
Markov Random Fields

in Image Processing:

Graph Cut - Part 3

Zoltan Kato

 Image Processing and Computer Graphics Dept.

 University of Szeged

 Hungary

Energy Minimization Methods in Image Segmentation – University of Szeged, Hungary (2009)

Corp. Research

Princeton, NJ

Slide credit: Yuri Boykov 2

Graph cuts
(simple example à la Boykov&Jolly, ICCV’01)

n-links

s

t a cut hard
constraint

hard
constraint

Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)

Corp. Research

Princeton, NJ

Slide credit: Yuri Boykov 3

Standard minimum s-t cuts algorithms

 Augmenting paths [Ford & Fulkerson, 1962]

 Push-relabel [Goldberg-Tarjan, 1986]

 Tree recycling (dynamic trees) [B&K, 2004]

 Flow recycling (dynamic cuts) [Kohli & Torr, 2005]

 Cut recycling (active cuts) [Juan & Boykov, 2006]

 Hierarchical methods

- in search space [Lombaert et al., CVPR 2005]

- in edge weights (capacity scaling) [Juan et al., ICCV07]

adapted to N-D grids used in computer vision

Corp. Research

Princeton, NJ

Slide credit: Yuri Boykov 4 3D bone segmentation (real time screen capture)

Slide credit: Yuri Boykov 5

Graph cuts applied to multi-view

reconstruction

CVPR’05 slides from Vogiatzis, Torr, Cippola

visual hull
(silhouettes)

surface of good photoconsistency

Slide credit: Yuri Boykov 6

Adding regional properties
(B&J, ICCV’01)

pqw

n-links

s

t a cut)(tDp

)(sDp

NOTE: hard constrains are not required, in general.

regional bias example

suppose are given
“expected” intensities

of object and background

ts II and 22 2/||||exp)(s

pp IIsD

22 2/||||exp)(t

pp IItD

Slide credit: Yuri Boykov 7 NOTE: hard constrains are not required, in general.

EM-style optimization of piece-vice constant Mumford-Shah model

Adding regional properties
(B&J, ICCV’01)

pqw

n-links

s

t a cut)(tDp

)(sDp

“expected” intensities of
object and background

can be re-estimated

ts II and

22 2/||||exp)(s

pp IIsD

22 2/||||exp)(t

pp IItD

Slide credit: Yuri Boykov 8

Adding regional properties
(B&J, ICCV’01)

a cut)|Pr(ln)(pppp LILD

given object and background intensity histograms

)(sDp

)(tDp s

t

I
)|Pr(sI p

)|Pr(tI p

pI

More generally, regional bias can be based on any
intensity models of object and background

Slide credit: Yuri Boykov 9

Adding regional properties
(B&J, ICCV’01)

Slide credit: Yuri Boykov 10

Iterative learning of regional color-models

 GMMRF cuts (Blake et al., ECCV04)

 Grab-cut (Rother et al., SIGGRAPH 04)

parametric regional model – Gaussian Mixture (GM)
designed to guarantee convergence

Slide credit: Yuri Boykov 11

Simple example of energy

Npq

qppq

p

pp LLwLDLE)()()(

},{ tsLp

t-links n-links

Boundary term Regional term

binary object

segmentation

pqw

n-links

s

t a cut
)(tDp

)(sDp

Slide credit: Yuri Boykov 12

Graph cuts for minimization of

submodular binary energies I

 Characterization of binary energies that can be globally
minimized by s-t graph cuts [Boros&Hummer, 2002, K&Z 2004]

 Non-submodular cases can be addressed with some
optimality guarantees, e.g. QPBO algorithm
• (see Boros&Hummer, 2002, Tavares et al. 06, Rother et al. 07)

Npq

qp

p

pp LLELELE),()()(

},{ tsLp

E(L) can be minimized
by s-t graph cuts

),(),(),(),(stEtsEttEssE

t-links n-links

Boundary term Regional term

Submodularity (“convexity”)

Slide credit: Pushmeet Kohli 13

E(x) = ∑ fi (xi) + ∑ gij (xi,xj) + ∑ hc(xc)
i ij c

Unary Pairwise Higher Order

Image Segmentation

∑ ci xi + ∑ dij |xi-xj|
i i,j

E: {0,1}n → R

n = number of pixels

Slide credit: Pushmeet Kohli 14

Example: n = 2, A = [1,0] , B = [0,1]

f([1,0]) + f([0,1]) f([1,1]) + f([0,0])

Property : Sum of submodular functions is submodular

E(x) = ∑ ci xi + ∑ dij |xi-xj|
i i,j

Binary Image Segmentation Energy is submodular

for all A,B ϵ {0,1}n f(A) + f(B) f(A˅B) + f(A˄B)
(AND) (OR)

