Energy Minimization Methods in Image Segmentation – University of Szeged, Hungary (2009)

Markov Random Fields in Image Processing: Graph Cut - Part 3

Zoltan Kato

Image Processing and Computer Graphics Dept. University of Szeged Hungary

Graph cuts (simple example à la Boykov&Jolly, ICCV'01)

Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)

Slide credit: Yuri Boykov

E

Corp. Research

Princeton, NJ

Princeton, NJ

Augmenting paths [Ford & Fulkerson, 1962]Push-relabel [Goldberg-Tarjan, 1986]

adapted to N-D grids used in computer vision

- Tree recycling (dynamic trees) [B&K, 2004]
- Flow recycling (*dynamic cuts*) [Kohli & Torr, 2005]
- Cut recycling (*active cuts*) [Juan & Boykov, 2006]
- Hierarchical methods
 - in search space [Lombaert et al., CVPR 2005]
 - in edge weights (*capacity scaling*) [Juan et al., ICCV₃07]

3D bone segmentiation (real Barkie screen capture)

Graph cuts applied to multi-view reconstruction

surface of good photoconsistency

CVPR'05 slides fire indivergitatzis, Torr, Cippola

NOTE: hard constrainseare not required, in general.

regional bias example

suppose *I*^s and *I*^t are given "expected" intensities of object and background

EM-style optimization of piece-vice constant Mumford-Shah model

More generally, regional bias can be based on any intensity models of object and background

$$D_{p}(L_{p}) = -\ln \Pr(I_{p} | L_{p})$$

$$\Pr(I_{p} | t)$$

$$\Pr(I_{p} | s)$$

given object and background intensity histograms

Iterative learning of regional color-models

GMMRF cuts (Blake et al., ECCV04)Grab-cut (Rother et al., SIGGRAPH 04)

parametric regional model – Gaussian Mixture (GM)

designed to guarantee convergence

Slide credit: Yuri Boykov

Simple example of energy

Graph cuts for minimization of submodular binary energies I

Characterization of **binary** energies that can be globally minimized by *s*-*t* graph cuts [Boros&Hummer, 2002, K&Z 2004]

$$E(L)$$
 can be minimized
by *s-t* graph cuts $\longleftrightarrow E(s,s) + E(t,t) \le E(s,t) + E(t,s)$ Submodularity(`convexity")

■ **Non-submodular cases** can be addressed with some optimality guarantees, e.g. *QPBO* algorithm

• (see Boros&Hummer, 2002, Tavares et al. 06, Rother et al. 07) Slide credit: Yuri Boykov, Rother et al. 07)

The Problem

$$\mathsf{E}(\mathbf{x}) = \sum_{i} f_{i}(\mathbf{x}_{i}) + \sum_{ij} g_{ij}(\mathbf{x}_{i},\mathbf{x}_{j}) + \sum_{c} h_{c}(\mathbf{x}_{c})$$

Unary

Pairwise

Higher Order

$$\sum_{i} c_{i} \mathbf{x}_{i} + \sum_{i,j} d_{ij} |\mathbf{x}_{i} - \mathbf{x}_{j}| \qquad E: \{0,1\}^{n} \to \mathbb{R}$$

$$n = number of pixels$$

Image Slide credit: Pushmeet Kohli

Submodular Functions: Definition

Pseudo-boolean function $f:\{0,1\}^n \to \mathbb{R}$ is submodular if $f(A) + f(B) \ge f(A \lor B) + f(A \land B)$ for all $A, B \in \{0,1\}^n$ (OR) (AND)

Example: n = 2, A = [1,0], B = [0,1] $f([1,0]) + f([0,1]) \ge f([1,1]) + f([0,0])$

Property : Sum of **submodular** functions is **submodular**

Binary Image Segmentation Energy is submodular

$$E(\mathbf{x}) = \sum_{i} c_{i} \mathbf{x}_{i} + \sum_{i,j} d_{ij} |\mathbf{x}_{i} - \mathbf{x}_{j}|$$

