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Basic Idea

• Consider images as a statistical mechanics system ⇒
intensity levels become states of atoms or molecules

• Assign an energy function to the system ⇒ Gibbs 
distribution ⇒ Markov random field (MRF) image model

• Restoration in a Bayesian framework ⇒ objective is to 
maximize the posterior distribution

• Isolate low energy states of the system by annealing ⇒
these correspond to maximum a posteriori (MAP) estimates 
of the original image
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A Priori Image Model

• Hierarchical (layered stochastic processes for various image 
attributes)

• Image model:                  , where
– F:            matrix of pixel intensities (intensity process)
– L: dual matrix of edge elements (line process)

• A priori knowledge is captured by distribution
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Degraded Image Model

• Degraded images:            with                             , where
– H: blurring
– : nonlinear distorsion
– : invertible operation (e.g. addition, multiplication)
– N: noise (Gaussian, with mean    and std. dev.    )

• Requirement: F and N (also L and N) are independent
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Graphs and Neighborhoods

• : set of sites for F, the            integer lattice
• : set of sites for L, the dual lattice
• : set of sites for
• : neighborhood system for S
• 8-neighborhood for F:

• 6-neighborhood for L:                 (   : line site)

• Cliques for F:

• Cliques for L: e.g.
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Markov Random Fields

• : set of all possible configurations
• Set of random variables                          is an MRF w.r.t. 

neighborhood system      if
1. , and
2.

• Major drawback: it is too difficult to embed local 
characteristics

• X is an MRF ⇔ is a Gibbs distribution
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Gibbs Distribution

• Originates in statistical mechanics
• Defined as                                  , where

– : energy function

– : set of cliques
– : clique potentials
– : normalizing constant (partition function)

– T: temperature
• Major advantage: an easy way to specify MRF’s using 

potentials
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Restoration Algorithm

• Bayesian framework
• Objective function is the posterior distribution

• and                 are Gibbsian
• The distribution of G need not be known
• Maximize the objective function to get a maximum a 

posteriori (MAP) estimate of the original image
• |    | is huge ⇒ optimization is based on stochastic 

relaxation, Gibbs sampler and simulated annealing
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Stochastic Relaxation

• A nondeterministic, stochastic, iterative algorithm to find one 
of the lowest energy states of a mechanics system

• Based on Boltzmann distribution:                                             , 
where
– : potential energy
– with K denoting Boltzmann’s constant

• At iteration t a new configuration              is generated from        
as follows:
1. Choose a random configuration
2. is accepted with probability                                , 

where
3. is set to         or    depending on q
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Gibbs Sampler I.

• A stochastic relaxation algorithm, which generates new 
configurations from a given Gibbs distribution

• Used
– to generate samples from          , and
– to minimize the objective function

• Supports parallel computation
• At iteration t the new configuration              is chosen from             

using the local characteristics (neighborhood) of site s
• At most one site undergoes a change for every t
• Sites are visited in a fixed order
• The result does not depend on
• The distribution of         converges to
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Gibbs Sampler II.

• Optimal solution is achieved by simulated annealing ⇒
• converges to one of the configurations of lowest 

energy provided that
1. every site is visited infinitely often,
2. is monotonically decreasing,
3. , and
4. for all               2, where

and N is the number of sites
• In practice:                ,                               with or 4( ) 40 =T 3=C
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Results I.
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Results II.
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Results III.
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Results IV.
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Results V.