Pseudo-boolean function f {0,1}n ℝ is submodular if

Slide credit: Pushmeet Kohli 15

 Polynomial time algorithms
 Ellipsoid Algorithm: [Grotschel, Lovasz & Schrijver ‘81]

 First strongly polynomial algorithm: [Iwata et al. ’00] [A. Schrijver ’00]

 Current Best: O(n5 Q + n6) [Q is function evaluation time] [Orlin ‘07]

 Symmetric functions: E(x) = E(1-x)
 Can be minimized in O(n3)

 Minimizing Pairwise submodular functions

 Can be transformed to st-mincut/max-flow [Hammer , 1965]

 Very low empirical running time ~ O(n)

E(X) = ∑ fi (xi) + ∑ gij (xi,xj)
i ij

Slide credit: Pushmeet Kohli 16

Source

Sink

v1 v2

2

5

9

4
1

2

Graph (V, E, C)

Vertices V = {v1, v2 ... vn}

Edges E = {(v1, v2)}

Costs C = {c(1, 2)}

Slide credit: Pushmeet Kohli 17

Source

Sink

v1 v2

2

5

9

4
1

2

What is a st-cut?

Slide credit: Pushmeet Kohli 18

Source

Sink

v1 v2

2

5

9

4
1

2

What is a st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going
from S to T

5 + 1 + 9 = 15

Slide credit: Pushmeet Kohli 19

What is a st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going
from S to T

What is the st-mincut?

st-cut with the
minimum cost

Source

Sink

v1 v2

2

5

9

4
1

2

2 + 2 + 4 = 8

Slide credit: Pushmeet Kohli 20

Construct a graph such that:

1. Any st-cut corresponds to an assignment of x

2. The cost of the cut is equal to the energy of x : E(x)

Solution
T

S st-mincut

E(x)

[Hammer, 1965] [Kolmogorov and Zabih, 2002]

Slide credit: Pushmeet Kohli 21

E(x) = ∑ θi (xi) + ∑ θij (xi,xj)
i,j i

θij(0,1) + θij
 (1,0) θij

 (0,0) + θij
 (1,1) For all ij

E(x) = ∑ ci xi + ∑ cij xi(1-xj) cij≥0
i,j i

Equivalent (transformable)

Slide credit: Pushmeet Kohli 22

Sink (1)

Source (0)

a1 a2

E(a1,a2)

Slide credit: Pushmeet Kohli 23

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2a1

2

Slide credit: Pushmeet Kohli 24

a1 a2

E(a1,a2) = 2a1 + 5ā1

2

5

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 25

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2

2

5

9

4

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 26

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2

2

5

9

4

2

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 27

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4

2

1

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 28

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4

2

1

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 29

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4

2

1
a1 = 1 a2 = 1

E (1,1) = 11

Cost of cut = 11

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 30

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4

2

1

Sink (1)

Source (0)

a1 = 1 a2 = 0

E (1,0) = 8

st-mincut cost = 8

Slide credit: Pushmeet Kohli 31

Source

Sink

v1 v2

2

5

9

4
2

1

Solve the dual maximum flow problem

Compute the maximum flow between
Source and Sink s.t.

Edges: Flow < Capacity

 Nodes: Flow in = Flow out

Assuming non-negative capacity

In every network, the maximum flow
equals the cost of the st-mincut

Min-cut\Max-flow Theorem

Slide credit: Pushmeet Kohli 32

Augmenting Path Based
Algorithms

Source

Sink

v1 v2

2

5

9

4
2

1

Flow = 0

Slide credit: Pushmeet Kohli 33

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

Source

Sink

v1 v2

2

5

9

4
2

1

Flow = 0

Slide credit: Pushmeet Kohli 34

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

Source

Sink

v1 v2

2-2

5-2

9

4
2

1

Flow = 0 + 2

Slide credit: Pushmeet Kohli 35

Source

Sink

v1 v2

0

3

9

4
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

Flow = 2

Slide credit: Pushmeet Kohli 36

Source

Sink

v1 v2

0

3

9

4
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 2

Slide credit: Pushmeet Kohli 37

Source

Sink

v1 v2

0

3

9

4
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 2

Slide credit: Pushmeet Kohli 38

Source

Sink

v1 v2

0

3

5

0
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 2 + 4

Slide credit: Pushmeet Kohli 39

Source

Sink

v1 v2

0

3

5

0
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 6

Slide credit: Pushmeet Kohli 40

Source

Sink

v1 v2

0

3

5

0
2

1

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 6

Slide credit: Pushmeet Kohli 41

Source

Sink

v1 v2

0

1

3

0
2-2

1+2

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 6 + 2

Slide credit: Pushmeet Kohli 42

Source

Sink

v1 v2

0

2

4

0

3

0

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 8

Slide credit: Pushmeet Kohli 43

Source

Sink

v1 v2

0

2

4

0

3

0

Augmenting Path Based
Algorithms

1. Find path from source to sink
with positive capacity

2. Push maximum possible flow
through this path

3. Repeat until no path can be
found

Flow = 8

Slide credit: Pushmeet Kohli 44

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4

2

1

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 45

a1 a2

E(a1,a2) = 2a1 + 5ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

2

5

9

4

2

1

Sink (1)

