)cexp € |1, - 1| /26°_
can be re-estimated P p _

EM-style optimization of piece-vice constant Mumford-Shah model



Adding regional properties
(B&J, ICCV’01)

More generally, regional bias can be based on any
intensity models of object and background

D,(L,)=-InPr(1 |L,)

Pr(l, |t)I fffzf?fszfszfszfzz_

Pr(l, | S)ef ‘A.. ______ / .
l j

given object and background intensity histograms
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Adding regional properties
(B&J, ICCV’01)
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dark bright
(a) Original image (b} Intensity histograms (c) Optimal segmentation
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Iterative learning of regional color-models

® GMMREF cuts (Blake et al., ECCV04)
m Grab-cut (Rother et al.,, SIGGRAPH 04)

parametric regional model — Gaussian Mixture (GM)
designed to guarantee convergence
Slide credit: Yuri Boykov 10



Simple example of energy

Regional term Boundary term

E(L) ZD(L)+ > w, -o(L, = L)

pgeN
t-links - n-links

L, e{s,1}

(5) binary object
segmentation

Slide credit: Yuri Boykov
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Graph cuts for minimization of

submodular binary energies I
Regional term Boundary term
E(L) Z E.(L) + > E(L,, L)
t-links " o-links L, e{s,1}

m Characterization of binary energies that can be globally
minimized by s-t graph cuts [Boros&Hummer, 2002, K&Z 2004]

E(L) can be minimized | <= [E(S,S)+E(t,t) <E(S,t)+E(t,s)
by s-t graph cuts

Submodularity (“convexity”)

m Non-submodular cases can be addressed with some

optimality guarantees, e.g. QPBO algorithm
* (see Boros&Hummer, 2002 avares et go 06, Rother et al. 07)

Slidecre koV' 12



The Problem
E(x) = Z fi(x)+

Unary

Z Ci Xi + Z le |X,-XJ|
| i,

Imaqge

Slide &redit: Pushmeet Kohli

Z glJ (xilxj)
J

; h.(x,)

Pairwise

Higher Order

E: {0,1}» - R

n = number of pixels

Segmentation




Submodular Functions: Definition

Pseudo-boolean function f:{0,1}" > R is submodular if

f(A) + f(B) = f(AVvB) + f(AAB) | forall A,B € {0,1}"

(039) (AND)

Example: n = 2, , B =[0,1]
f( ) + f([0,1]) = f([1,1]) + f([0,0])

Sum of submodular functions is submodular

Binary Image Segmentation Energy is submodular

E(x) = > ¢ x;+ Q. dy Ix-x]
i i,j

Slide credit: Pushmeet Kohli



Minimizing Submodular Functions

= Polynomial time algorithms

= Ellipsoid Algorithm: [Grotschel, Lovasz & Schrijver '81]
= First strongly polynomial algorithm: [lwata et al. ‘00] [A. Schrijver ‘00]
= Current Best: O(n5Q + n®) [Q s function evaluation time] [Orlin ‘o7]

s Symmetric functions: E(x) = E(1-x)
= Can be minimized in O(n3)

= Minimizing Pairwise submodular functions

= Can be transformed to st-mincut/max-flow [Hammer, 1965]
= Very low empirical running time ~ O(n)

E(X) = Z fi (x;) + Z g;; (xi.%;)
i ij

Slide credit: Pushmeet Kohli
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The st-Mincut Problem

Graph (V, E, C)
Vertices V = {vq, v, ... v,}}
Edges E = {(v4, v,) ...}
Costs C = {c( 2) ...}

Slide credit: Pushmeet Kohli



The st-Mincut Problem

What is a st-cut?

Slide credit: Pushmeet Kohli



The st-Mincut Problem

What is a st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

5+1+9 =15

Slide credit: Pushmeet Kohli

What is the cost of a st-cut?

Sum of cost of all edges going
fromStoT

18



The st-Mincut Problem

What is a st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going
fromStoT

What is the st-mincut?

st-cut with the
minimum cost

2+2+4:=28

Slide credit: Pushmeet Kohli
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So how does this work?

Construct a graph such that:
1. Any st-cut corresponds to an assignment of x

2. The cost of the cut is equal to the energy of x : E(x)

S st-mincut

Solution

Hammer, 1965] [Kolmogorov and Zabih, 2002]

Slide credit: Push



St-mincut and Energy Minimization

E(x) = Z 0, (x) + Z 0;; (xi.x;)
i i,

Fordllij | 6,(0,1)+6;(10) >6,(0,0) +6,(11)

I Equivalent (fransformable)

E(x) = D, cix;+ ) ¢y xi(1-x)) | | ¢;20
i ]

Slide credit: Pushmeet Kohli



Graph Construction

E(al ’ 02)

Source (0)

alQ Qaz

Sink (1)

Slide credit: Pushmeet Kohli



Graph Construction

E(a,,a;) = 2q,

Source (0)

alQ Qaz

Sink (1)

