Markov Random Fields in Image Processing: Graph Cut - Part 3

Zoltan Kato

Image Processing and Computer Graphics Dept. University of Szeged Hungary

Graph cuts
 (simple example à la Boykov\&Jolly, ICCV'01)

Minimum cost cut can be computed in polynomial time (max-flow/min-cut algorithms)

Standard minimum s-t cuts algorithms

- Augmenting paths [Ford \& Fulkerson, 1962]
- Push-relabel [Goldberg-Tarjan, 1986]
adapted to N-D grids used in computer vision
■ Tree recycling (dynamic trees) [B\&K, 2004]
■ Flow recycling (dynamic cuts) [Kohli \& Torr, 2005]
■ Cut recycling (active cuts) [Juan \& Boykov, 2006]
- Hierarchical methods
- in search space [Lombaert et al., CVPR 2005]
- in edge weights (capacity scaling) [Juan et al., $\left.\mathrm{ICCV}_{3} 07\right]$

3D bone segmentidefforil(rewailequtfue screen capture)

Graph cuts applied to multi-view reconstruction

surface of good photoconsistency

Adding regional properties (B\&J, ICCV’01)

regional bias example suppose I^{s} and I^{t} are given
"expected" intensities of object and background

$$
\begin{aligned}
& D_{p}(s) \propto \exp \left(\left\|I_{p}-I^{s}\right\|^{2} / 2 \sigma^{2}\right. \\
& D_{p}(t) \propto \exp \left(\left\|I_{p}-I^{t}\right\|^{2} / 2 \sigma^{2}\right.
\end{aligned}
$$

NOTE: hard constraingeeare matv required, in genesal.

Adding regional properties (B\&J, ICCV’01)

\square
"expected" intensities of object and background

$$
I^{s} \text { and } I^{t}
$$

can be re-estimated

$D_{p}(s) \propto \exp \left(\left\|I_{p}-I^{s}\right\|^{2} / 2 \sigma^{2}\right.$,
$D_{p}(t) \propto \exp \left(\left\|I_{p}-I^{t}\right\|^{2} / 2 \sigma^{2}\right.$,

Adding regional properties (B\&J, ICCV’01)

More generally, regional bias can be based on any intensity models of object and background

$D_{p}\left(L_{p}\right)=-\ln \operatorname{Pr}\left(I_{p} \mid L_{p}\right)$

given object and background intensity histograms

Adding regional properties (B\&J, ICCV’01)

Iterative learning of regional color-models

■ GMMRF cuts (Blake et al., ECCV04)
■ Grab-cut (Rother et al., SIGGRAPH 04)

parametric regional model - Gaussian Mixture (GM) designed to guarantee convergence

Simple example of energy

$$
E(L)=\sum_{p}^{\substack{\text { Regional term } \\ D_{p}\left(L_{p}\right) \\ \text { t-links }} \sum_{p q \in N} w_{p q} \cdot \delta\left(L_{p} \neq L_{q}\right)} \mathbf{\text { n-links }}
$$

$$
L_{p} \in\{s, t\}
$$

binary object segmentation

Graph cuts for minimization of submodular binary energies I

$$
E(L)=\sum_{p}^{\text {Regional term }} E_{p}\left(L_{p}\right)+\sum_{p q \in N} E\left(L_{p}, L_{q}\right) \quad \text { Boundary term }
$$

- Characterization of binary energies that can be globally minimized by s - t graph cuts [Boros\&Hummer, 2002, K\&Z 2004]
$E(L)$ can be minimized by $s-t$ graph cuts

$$
\Leftrightarrow \frac{E(s, s)+E(t, t) \leq E(s, t)+E(t, s)}{\text { Submodularity ("convexity") }}
$$

■ Non-submodular cases can be addressed with some optimality guarantees, e.g. QPBO algorithm

- (see Boros\&Hummer, 2002 Slide credit: Yuri goykov , Rother et al. 07)

The Problem

$$
\begin{aligned}
E(x)= & \sum_{\text {Unary }} f_{i}\left(x_{i}\right)+\underbrace{\sum_{i j} g_{i j}\left(x_{i}, x_{j}\right)}_{\text {Pairwise }}+\underbrace{\sum_{c} h_{c}\left(x_{c}\right)}_{\text {Higher Order }} \\
& \sum_{i} c_{i} x_{i}+\sum_{i, j} d_{i j}\left|x_{i}-x_{j}\right| \quad \begin{array}{r}
E:\{0,1\}^{n} \rightarrow R \\
n=\text { number of pixels }
\end{array}
\end{aligned}
$$

Image

Segmentation

Submodular Functions: Definition

Pseudo-boolean function $f:\{0,1\}^{n} \rightarrow \mathbb{R}$ is submodular if

$$
f(A)+f(B) \geq \underset{(O R)}{f(A \vee B)+\underset{(A N D)}{f(A \wedge B)} \quad \text { for all } A, B \in\{0,1\}^{n}}
$$

