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Graph cuts  
(simple example à la Boykov&Jolly, ICCV’01) 

n-links 

s 

t a cut hard  
constraint 

hard  
constraint 

Minimum cost cut can be computed in polynomial time 

(max-flow/min-cut algorithms) 
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Standard minimum s-t cuts algorithms 

 

 Augmenting paths [Ford & Fulkerson, 1962] 

 Push-relabel [Goldberg-Tarjan, 1986] 

 

 

 
 Tree recycling (dynamic trees) [B&K, 2004] 

 Flow recycling (dynamic cuts) [Kohli & Torr, 2005] 

 Cut recycling (active cuts) [Juan & Boykov, 2006] 

 Hierarchical methods 

- in search space [Lombaert et al., CVPR 2005] 

- in edge weights (capacity scaling) [Juan et al., ICCV07] 

 

 

 

adapted to N-D grids used in computer vision 
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Graph cuts applied to multi-view  

reconstruction 

CVPR’05 slides from Vogiatzis, Torr, Cippola 

visual hull 
(silhouettes) 

surface of good photoconsistency 
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Adding regional properties 
(B&J, ICCV’01) 

pqw

n-links 
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t a cut )(tDp

)(sDp

NOTE: hard constrains are not required, in general. 

regional bias example 

suppose                are given  
“expected” intensities  

of object and background 
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EM-style optimization of piece-vice constant Mumford-Shah model 

Adding regional properties 
(B&J, ICCV’01) 

pqw

n-links 

s 

t a cut )(tDp

)(sDp

“expected” intensities of 
object and background 

 
can be re-estimated 
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Adding regional properties 
(B&J, ICCV’01) 

a cut )|Pr(ln)( pppp LILD

given object and background intensity histograms  

)(sDp
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t 

I
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More generally, regional bias can be based on any 
intensity models of object and background 
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Adding regional properties 
(B&J, ICCV’01) 
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Iterative learning of regional color-models 

 GMMRF cuts (Blake et al., ECCV04) 

 Grab-cut (Rother et al., SIGGRAPH 04) 

parametric regional model – Gaussian Mixture (GM) 
designed to guarantee convergence 
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Simple example of energy 
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Boundary term Regional term 

binary object  

segmentation 
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Graph cuts for minimization of  

submodular binary energies             I 

 Characterization of binary energies that can be globally 
minimized by s-t graph cuts [Boros&Hummer, 2002, K&Z 2004] 

 

 

 

 

 Non-submodular cases can be addressed with some 
optimality guarantees, e.g. QPBO algorithm  
• (see Boros&Hummer, 2002,  Tavares et al. 06, Rother et al. 07) 

Npq

qp

p

pp LLELELE ),()()(

},{ tsLp

E(L)  can be minimized 
by s-t  graph cuts 

),(),(),(),( stEtsEttEssE

t-links n-links 

Boundary term Regional term 

Submodularity    (“convexity”) 
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E(x) =  ∑ fi (xi) + ∑ gij (xi,xj) + ∑ hc(xc)  
i ij c 

Unary Pairwise Higher Order 

Image Segmentation 

∑ ci xi + ∑ dij |xi-xj|  
i i,j 

E: {0,1}n → R 

n = number of pixels 
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Example: n = 2, A = [1,0] , B = [0,1] 

f([1,0]) + f([0,1])   f([1,1]) + f([0,0]) 

Property : Sum of submodular functions is submodular 

E(x) = ∑ ci xi + ∑ dij |xi-xj| 
i i,j 

Binary Image Segmentation Energy is submodular 

for all A,B ϵ {0,1}n  f(A) + f(B)    f(A˅B) + f(A˄B) 
(AND) (OR) 

Pseudo-boolean function f {0,1}n  ℝ  is submodular if 
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 Polynomial time algorithms 
 Ellipsoid Algorithm: [Grotschel, Lovasz & Schrijver ‘81]  

 First strongly polynomial algorithm: [Iwata et al.  ’00] [A. Schrijver  ’00] 