Slide credit: Pushmeet Kohli



Graph Construction

E(al,az) - 201 + 561

Source (0)

Sink (1)

Slide credit: Pushmeet Kohli



Graph Construction

E(al,az) - 201 + 561"' 902 + 462

Source (0)
2 9
qa, Q Q a,

Sink (1)

Slide credit: Pushmeet Kohli



Graph Construction

E(al,az) - 201 + 561"" 902 + 462 + 20162

Source (0)
2/ \l 9
a, Q Q a;

N\ /-

Sink (1)

Slide credit: Pushmeet Kohli



Graph Construction

E(a;.a,) = 2a; + 5a;+ 9a, + 44, + 2a,a, + d;a,

Source (0)
2/ \l 9
1
a; Q_’Q a;

N\ /-

Slide credit: Pushmeet Kohli




Graph Construction

E(a;.a,) = 2a, + 5a;+ 9a, + 44, + 2a,4, + 4;a,

Source (0)
2/ \l 9
a; Q_I’Q a;

N\ /-

Slide credit: Pushmeet Kohli




Graph Construction

E(al,az) - 201 + 5a, + 902 + 40, + 2

Source (0)
B

Slide credit: Pushmeet Kohli

Cost of cut = 11

01=1 02=1

E(1,1) = 11

.

\
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Graph Construction

E(al,az) = 20, + 561"' 902 + 40, + 2

Source (0)
N

Slide credit: Pushmeet Kohli

+ 4,0

st-mincut cost = 8

01=1 02=0

E(1,0) =8




How to compute the st-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between
Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem

In every network, the maximum flow
equals the cost of the st-mincut

Assuming non-negative capacity

31



Maxflow Algorithms

Flow=0

Augmenting Path Based
Algorithms

Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow=0

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

Slide credit: Pushmeet Kohli
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Maxflow Algorithms

Flow=0+2

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

Slide credit: Pushmeet Kohli
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Maxflow Algorithms

Flow =2

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

Slide credit: Pushmeet Kohli

35



Maxflow Algorithms

Flow =2

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Slide credit: Pushmeet Kohli
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Maxflow Algorithms

Flow =2

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

@ 2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Slide credit: Pushmeet Kohli
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Maxflow Algorithms

Flow=2+4 Augmenting Path Based

Algorithms

1. Find path from source to sink
with positive capacity

@ 2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Slide credit: Pushmeet Kohli
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Maxflow Algorithms

Flow =6

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Slide credit: Pushmeet Kohli

39



Maxflow Algorithms

Flow =6

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow=6+2

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Slide credit: Pushmeet Kohli



Maxflow Algorithms

Flow =8

Slide cre

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

dit: Pushmeet Kohli



Maxflow Algorithms

Flow =8

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Slide credit: Pushmeet Kohli
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Flow and Reparametrization

E(a;.a,) = 2a, + 5a;+ 9a, + 44, + 2a,4, + 4;a,

Source (0)
2/ \l 9
a; Q_I’Q a;

N\ /-

Slide credit: Pushmeet Kohli
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Flow and Reparametrization

E(al,az) - + 902 + 462 + 20162 + 6102
I— Source (0)

9 ( )

1 2a; + 5a,
o —Q " = 2(a,+d;) + 3a,

2

/ =2 + 361

4 . ,

Sink (1)

Slide credit: Pushmeet Kohli 45



Flow and Reparametrization

E(al,az) = + 902 + 4&2 + 20162 + 6102
I— Source (0)

9 ( )

1 2a; + 5a,
o —Q " = 2(a,+d;) + 3a,

2

/ =2 + 361

4 . ,

Sink (1)
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Flow and Reparametrization

E(al,az) - 361"' + 20162 + 6102
Source (0)
O ( )
1 9a, + 4a,
o Q—Q " = 4(a,+d,) + 5a,
2
x G ) 4 " 562 J

Sink (1)

Slide credit: Pushmeet Kohli 47



Flow and Reparametrization

E(al,az) - 361"' + 20162 + 6102
Source (0)
O ( )
1 9a, + 4a,
o Q—Q " = 4(a,+d,) + 5a,
2
x G ) 4 " 562 J

Sink (1)

Slide credit: Pushmeet Kohli 48



Flow and Reparametrization

E(al,az) =6+ 3(-11"' 502 + 20162 + 6102

Source (0)
o/ \ /5
1
Qa; Q—_’Q az

N/

Slide credit: Pushmeet Kohli

49



Flow and Reparametrization

E(a;,a,) = 6 + 34,+ Ho + + &,a,
Source (0)
0
1
a; Q_’Q a;
0

Sink (1)

Slide credit: Pushmeet Kohli



Flow and Reparametrization

E(a;.ap) = 6 + 50, + + +d,a,
[ 3a;+ 5a, + 2a,a, |
= 2(a,+a,+a,a,) +a,;+3a
Source (0) (@;+a,+a,d,) +a; 2
- 2(1"'(-1102) +51+302
0]

