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Basic Idea

« Consider images as a statistical mechanics system =
intensity levels become states of atoms or molecules

* Assign an energy function to the system = Gibbs
distribution = Markov random field (MRF) image model

e Restoration in a Bayesian framework = objective 1s to
maximize the posterior distribution

 Isolate low energy states of the system by annealing =
these correspond to maximum a posteriori (MAP) estimates
of the original image



A Priori Image Model

« Hierarchical (layered stochastic processes for various image
attributes)

* Image model: X = (F, ), where
— F: m X m matrix of pixel intensities (intensity process)
— L: dual matrix of edge elements (line process)

A priori knowledge is captured by distribution P( X = x)



Degraded Image Model

« Degraded images: (5, LYwith G = ¢(H(¥ ))ON where
— H: blurring
— ¢: nonlinear distorsion
— (9: invertible operation (e.g. addition, multiplication)
— N: noise (Gaussian, with mean u and std. dev. 0)

* Requirement: F and N (also L and N) are independent



Graphs and Neighborhoods

« §=2,,:setofsites for F, the m X minteger lattice
« §=D,, :sectofsites for L, the dual lattice

» §=Z,, UDy,: setof sites for (F, L)

+ §={§, s€S}:neighborhood system for S
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Markov Random Fields

1 : set of all possible configurations

Set of random variables X = {X,, s 5} 1s an MRF w.r.t.
neighborhood system § if

l. (X=w)>0 forall weLl,and

2. P(Xy=x,|X, = x,, 7 #5)= P(Xs = x| X, = x,, 1€ §)
Major drawback: it is too difficult to embed local
characteristics

X is an MRF < P(X = w) is a Gibbs distribution



(G1bbs Distribution

* Originates 1n statistical mechanics

* Defined as g(¢)) = 1 e U)T where

Z

— U(w) = > Ve(w): energy function
cel
— (: set of cliques
— Vel(w): clique potentials
- Z=> e"V@)IT: normalizing constant (partition function)
L
— T temperature

* Major advantage: an easy way to specify MRF’s using
potentials 8



Restoration Algorithm

« Bayesian framework

* Objective function 1s the posterior distribution

P(G=g|X = w) P(X = w)
P(i=g)

P(X =w|G =g) and P(X = w) are Gibbsian

The distribution of G need not be known

« Maximize the objective function to get a maximum a
posteriori (MAP) estimate of the original image

PX=w|G=¢g)=

| ©2 | 1s huge = optimization is based on stochastic
relaxation, Gibbs sampler and simulated annealing



Stochastic Relaxation

* A nondeterministic, stochastic, iterative algorithm to find one
of the lowest energy states of a mechanics system

e Based on Boltzmann distribution: 7(c) =e¢~? ‘5{“}/; 2 e BE(W)
where w

— & (w): potential energy
— [=1/KT with K denoting Boltzmann’s constant
« At iteration f a new configuration X(¢ + 1) is generated from X(r)

as follows:
1. Choose a random configuration 1 -
. . . m(n )
2. 1s accepted with probabilit q= = ¢ PAG )
tf p p y 7(X(0))

where A& = &(n) - & (X(1))
3. X(t+1) is set to X(¢) or 11 depending on g

10



Gibbs Sampler 1.

A stochastic relaxation algorithm, which generates new
configurations from a given Gibbs distribution ()

Used
— to generate samples from 7(w), and
— to minimize the objective function
Supports parallel computation

At iteration ¢ the new configuration X(¢ + 1) is chosen from 7 (w)
using the local characteristics (neighborhood) of site s

At most one site undergoes a change for every ¢

Sites are visited 1n a fixed order

The result does not depend on X(0)

The distribution of X () converges to () 11



Gibbs Sampler 11.

Optimal solution is achieved by simulated annealing = 7{(t)

X(t) converges to one of the configurations of lowest
energy provided that

1. every site 1s visited infinitely often,

2. T(¢) 1s monotonically decreasing,

3. T(f)—+0 as r—= and

4. T(t)=NAllog t forall t =ty =2, where

A =max (w) - min U(w)
Lt L

and N 1s the number of sites -

In practice: 7(0)=4, T(k) = — — with C=3or4
P ( ) (%) log (1 +£)

12



Results 1.
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Results II.
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(=} Restaracinn: 25 irocy
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Results I11.
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Flg. 4. fa) Original image: “Hand-drawn,” (b} Degraded image: Additive nolse, (2} Restoration: Without |
1000 iterations. (d} Restorathon: [nchiding line process; 1000 itecations.
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Results IV.

)
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Results V.
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