Example: $\boldsymbol{n}=2, \mathrm{~A}=[1,0], \mathrm{B}=[0,1]$

$$
f([1,0])+f([0,1]) \geq f([1,1])+f([0,0])
$$

Property : Sum of submodular functions is submodular
Binary Image Segmentation Energy is submodular

$$
E(x)=\sum_{i} c_{i} x_{i}+\sum_{i, j} d_{i j}\left|x_{i}-x_{j}\right|
$$

Minimizing Submodular Functions

- Polynomial time algorithms
- Ellipsoid Algorithm: [Grotschel, Lovasz \& Schrijver '81]
" First strongly polynomial algorithm: [lwata et al. 'oo] [A. Schrijver 'oo]
- Current Best: $\mathrm{O}\left(\mathrm{n}^{5} \mathrm{Q}+\mathrm{n}^{6}\right)$ [O is function evaluation time] [Orlin 'o7]
- Symmetric functions: $E(x)=E(1-x)$
- Can be minimized in $\mathrm{O}\left(\mathrm{n}^{3}\right)$
- Minimizing Pairwise submodular functions
- Can be transformed to st-mincut/max-flow [Hammer, 1965]
- Very low empirical running time $\sim O(n)$

$$
E(X)=\sum_{i} f_{i}\left(x_{i}\right)+\sum_{i j} g_{i j}\left(x_{i}, x_{j}\right)
$$

The st-Mincut Problem

Graph (V, E, C)

Vertices $V=\left\{v_{1}, v_{2} \ldots v_{n}\right\}$
Edges $E=\left\{\left(v_{1}, v_{2}\right) \ldots\right\}$
Costs $C=\left\{c_{(1,2)} \ldots\right\}$

The st-Mincut Problem

What is a st-cut?

The st-Mincut Problem

What is a st-cut?

$$
5+1+9=15
$$

An st-cut (S, T) divides the nodes

 between source and sink.
What is the cost of a st-cut?

> Sum of cost of all edges going from S to T

The st-Mincut Problem

What is a st-cut?

What is the cost of a st-cut?

What is the st-mincut?

```
st-cut with the minimum cost
```

$$
2+2+4=8
$$

An st-cut (S,T) divides the nodes

 between source and sink.\author{

Sum of cost of all edges going from S to T

}
st-cut with the
minimum cost

So how does this work?

Construct a graph such that:

1. Any st-cut corresponds to an assignment of x
2. The cost of the cut is equal to the energy of $x: E(x)$
$E(x)$

Solution

St-mincut and Energy Minimization

$$
E(x)=\sum_{i} \theta_{i}\left(x_{i}\right)+\sum_{i, j} \theta_{i j}\left(x_{i}, x_{j}\right)
$$

For all ij $\boldsymbol{\theta}_{\mathrm{ij}}(0,1)+\boldsymbol{\theta}_{\mathrm{ij}}(1,0) \geq \boldsymbol{\theta}_{\mathrm{ij}}(0,0)+\boldsymbol{\theta}_{\mathrm{ij}}(1,1)$
Equivalent (transformable)

$$
\begin{equation*}
E(x)=\sum_{i} c_{i} x_{i}+\sum_{i, j} c_{i j} x_{i}\left(1-x_{j}\right) \tag{ij}
\end{equation*}
$$

Graph Construction

$E\left(a_{1}, a_{2}\right)$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Graph Construction

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Sink (1)

How to compute the st-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut Max-flow Theorem
 In every network, the maximum flow equals the cost of the st-mincut

Assuming non-negative capacity

Maxflow Algorithms

Flow = 0

Augmenting Path Based Algorithms

Maxflow Algorithms

Flow = 0

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity

Maxflow Algorithms

Flow = 0 + 2

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path

Maxflow Algorithms

Flow = 2

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path

Maxflow Algorithms

Flow = 2

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow = 2

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow = $2+4$

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow = 6

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow = 6

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow = 6 + 2

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow = 8

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Maxflow Algorithms

Flow = 8

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity
2. Push maximum possible flow through this path
3. Repeat until no path can be found

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=2 a_{1}+5 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

$$
\begin{aligned}
& 2 a_{1}+5 \bar{a}_{1} \\
& =2\left(a_{1}+\bar{a}_{1}\right)+3 \bar{a}_{1} \\
& =2+3 \bar{a}_{1}
\end{aligned}
$$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=2+3 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

$$
\begin{aligned}
& 2 a_{1}+5 \bar{a}_{1} \\
& =2\left(a_{1}+\bar{a}_{1}\right)+3 \bar{a}_{1} \\
& =2+3 \bar{a}_{1}
\end{aligned}
$$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=2+3 \bar{a}_{1}+9 a_{2}+4 \bar{a}_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=2+3 \bar{a}_{1}+5 a_{2}+4+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=6+3 \bar{a}_{1}+5 a_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=6+3 \bar{a}_{1}+5 a_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=6+3 \bar{a}_{1}+5 a_{2}+2 a_{1} \bar{a}_{2}+\bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}$