 Current Best: O(n5 Q + n6)   [Q is function evaluation time] [Orlin ‘07] 
 

 Symmetric functions: E(x) = E(1-x) 
 Can be minimized in O(n3)  

 
 Minimizing Pairwise submodular functions 

 Can be transformed to st-mincut/max-flow [Hammer , 1965] 

 Very low empirical running time ~ O(n) 

E(X) =  ∑ fi (xi) + ∑ gij (xi,xj) 
i ij 
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Source 

Sink 

v1 v2 

2 

5 

9 

4 
1 

2 

Graph (V, E, C) 
 

Vertices V = {v1, v2 ... vn} 
 

Edges E = {(v1, v2) ....} 
 

Costs C = {c(1, 2) ....} 
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Source 

Sink 

v1 v2 
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What is a st-cut? 
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Source 

Sink 

v1 v2 

2 

5 

9 

4 
1 
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What is a st-cut? 

An st-cut (S,T) divides the nodes 
between source and sink. 

What is the cost of a st-cut? 

Sum of cost of all edges going 
from S to T 

5 + 1 + 9 = 15 
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What is a st-cut? 

An st-cut (S,T) divides the nodes 
between source and sink. 

What is the cost of a st-cut? 

Sum of cost of all edges going 
from S to T 

What is the st-mincut? 

st-cut with the 
minimum cost 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
1 

2 

2 + 2 + 4 = 8 
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Construct a graph such that: 

1. Any st-cut corresponds to an assignment of x  

2. The cost of the cut is equal to the energy of x : E(x) 

Solution 
T 

S st-mincut 

E(x) 

[Hammer, 1965] [Kolmogorov and  Zabih, 2002] 
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E(x) =  ∑ θi (xi) + ∑ θij (xi,xj) 
i,j i 

θij(0,1) + θij
 (1,0)   θij

 (0,0) + θij
 (1,1) For all ij 

E(x) = ∑ ci xi + ∑ cij xi(1-xj)     cij≥0 
i,j i 

Equivalent (transformable) 
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Sink (1) 

Source (0)  

a1 a2 

E(a1,a2) 
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Sink (1) 

Source (0)  

a1 a2 

E(a1,a2) = 2a1 

2 



Slide credit: Pushmeet Kohli 24 

a1 a2 

E(a1,a2) = 2a1 + 5ā1 

2 

5 

Sink (1) 

Source (0)  
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a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 

2 

5 

9 

4 

Sink (1) 

Source (0)  
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a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 
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4 

2 

Sink (1) 

Source (0)  
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a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

2 
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2 
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Sink (1) 

Source (0)  
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a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

2 

5 
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4 

2 

1 

Sink (1) 

Source (0)  
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a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

2 

5 

9 

4 

2 

1 
a1 = 1  a2 = 1 

E (1,1) = 11 

Cost of cut = 11 

Sink (1) 

Source (0)  
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a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

2 

5 

9 

4 

2 

1 

Sink (1) 

Source (0)  

a1 = 1  a2 = 0 

E (1,0) = 8 

st-mincut cost = 8 
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Source 

Sink 

v1 v2 
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1 

Solve the dual maximum flow problem 

Compute the maximum flow between 
Source and Sink s.t. 

Edges: Flow < Capacity 

 Nodes: Flow in = Flow out 

Assuming non-negative capacity 

In every network, the maximum flow 
equals the cost of the st-mincut 

Min-cut\Max-flow Theorem 
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Augmenting Path Based 
Algorithms 

Source 

Sink 

v1 v2 

2 

5 

9 

4 
2 

1 

Flow = 0 
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Augmenting Path Based 
Algorithms 

1. Find path from source to sink 
with positive capacity 

 

Source 

Sink 

v1 v2 
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2 

1 

Flow = 0 
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Augmenting Path Based 
Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 

Source 

Sink 

v1 v2 

2-2 

5-2 

9 

4 
2 

1 

Flow = 0 + 2 
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Source 

Sink 

v1 v2 
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Augmenting Path Based 
Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 