Minimizing Submodular Functions

- Polynomial time algorithms
 - Ellipsoid Algorithm: [Grotschel, Lovasz & Schrijver '81]
 - First strongly polynomial algorithm: [Iwata et al. 'oo] [A. Schrijver 'oo]
 - Current Best: O(n⁵Q + n⁶) [Q is function evaluation time] [Orlin '07]
- Symmetric functions: E(x) = E(1-x)
 - Can be minimized in O(n³)
- Minimizing Pairwise submodular functions
 - Can be transformed to st-mincut/max-flow [Hammer, 1965]
 - Very low empirical running time ~ O(n)

$$E(X) = \sum_{i} f_{i}(x_{i}) + \sum_{ij} g_{ij}(x_{i},x_{j})$$

Slide credit: Pushmeet Kohli

What is a st-cut?

What is a st-cut?

An st-cut (**S**,**T**) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

2 + 2 + 4

What is a st-cut?

An st-cut (**S**,**T**) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

What is the st-mincut?

st-cut with the minimum cost

Slide credit: Pushmeet Kohli

So how does this work?

Construct a graph such that:

- **1.** Any st-cut corresponds to an assignment of x
- 2. The cost of the cut is equal to the energy of x : E(x)

Slide credit: Pushmeet Kohii [Hammer, 1965] [Kolmogorov and Zabih, 2002]

St-mincut and Energy Minimization

$$E(x) = \sum_{i} \Theta_{i} (x_{i}) + \sum_{i,j} \Theta_{ij} (x_{i}, x_{j})$$
For all ij $\Theta_{ij}(0,1) + \Theta_{ij} (1,0) \ge \Theta_{ij} (0,0) + \Theta_{ij} (1,1)$

$$Equivalent (transformable)$$

$$E(x) = \sum_{i} c_{i} x_{i} + \sum_{i,j} c_{ij} x_{i} (1-x_{j})$$

$$c_{ij} \ge 0$$

 $E(a_1, a_2)$

 $E(a_1, a_2) = 2a_1$

 $E(a_1, a_2) = 2a_1 + 5\bar{a}_1$

 $E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2$

 $E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + 2a_1\bar{a}_2$

How to compute the st-mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink s.t.

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut\Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut

Assuming non-negative capacity

Flow = 0

Augmenting Path Based Algorithms

Slide credit: Pushmeet Kohli

Flow = 0

Augmenting Path Based Algorithms

1. Find path from source to sink with positive capacity

Flow = 0 + 2

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path

Flow = 2

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path

Flow = 2

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 2

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 2 + 4

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 6

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 6

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 6 + 2

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 8

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

Flow = 8

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Repeat until no path can be found

 $E(a_1, a_2) = 2 + 3\bar{a}_1 + 5a_2 + 4 + 2a_1\bar{a}_2 + \bar{a}_1a_2$

 $E(a_1, a_2) = 6 + 3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2 + \bar{a}_1a_2$

 $E(a_1, a_2) = 6 + 3\bar{a}_1 + 5\bar{a}_2 + 2\bar{a}_1\bar{a}_2 + \bar{a}_1a_2$

 $E(a_1, a_2) = 6 + 3\bar{a}_1 + 5\bar{a}_2 + 2\bar{a}_1\bar{a}_2 + \bar{a}_1a_2$

$3\bar{a}_1 + 5a_2 + 2a_1\bar{a}_2$
= $2(\bar{a}_1 + a_2 + a_1 \bar{a}_2) + \bar{a}_1 + 3a_2$
$= 2(1 + \bar{a}_1 a_2) + \bar{a}_1 + 3 a_2$

$$F1 = \bar{a}_1 + a_2 + a_1 \bar{a}_2$$

$$r z = 1 + a_1 a_2$$

a 1	a ₂	F1	F2
0	0	1	1
0	1	2	2
1	0	1	1
1	1	1	1

 $E(a_1, a_2) = 8 + \overline{a_1} + 3a_2 + 3\overline{a_1}a_2$

$$3\bar{a}_{1} + 5a_{2} + 2a_{1}\bar{a}_{2}$$

= 2($\bar{a}_{1} + a_{2} + a_{1}\bar{a}_{2}$) + $\bar{a}_{1} + 3a_{2}$
= 2(1+ $\bar{a}_{1}a_{2}$) + $\bar{a}_{1} + 3a_{2}$