Fl - 61 "'02"'0162

Qa, ©_1>© a; F2 = 1+d;a,

0
Sink (1)

Slide credit: Pushmeet Kohli 51



Flow and Reparametrization

E(a;.a,) = 8 + a4, + + 3d;a,
[ 3a;+ 5a, + 2a,a, |
= 2(a,;+a,+a;a,) +a;+3a
Source (0) (a;+a;+a;d;) +da;+3a;
- 2(1"'(-1102) +51+302
0

Fl - 61 "'02"'0162

Qa, ©_3>© a; F2 = 1+4,a,

0
Sink (1)

Slide credit: Pushmeet Kohli )



Flow and Reparametrization

E(a;.a,) = 8 + a;+ 3a, + 3d;a,

Source (0)

a, Q—Q a, No n.10re
0 augmenting paths
possible
1 0

Slide credit: Pushmeet Kohli 53




Flow and Reparametrization

E(al ’ 02) =

8

d,;+ 3a, + 34,a,|=—>  Residual Graph

/

Total Flow

bound on the
optimal solution

(positive coefficients)

Source (0)

Sink (1)

Tight Bound --> Inference of the optimal solution becomes trivial

Slide credit: Pushmeet Kohli 54



Flow and Reparametrization

E(GIIOZ) = 8

ﬂ

a,+ 3a, + 3d;a,

/

Total Flow

bound on the

optimal solution

Source (0)
N

Residual Graph
(positive coefficients)

0/ \:” (
“‘3

~\

st-mincut cost = 8

01=1 02=0

E(1,0) =8

Tight Bound --> Inference of the optimal solution becomes trivial

Slide credit: Pushmeet Kohli
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History of Maxflow Algorithms

Augmenting Path and Push-Relabel n: #nodes
m: #edges
year | discoverer(s) | bound ] .
1951 | Dantzig 0(m2mU) U: maximum
1955 | Ford & Fulkerson O(m?0) edge weight
1970 | Dinitz O(nm)
1972 | Edmonds & Karp O(mZlogl)
1973 | Dinitz O(nmlog )
1974 | Karzanov O(n?)
1977 | Cherkassky O(n*m'/?)
1980 | Galil & Naamad O(nmlog® n)
1983 | Sleator & Tarjan O(nmlogn)
1986 | Goldberg & Tarjan O(nmlog(n*/m))
1987 | Ahuja & Orlin O(nm 4 n<logU)
1987 | Ahuja et al. O(nmlog(nylog U /m))
1989 | Cherivan & Hagerup | E(nm + n®log®n)
1990 | Cheriyan et al. O(n3/logn)
1990 | Alon O(nm 4+ n®°/?logn)
1992 | King et al. O(nm 4 n*9)
1993 | Phillips & Westbrook | O(nm(10g,,/, n + log“™ n))
1994 | King et al. O(nm109,, /(n10gn) 1)
1997 | Goldberg & Rao O(m>*4log(n*/m)log U)

Slide credit: Pushmeet Kohli

O(n?*mlog(n?/m)log )

[Slide credit: Andrew Goldbesqg]



History of Maxflow Algorithms

Augmenting Path and Push-Relabel

year | discoverer(s) | bound

1951 | Dantzig | O(m2mU)

1955 | Ford & Fulkerson O(m4U)

1970 | Dinitz O(nm)

1972 | Edmonds & Karp O(m?logl)

1973 | Dinitz O(nmlog )

1974 | Karzanov O(n?)

1977 | Cherkassky O(n*m'/?)

1980 | Galil & Naamad O(nmlog® n)

1983 | Sleator & Tarjan O(nmlogn)

1986 | Goldberg & Tarjan O(nmlog(n*/m))

1987 | Ahuja & Orlin O(nm 4 n<logU)

1987 | Ahuja et al. O(nmlog(nylog U /m))
1989 | Cherivan & Hagerup | E(nm + n®log®n)

1990 | Cheriyan et al. O(n3/logn)

1990 | Alon O(nm 4+ n®°/?logn)
1992 | King et al. O(nm 4 n*9)

1993 | Phillips & Westbrook | O(nm(10g,,/, n + log“™ n))
1994 | King et al. O(nm109,, /(n10gn) 1)
1997 | Goldberg & Rao O(m>*4log(n*/m)log U)

Slide credit: Pushmeet Kohli

O(n?2Pmlog(n?/m)log )

n: #nodes
m: #edges

U: maximum
edge weight

[Slide credit: Andrew Goldbesqg]
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m  Additional slides adopted from:

0 Yuri Boykov: Computing geodesics and minimal
surfaces via graph cuts (ICCV 2003)
http://www.csd.uwo.ca/~yuri/Presentations/iccv03.ppt

0 Pushmeet Kohli: MAP Inference in Discrete Models
(ICCV 2009 tutorial)

http://research.microsoft.com/en-us/um/cambridge/projects/tutorial/
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