Source (0)

2a1 + 5ā1

 = 2(a1+ā1) + 3ā1

 = 2 + 3ā1

Slide credit: Pushmeet Kohli 46

Sink (1)

Source (0)

a1 a2

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

0

3

9

4

2

1
2a1 + 5ā1

 = 2(a1+ā1) + 3ā1

 = 2 + 3ā1

Slide credit: Pushmeet Kohli 47

a1 a2

E(a1,a2) = 2 + 3ā1+ 9a2 + 4ā2 + 2a1ā2 + ā1a2

0

3

9

4

2

1
9a2 + 4ā2

 = 4(a2+ā2) + 5ā2

 = 4 + 5ā2

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 48

a1 a2

E(a1,a2) = 2 + 3ā1+ 5a2 + 4 + 2a1ā2 + ā1a2

0

3

5

0

2

1
9a2 + 4ā2

 = 4(a2+ā2) + 5ā2

 = 4 + 5ā2

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 49

a1 a2

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2

0

3

5

0

2

1

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 50

a1 a2

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2

0

3

5

0

2

1

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 51

a1 a2

E(a1,a2) = 6 + 3ā1+ 5a2 + 2a1ā2 + ā1a2

0

3

5

0

2

1

3ā1+ 5a2 + 2a1ā2

= 2(ā1+a2+a1ā2) +ā1+3a2

= 2(1+ā1a2) +ā1+3a2

F1 = ā1+a2+a1ā2

F2 = 1+ā1a2

a1 a2 F1 F2

0 0 1 1

0 1 2 2

1 0 1 1

1 1 1 1

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 52

a1 a2

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

0

1

3

0

0

3

3ā1+ 5a2 + 2a1ā2

= 2(ā1+a2+a1ā2) +ā1+3a2

= 2(1+ā1a2) +ā1+3a2

a1 a2 F1 F2

0 0 1 1

0 1 2 2

1 0 1 1

1 1 1 1

F1 = ā1+a2+a1ā2

F2 = 1+ā1a2

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 53

a1 a2

0

1

3

0

0

3

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

No more
augmenting paths

possible

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 54

a1 a2

0

1

3

0

0

3

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

Total Flow

Residual Graph
(positive coefficients)

bound on the
optimal solution

Tight Bound --> Inference of the optimal solution becomes trivial

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 55

a1 a2

0

1

3

0

0

3

E(a1,a2) = 8 + ā1+ 3a2 + 3ā1a2

a1 = 1 a2 = 0

E (1,0) = 8

st-mincut cost = 8

Total Flow

bound on the
optimal solution

Residual Graph
(positive coefficients)

Tight Bound --> Inference of the optimal solution becomes trivial

Sink (1)

Source (0)

Slide credit: Pushmeet Kohli 56 [Slide credit: Andrew Goldberg]

Augmenting Path and Push-Relabel n: #nodes

m: #edges

U: maximum
edge weight

Algorithms
assume non-

negative edge
weights

Slide credit: Pushmeet Kohli 57 [Slide credit: Andrew Goldberg]

n: #nodes

m: #edges

U: maximum
edge weight

Algorithms
assume non-

negative edge
weights

Augmenting Path and Push-Relabel

Zoltan Kato: Energy Minimzation Methods in Image Segmentation 58

References

 Visit
http://www.inf.u-szeged.hu/~kato/

 Additional slides adopted from:

 Yuri Boykov: Computing geodesics and minimal

surfaces via graph cuts (ICCV 2003)
http://www.csd.uwo.ca/~yuri/Presentations/iccv03.ppt

 Pushmeet Kohli: MAP Inference in Discrete Models

(ICCV 2009 tutorial)
http://research.microsoft.com/en-us/um/cambridge/projects/tutorial/

http://www.inf.u-szeged.hu/~kato/
http://www.inf.u-szeged.hu/~kato/
http://www.inf.u-szeged.hu/~kato/
http://www.csd.uwo.ca/~yuri/Presentations/iccv03.ppt
http://research.microsoft.com/en-us/um/cambridge/projects/tutorial/
http://research.microsoft.com/en-us/um/cambridge/projects/tutorial/
http://research.microsoft.com/en-us/um/cambridge/projects/tutorial/