F1 =
$$\bar{a}_1 + a_2 + a_1 \bar{a}_2$$

F2 = 1+ $\bar{a}_1 a_2$

a ₁	a ₂	F1	F2
0	0	1	1
0	1	2	2
1	0	1	1
1	1	1	1

 $E(a_1, a_2) = 8 + \bar{a}_1 + 3a_2 + 3\bar{a}_1a_2$

Tight Bound --> Inference of the optimal solution becomes trivial Slide credit: Pushmeet Kohli

Tight Bound --> Inference of the optimal solution becomes trivial Slide credit: Pushmeet Kohli 55

History of Maxflow Algorithms

Augmenting Path and Push-Relabel

discoverer(s)	bound
Dantzig	$O(n^2mU)$
Ford & Fulkerson	$O(m^2U)$
Dinitz	$O(n^2m)$
Edmonds & Karp	$O(m^2 \log U)$
Dinitz	$O(nm \log U)$
Karzanov	$O(n^3)$
Cherkassky	$O(n^2m^{1/2})$
Galil & Naamad	$O(nm\log^2 n)$
Sleator & Tarjan	$O(nm\log n)$
Goldberg & Tarjan	$O(nm\log(n^2/m))$
Ahuja & Orlin	$O(nm + n^2 \log U)$
Ahuja et al.	$O(nm\log(n\sqrt{\log U}/m))$
Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
Cheriyan et al.	$O(n^3/\log n)$
Alon	$O(nm + n^{8/3} \log n)$
King et al.	$O(nm + n^{2+\epsilon})$
Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
King et al.	$O(nm \log_{m/(n \log n)} n)$
Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$ $O(n^{2/3}m\log(n^2/m)\log U)$
	Dantzig Ford & Fulkerson Dinitz Edmonds & Karp Dinitz Karzanov Cherkassky Galil & Naamad Sleator & Tarjan Goldberg & Tarjan Ahuja & Orlin Ahuja et al. Cheriyan & Hagerup Cheriyan et al. Alon King et al. Phillips & Westbrook King et al.

n: #nodesm: #edgesU: maximumedge weight

Algorithms assume nonnegative edge weights

History of Maxflow Algorithms

Augmenting Path and Push-Relabel

year	discoverer(s)	bound
1951	Dantzig	$O(n^2mU)$
1955	Ford & Fulkerson	$O(m^2U)$
1970	Dinitz	$O(n^2m)$
1972	Edmonds & Karp	$O(m^2 \log U)$
1973	Dinitz	$O(nm \log U)$
1974	Karzanov	$O(n^3)$
1977	Cherkassky	$O(n^2m^{1/2})$
1980	Galil & Naamad	$O(nm\log^2 n)$
1983	Sleator & Tarjan	$O(nm\log n)$
1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/m))$
1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
1990	Cheriyan et al.	$O(n^3/\log n)$
1990	Alon	$O(nm + n^{8/3} \log n)$
1992	King et al.	$O(nm + n^{2+\epsilon})$
1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
1994	King et al.	$O(nm \log_{m/(n \log n)} n)$
1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
		$O(n^{2/3}m\log(n^2/m)\log U)$

n: #nodesm: #edgesU: maximumedge weight

Algorithms assume nonnegative edge weights

[Slide credit: Andrew Goldberg]

References

Visit http://www.inf.u-szeged.hu/~kato/

- Additional slides adopted from:
 - Yuri Boykov: Computing geodesics and minimal surfaces via graph cuts (ICCV 2003) <u>http://www.csd.uwo.ca/~yuri/Presentations/iccv03.ppt</u>

Pushmeet Kohli: MAP Inference in Discrete Models (ICCV 2009 tutorial) <u>http://research.microsoft.com/en-us/um/cambridge/projects/tutorial/</u>