Flow and Reparametrization

$E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}$

No more augmenting paths possible

Flow and Reparametrization

$$
E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}
$$

Residual Graph (positive coefficients)

Total Flow
bound on the optimal solution

Tight Bound --> Inference of the optimal solution becomes trivial

Flow and Reparametrization

$$
E\left(a_{1}, a_{2}\right)=8+\bar{a}_{1}+3 a_{2}+3 \bar{a}_{1} a_{2}
$$

Total Flow
bound on the optimal solution

Residual Graph (positive coefficients)

Tight Bound --> Inference of the optimal solution becomes trivial

History of Maxflow Algorithms

Augmenting Path and Push-Relabel
n: \#nodes m: \#edges

year	discoverer(s)	bound
1951	Dantzig	$O\left(n^{2} m U\right)$
1955	Ford \& Fulkerson	$O\left(m^{2} U\right)$
1970	Dinitz	$O\left(n^{2} m\right)$
1972	Edmonds \& Karp	$O\left(m^{2} \log U\right)$
1973	Dinitz	$O(n m \log U)$
1974	Karzanov	$O\left(n^{3}\right)$
1977	Cherkassky	$O\left(n^{2} m^{1 / 2}\right)$
1980	Galil \& Naamad	$O\left(n m \log ^{2} n\right)$
1983	Sleator \& Tarjan	$O(n m \log n)$
1986	Goldberg \& Tarjan	$O\left(n m \log \left(n^{2} / m\right)\right)$
1987	Ahuja \& Orlin	$O\left(n m+n^{2} \log U\right)$
1987	Ahuja et al.	$O(n m \log (n \sqrt{\log U / m))}$
1989	Cheriyan \& Hagerup	$E\left(n m+n^{2} \log { }^{2} n\right)$
1990	Cheriyan et al.	$O\left(n^{3} / \log ^{n}\right)$
1990	Alon	$O\left(n m+n^{8 / 3} \log n\right)$
1992	King et al.	$O\left(n m+n^{2+\epsilon}\right)$
1993	Phillips \& Westbrook	$O\left(n m\left(\log _{m / n} n+\log { }^{2+\epsilon} n\right)\right)$
1994	King et al.	$O\left(n m \log _{m /(n \log n)} n\right)$
1997	Goldberg \& Rao	$O\left(m^{3 / 2} \log \left(n^{2} / m\right) \log U\right)$
		$O\left(n^{2 / 3} m \log \left(n^{2} / m\right) \log U\right)$

U: maximum edge weight

Algorithms

assume non-
negative edge weights

History of Maxflow Algorithms

Augmenting Path and Push-Relabel
n: \#nodes m: \#edges

year	discoverer(s)	bound
1951	Dantzig	$O\left(n^{2} m U\right)$
1955	Ford \& Fulkerson	$O\left(m^{2} U\right)$
1970	Dinitz	$O\left(n^{2} m\right)$
1972	Edmonds \& Karp	$O\left(m^{2} \log U\right)$
1973	Dinitz	$O(n m \log U)$
1974	Karzanov	$O\left(n^{3}\right)$
1977	Cherkassky	$O\left(n^{2} m^{1 / 2}\right)$
1980	Galil \& Naamad	$O\left(n m \log ^{2} n\right)$
1983	Sleator \& Tarjan	$O\left(n m \log _{n} n\right)$
1986	Goldberg \& Tarjan	$O\left(n m \log \left(n^{2} / m\right)\right)$
1987	Ahuja \& Orlin	$O\left(n m+n^{2} \log U\right)$
1987	Ahuja et al.	$O(n m \log (n \sqrt{\log U / m))}$
1989	Cheriyan \& Hagerup	$E\left(n m+n^{2} \log { }^{2} n\right)$
1990	Cheriyan et al.	$O\left(n^{3} / \log n\right)$
1990	Alon	$O\left(n m+n^{8 / 3} \log n\right)$
1992	King et al.	$O\left(n m+n^{2+\epsilon}\right)$
1993	Phillips \& Westbrook	$O\left(n m\left(\log _{m / n} n+\log { }^{2+\epsilon} n\right)\right)$
1994	King et al.	$O\left(n m \log _{m /(n \log n)} n\right)$
1997	Goldberg \& Rao	$O\left(m^{3 / 2} \log \left(n^{2} / m\right) \log U\right)$
		$O\left(n^{2 / 3} m \log \left(n^{2} / m\right) \log U\right)$

U: maximum edge weight

Algorithms

assume non-
negative edge weights

References

- Visit http://www.inf.u-szeged.hu/~kato/
- Additional slides adopted from:
\square Yuri Boykov: Computing geodesics and minimal surfaces via graph cuts (ICCV 2003) http://www.csd.uwo.ca/~yuri/Presentations/iccv03.ppt
\square Pushmeet Kohli: MAP Inference in Discrete Models (ICCV 2009 tutorial) http://research.microsoft.com/en-us/um/cambridge/projects/tutorial/