Flow = 2 
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Source 

Sink 

v1 v2 
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1 

Augmenting Path Based 
Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 2 
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Source 
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Augmenting Path Based 
Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 2 
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Source 
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Augmenting Path Based 
Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 2 + 4 
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Source 
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Augmenting Path Based 
Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 6 
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Source 
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Augmenting Path Based 
Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 6 
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Source 

Sink 

v1 v2 

0 

1 

3 

0 
2-2 

1+2 

Augmenting Path Based 
Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 6 + 2 
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Augmenting Path Based 
Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 8 
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Augmenting Path Based 
Algorithms 

1. Find path from source to sink 
with positive capacity 
 

2. Push maximum possible flow 
through this path 
 

3. Repeat until no path can be 
found 

Flow = 8 
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a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 
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Sink (1) 

Source (0)  
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a1 a2 

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 
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Sink (1) 

Source (0)  

2a1 + 5ā1   

 = 2(a1+ā1) + 3ā1  

 = 2 + 3ā1  
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Sink (1) 

Source (0)  

a1 a2 

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 
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2a1 + 5ā1   

 = 2(a1+ā1) + 3ā1  

 = 2 + 3ā1  
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a1 a2 

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2 

0 
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2 

1 
9a2 + 4ā2   

 = 4(a2+ā2) + 5ā2  

 = 4 + 5ā2  

Sink (1) 

Source (0)  
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a1 a2 

E(a1,a2) = 2 + 3ā1+ 5a2 + 4 + 2a1ā2 + ā1a2 
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1 
9a2 + 4ā2   

 = 4(a2+ā2) + 5ā2  

 = 4 + 5ā2  

Sink (1) 

Source (0)  
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a1 a2 

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2 
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Sink (1) 

Source (0)  



Slide credit: Pushmeet Kohli 50 

a1 a2 

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2 
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a1 a2 

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2 
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3ā1+ 5a2 + 2a1ā2  

= 2(ā1+a2+a1ā2) +ā1+3a2 

= 2(1+ā1a2) +ā1+3a2 

F1 = ā1+a2+a1ā2 
 
F2 = 1+ā1a2 

a1 a2 F1 F2 

0 0 1 1 

0 1 2 2 

1 0 1 1 

1 1 1 1 

Sink (1) 

Source (0)  
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a1 a2 

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2 
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3ā1+ 5a2 + 2a1ā2  

= 2(ā1+a2+a1ā2) +ā1+3a2 

= 2(1+ā1a2) +ā1+3a2 

a1 a2 F1 F2 

0 0 1 1 

0 1 2 2 

1 0 1 1 

1 1 1 1 

F1 = ā1+a2+a1ā2 
 
F2 = 1+ā1a2 

Sink (1) 

Source (0)  



Slide credit: Pushmeet Kohli 53 

a1 a2 
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E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2 

No more 
augmenting paths 

possible 

Sink (1) 

Source (0)  
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a1 a2 
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E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2 

Total Flow 

Residual Graph 
(positive coefficients) 

bound on the 
optimal solution 

Tight Bound  --> Inference of the optimal solution becomes trivial 

Sink (1) 

Source (0)  
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E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2 

a1 = 1  a2 = 0 

E (1,0) = 8 

st-mincut cost = 8 

Total Flow 

bound on the 
optimal solution 

Residual Graph 
(positive coefficients) 

Tight Bound  --> Inference of the optimal solution becomes trivial 

Sink (1) 

Source (0)  
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Augmenting Path and Push-Relabel n: #nodes 
 

m: #edges 
 

U: maximum 
edge weight 

Algorithms 
assume non-

negative edge 
weights 
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n: #nodes 
 

m: #edges 
 

U: maximum 
edge weight 

Algorithms 
assume non-

negative edge 
weights 

Augmenting Path and Push-Relabel 
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 Pushmeet Kohli: MAP Inference in Discrete Models 
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http://research.microsoft.com/en-us/um/cambridge/projects/tutorial/ 
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